Debugging in Hungarian Maximum Matching - python

I wrote a code to solve the following algorithm question:
Given a number of positive integers all larger than 1, find the maximum number of pairs whose sum is a prime number. The number of positive integers is always an even number.
For example, given 2 5 6 13 2 11, the answer is 3 since 2+5=7, 6+13=19, 2+11=13.
I wrote the following code to solve the problem. I know this is not the optimal algorithm, but I just cannot find the bug in it that results in my failure in test cases.
def _isPrime(num):
for i in range(2, int(num**0.5)+1):
if num % i==0:
return False
return True
def findPairs(odds, evens, pairDict):
if len(odds)==0 or len(evens)==0:
return 0
key=' '.join(list(map(str, odds+evens)))
if key in pairDict:
return pairDict[key]
n=0
for i in range(len(evens)):
newOdds=odds.copy()
newEvens=evens.copy()
del newOdds[0]
del newEvens[i]
if _isPrime(odds[0]+evens[i]):
n=max(n,findPairs(newOdds, newEvens, pairDict)+1)
else:
n=max(n,findPairs(newOdds, newEvens,pairDict))
pairDict[key]=n
return n
numbers=list(map(int,input().split()))
odds=[i for i in numbers if i%2==1]
evens=[j for j in numbers if j%2==0]
pairDict={}
print(findPairs(odds,evens,pairDict))
Can someone help me find where the problem is. Thanks a lot!

The problem is that the recursion always tries to match the first odd number with some even number. This can go wrong if there are fewer even numbers than odd numbers because it will use up an even number that could have been used for a later match.
For example, consider "13 2 3". This code will return 0, but 2+3 is a prime.
You could fix it by also allowing an extra recursion case where the first odd number is discarded without reducing the even list.
del newOdds[0]
n=max(n,findPairs(newOdds, newEvens, pairDict)) # added line
del newEvens[i]

Related

How to get prime numbers from string using permutations and combinations

Complete the following function to return a list of strings lesser than 999 which form prime numbers from a given string of numbers.
For example if the given string is “23167”. All the prime numbers less than or equal to 999 in the string are 2,3,23,31,7,167. So, your function must return [2,3,23,31,7,167]. Although 23167 is a prime number we can ignore it because it is greater than 999.
Output: should be list of integers
def primenumber_from_string(string1):
#your code goes here
return []
if _name=='main_':
#you can run any test cases here
print(primenumber_from_string("8487934"))
Approach the problem systematically. Start with all the possible one-digit numbers, and check if they are prime. Then try all the possible two-digit numbers and see if they are prime. Then try all the possible three-digit numbers and check them all. Lastly show your accumulated results in the expected format.
So it's a basic algorithmic problem.
I'll give you some pseudo - code.
At this point, I'll only give you Brut-force solution, but I'll think about "proper" approach.
So:
Take first digit -> check
Second -> check
Third -> check
{ ... }
compose two digit numbers -> check.
When this is completed, put them into your list.
For checking if number is prime fast ( O(sqrt(N)) ) you can use this function:
## Made by kam021m on: 12.12.2019 ##
## Resources used:
## * GeeksForGeeks article how to check primes fast
## *
def is_prime(n):
if n == 1:
return False
i = 2
while i*i <= n:
if n % i == 0:
return False
i += 1
return True
This basically checks if number is prime by % (i) when i is lower than sqrt from n.
If I'll find faster solution, I will post it here.
EDIT 1: also wanted to ask, is it your homework or sth? Do you have time limits on it?

PYTHON: Finding an nth prime number

I've looked through a variety of older posts on this subject, and they have all left me confused in some way or another. So I'll start at the beginning.
The problem is #7 on Project Euler and I am a fairly new programmer trying to work my way through the problems. #7 is as follows.
By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13, we can see that the 6th prime is 13.
What is the 10,001st prime number?
My issue is as follows. I have a clear understanding of what prime numbers are and how they work. The sudo-code I would write for this problem is this:
For n in range(3,n) #where n is some very large value.
if n%i ==0 for i in range(2,n-1)
return False
if n%i == 0 for i == n
return True
But I think my lack of knowledge when it comes to Python is impeding me in finding what I want.
In most of the other solutions I have seen, they limit n to something like 125000 and I honestly have no clue where they came up with that number from.
The other issue is I don't know how to search properly through a range and create a list of values that satisfied that relation in a manner that I can then check the Max value in the list.
The thing that would make the most sense to me would be to basically append each new prime to a list and then just take the max value, but I'm sure there is a better and faster way to do this. If you are going to answer, please include a healthy dose of explanation without jumping into python technobabble, remember, I'm a beginner in programming.
I know that the typical way people deal with questions like this is to prod the asker into finding the right answer, I don't want that. I would like someone to show me a solution and then walk through it step by step explaining what each part of the code does so that I can learn not only how to solve the problem, but also gain a better intuition for how python works.
Thanks.
This task basically asks you to gather 10001 prime numbers. So start by building a list of primes and when you reach the 10001th number display it.
Here is a sample code:
def is_prime(n):
for i in range(3, n):
if n % i == 0:
return False
return True
primes = [] # list of primes
x = 10001 # go to the nth-number
n = 2 # start at number 2
while len(primes) != x+1: # is n-th number on the list? +1 is because list is zero-based
if is_prime(n):
primes.append(n) # add prime to the list
n+=1 # increment n to check the next number
# print the last item in the list - the n-th number
print(primes[-1])

Solution to Euler Project Task 5: Why does it work?

After some trial and error I have found a solution which works very quickly for the Project Euler Problem 5. (I have found another way which correctly solved the example case (numbers 1-10) but took an eternity to solve the actual Problem.) Here it goes:
def test(n):
for x in range(2,21):
if n % x != 0:
return False
return True
def thwart(n):
for x in range(2,21):
if test(n/x):
n /= x
return n
raise TypeError
num = 1
for x in range(1,21):
num *= x
while True:
try:
num = thwart(num)
except TypeError:
break
print(num)
My main problem is understanding why calling thwart(num) repeatedly is enough to result in the correct solution. (I.e. why is it able to find the SMALLEST number and doesnt just spit out any number divisible by the numbers 1-20?)
I only had some vague thoughts when programming it and was surprised at how quickly it worked. But now I have trouble figuring out why exactly it even works... The optimized solutions of other people on SO Ive found so far were all talking about prime factors which I can't see how that would fit with my program...?
Any help is appreciated! Thanks!
Well this isn't really a coding issue but a mathematical issue. If you look at all the numbers from 1-20 as the prime sthat make them you'll get the following:
1, 2,3,2^2,5,2^3,7,2^3....2^2*5.
the interesting part here is that once you multiply by the highest exponent of every single factor in these numbers you will get a number that can be divided by each of the numbers between one and twenty.
Once you realize that the problem is a simple mathematical one and approach it as such you can use this basic code:
import math
primes = [2]
for n in range(3,21): #get primes between 1 and 20
for i in primes:
if n in primes:
break
if n%i == 0:
break
if i> math.sqrt(n):
primes.append(n)
break
s = 1
for i in primes:
for j in range(10): # no reason for 10, could as well be 5 because 2^5 >20
if i**j > 20:
s = s*(i**(j-1))
break
print s
Additionally, the hint that the number 2520 is the smallest number that can be divided by all numbers should make you understand how 2520 is chosen:
I have taken a photo for you:
As you can caculate, when you take the biggest exponents and multiply them you get the number 2520.
What your solution does
your solution basically takes the number which is 1*2*3*4..*20 and tries dividing it by every number between 2 to 20 in such a way that it will still remain relevant. By running it over and over you remove the un-needed numbers from it. early on it will remove all the unnecessary 2's by dividing by 2, returning the number and then being called again and divided by 2 again. Once all the two's have been eliminated it will eliminate all the threes, once all the unnecessary threes will be eliminated it will try dividing by 4 and it will se it wont work, continue to 5, 6, 7... and when it finishes the loop without being able to divide it will raise a TypeError and you will finish your program with the correct number. This is not an efficient way to solve this problem but it will work with small numbers.

How else can I use the while-loop with the [included function] to sum only prime numbers from a given range?

I'm looking for the specific number of primes that I can add together before exceeding unknown variable n. k is the number of primes.
is_prime() is a function that returns True if the argument is a prime, and False otherwise.
What I have attempted:
i = 1
total = 2
k = 0
while total <= n:
i += 1
if is_prime(i):
k += 1
total += i
my code begins to not work as the value of n gets larger. I was hoping k would increment only when is_prime returns True, and total would be a running total making sure the sum of the primes do not exceed n.
How can I solve this problem using either a while-loop, for-loop, or if/elif/else, and without the use of other functions such as sum()?
Your code doesn't seem to have a problem in it, assuming is_prime actually does what it's supposed to. Perhaps your n was just too large and looking for enough prime numbers to reach n took too long.
If any errors were raised you should have specified them, other than that, I don't really see any problem with the code.

Reduce time complexity of brute forcing - largest prime factor

I am writing a code to find the largest prime factor of a very large number.
Problem 3 of Project Euler :
What is the largest prime factor of the number 600851475143 ?
I coded it in C...but the data type long long int is not sufficient enough to hold the value .
Now, I have rewritten the code in Python. How can I reduce the time taken for execution (as it is taking a considerable amount of time)?
def isprime(b):
x=2
while x<=b/2:
if(b%x)==0:
return 0
x+=1
return 1
def lpf(a):
x=2
i=2
while i<=a/2:
if a%i==0:
if isprime(i)==1:
if i>x:
x=i
print(x)
i+=1
print("final answer"+x)
z=600851475143
lpf(z)
There are many possible algorithmic speed ups. Some basic ones might be:
First, if you are only interested in the largest prime factor, you should check for them from the largest possible ones, not smallest. So instead of looping from 2 to a/2 try to check from a downto 2.
You could load the database of primes instead of using isprime function (there are dozens of such files in the net)
Also, only odd numbers can be primes (except for 2) so you can "jump" 2 values in each iteration
Your isprime checker could also be speededup, you do not have to look for divisiors up to b/2, it is enough to check to sqrt(b), which reduces complexity from O(n) to O(sqrt(n)) (assuming that modulo operation is constant time).
You could use the 128 int provided by GCC: http://gcc.gnu.org/onlinedocs/gcc/_005f_005fint128.html . This way, you can continue to use C and avoid having to optimize Python's speed. In addition, you can always add your own custom storage type to hold numbers bigger than long long in C.
I think you're checking too many numbers (incrementing by 1 and starting at 2 in each case). If you want to check is_prime by trial division, you need to divide by fewer numbers: only odd numbers to start (better yet, only primes). You can range over odd numbers in python the following way:
for x in range(3, some_limit, 2):
if some_number % x == 0:
etc.
In addition, once you have a list of primes, you should be able to run through that list backwards (because the question asks for highest prime factor) and test if any of those primes evenly divides into the number.
Lastly, people usually go up to the square-root of a number when checking trial division because anything past the square-root is not going to provide new information. Consider 100:
1 x 100
2 x 50
5 x 20
10 x 10
20 x 5
etc.
You can find all the important divisor information by just checking up to the square root of the number. This tip is useful both for testing primes and for testing where to start looking for a potential divisor for that huge number.
First off, your two while loops only need to go up to the sqrt(n) since you will have hit anything past that earlier (you then need to check a/i for primeness as well). In addition, if you find the lowest number that divides it, and the result of the division is prime, then you have found the largest.
First, correct your isprime function:
def isprime(b):
x=2
sqrtb = sqrt(b)
while x<=sqrtb:
if(b%x)==0:
return 0
x+=1
return 1
Then, your lpf:
def lpf(a):
x=2
i=2
sqrta = sqrt(a)
while i<=sqrt(a):
if a%i==0:
b = a//i # integer
if isprime(b):
return b
if isprime(i):
x=i
print(x)
i+=1
return x

Categories