I'm currently working on an algorithm to detect bacterial centroids in microscopy images.
This question is a continuation of: OpenCV/Python — Matching Centroid Points of Bacteria in Two Images: Python/OpenCV — Matching Centroid Points of Bacteria in Two Images
I am using a modified version of the program proposed by Rahul Kedia.
https://stackoverflow.com/a/63049277/13696853
Currently, the issues in segmentation I am working on are:
Low Contrast
Clustering
The images below are sampled a second apart. However, in the latter image, one of the bacteria does not get detected.
Bright-field Image #1
Bright-Field Image #2
Bright-Field Contour Image #1
Bright-Field Contour Image #2
Bright-Field Image #1 (Unsegmented)
Bright-Field Image #2 (Unsegmented)
I want to know, given that I can successfully determine bacterial centroids in an image, can I use the data to intelligently look for the same bacteria in the subsequent image?
I haven't been able to find anything substantial online; I believe SIFT/SURF would likely be ineffective as the bacteria have the same appearance. Moreover, I am looking for specific points in the images. You can view my program below. Insert a specific path as indicated if you'd like to run the program.
import cv2
import numpy as np
import os
kernel = np.array([[0, 0, 1, 0, 0],
[0, 1, 1, 1, 0],
[1, 1, 1, 1, 1],
[0, 1, 1, 1, 0],
[0, 0, 1, 0, 0]], dtype=np.uint8)
def e_d(image, it):
image = cv2.erode(image, kernel, iterations=it)
image = cv2.dilate(image, kernel, iterations=it)
return image
path = r"[INSERT PATH]"
img_files = [file for file in os.listdir(path)]
def segment_index(index: int):
segment_file(img_files[index])
def segment_file(img_file: str):
img_path = path + "\\" + img_file
print(img_path)
img = cv2.imread(img_path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Applying adaptive mean thresholding
th = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 11, 2)
# Removing small noise
th = e_d(th.copy(), 1)
# Finding contours with RETR_EXTERNAL flag and removing undesired contours and
# drawing them on a new image.
cnt, hie = cv2.findContours(th, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
cntImg = th.copy()
for contour in cnt:
x, y, w, h = cv2.boundingRect(contour)
# Eliminating the contour if its width is more than half of image width
# (bacteria will not be that big).
if w > img.shape[1] / 2:
continue
cntImg = cv2.drawContours(cntImg, [cv2.convexHull(contour)], -1, 255, -1)
# Removing almost all the remaining noise.
# (Some big circular noise will remain along with bacteria contours)
cntImg = e_d(cntImg, 3)
# Finding new filtered contours again
cnt2, hie2 = cv2.findContours(cntImg, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
# Now eliminating circular type noise contours by comparing each contour's
# extent of overlap with its enclosing circle.
finalContours = [] # This will contain the final bacteria contours
for contour in cnt2:
# Finding minimum enclosing circle
(x, y), radius = cv2.minEnclosingCircle(contour)
center = (int(x), int(y))
radius = int(radius)
# creating a image with only this circle drawn on it(filled with white colour)
circleImg = np.zeros(img.shape, dtype=np.uint8)
circleImg = cv2.circle(circleImg, center, radius, 255, -1)
# creating a image with only the contour drawn on it(filled with white colour)
contourImg = np.zeros(img.shape, dtype=np.uint8)
contourImg = cv2.drawContours(contourImg, [contour], -1, 255, -1)
# White pixels not common in both contour and circle will remain white
# else will become black.
union_inter = cv2.bitwise_xor(circleImg, contourImg)
# Finding ratio of the extent of overlap of contour to its enclosing circle.
# Smaller the ratio, more circular the contour.
ratio = np.sum(union_inter == 255) / np.sum(circleImg == 255)
# Storing only non circular contours(bacteria)
if ratio > 0.55:
finalContours.append(contour)
finalContours = np.asarray(finalContours)
# Finding center of bacteria and showing it.
bacteriaImg = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
for bacteria in finalContours:
M = cv2.moments(bacteria)
cx = int(M['m10'] / M['m00'])
cy = int(M['m01'] / M['m00'])
bacteriaImg = cv2.circle(bacteriaImg, (cx, cy), 5, (0, 0, 255), -1)
cv2.imshow("bacteriaImg", bacteriaImg)
cv2.waitKey(0)
# Segment Each Image
for i in range(len(img_files)):
segment_index(i)
Edit #1: Applying frmw42's approach, this image seems to get lost. I have tried adjusting a number of parameters but the image does not seem to show up.
Bright-Field Image #3
Bright-Field Image #4
Here is my Python/OpenCV code to extract your bacteria. I simply threshold, then get the contours and draw filled contours for those within a certain area range. I will let you do any further processing that you want. I simply viewed each step to make sure I have tuned the arguments appropriately before moving to the next step.
Input 1:
Input 2:
import cv2
import numpy as np
# read image
#img = cv2.imread("bacteria1.png")
img = cv2.imread("bacteria2.png")
# convert img to grayscale
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
gray = 255 - gray
# do adaptive threshold on inverted gray image
thresh = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 21, 5)
result = np.zeros_like(img)
contours = cv2.findContours(thresh , cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
contours = contours[0] if len(contours) == 2 else contours[1]
for cntr in contours:
area = cv2.contourArea(cntr)
if area > 600 and area < 1100:
cv2.drawContours(result, [cntr], 0, (255,255,255), -1)
# write results to disk
#cv2.imwrite("bacteria_filled_contours1.png", result)
cv2.imwrite("bacteria_filled_contours2.png", result)
# display it
cv2.imshow("thresh", thresh)
cv2.imshow("result", result)
cv2.waitKey(0)
Result 1:
Result 2:
Adjust as desired.
It would seem that adaptive threshold is not able to handle all your various images. I suspect nothing simple will. You may need to use AI with training. Nevertheless, this works for your images: 1, 2 and 4 in Python/OpenCV. I make no guarantee that it will work for any of your other images.
First I found a simple threshold that seems to work, but brings in other regions. So since all your bacteria have similar shapes and range of orientations, I fit and ellipse to your bacteria and get the orientation of the major axis and filter the contours with area and angle.
import cv2
import numpy as np
# read image
#img = cv2.imread("bacteria1.png")
#img = cv2.imread("bacteria2.png")
img = cv2.imread("bacteria4.png")
# convert img to grayscale
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
gray = 255 - gray
# median filter
#gray = cv2.medianBlur(gray, 1)
# do simple threshold on inverted gray image
thresh = cv2.threshold(gray, 170, 255, cv2.THRESH_BINARY)[1]
result = np.zeros_like(img)
contours = cv2.findContours(thresh , cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
contours = contours[0] if len(contours) == 2 else contours[1]
for cntr in contours:
area = cv2.contourArea(cntr)
if area > 600 and area < 1100:
ellipse = cv2.fitEllipse(cntr)
(xc,yc),(d1,d2),angle = ellipse
if angle > 90:
angle = angle - 90
else:
angle = angle + 90
print(angle,area)
if angle >= 150 and angle <= 250:
cv2.drawContours(result, [cntr], 0, (255,255,255), -1)
# write results to disk
#cv2.imwrite("bacteria_filled_contours1.png", result)
#cv2.imwrite("bacteria_filled_contours2.png", result)
cv2.imwrite("bacteria_filled_contours4.png", result)
# display it
cv2.imshow("thresh", thresh)
cv2.imshow("result", result)
cv2.waitKey(0)
Result for image 1:
Result for image 2:
Result for image 4:
You might explore noise reduction before thresholding. I had some success with using some of ImageMagick tools and there is a Python version called Python Wand that uses ImageMagick.
Related
I am trying to convert the result of a skeletonization into a set of line segments, where the vertices correspond to the junction points of the skeleton. The shape is not a closed polygon and it may be somewhat noisy (the segments are not as straight as they should be).
Here is an example input image:
And here are the points I want to retrieve:
I have tried using the harris corner detector, but it has trouble in some areas even after trying to tweak the algorithm's parameters (such as the angled section on the bottom of the image). Here are the results:
Do you know of any method capable of doing this? I am using python with mostly OpenCV and Numpy but I am not bound to any library. Thanks in advance.
Edit: I've gotten some good responses regarding the junction points, I am really grateful. I would also appreciate any solutions regarding extracting line segments from the junction points. I think #nathancy's answer could be used to extract line segments by subtracting the masks with the intersection mask, but I am not sure.
My approach is based on my previous answer here. It involves convolving the image with a special kernel. This convolution identifies the end-points of the lines, as well as the intersections. This will result in a points mask containing the pixel that matches the points you are looking for. After that, apply a little bit of morphology to join possible duplicated points. The method is sensible to the corners produced by the skeleton.
This is the code:
import cv2
import numpy as np
# image path
path = "D://opencvImages//"
fileName = "Repn3.png"
# Reading an image in default mode:
inputImage = cv2.imread(path + fileName)
inputImageCopy = inputImage.copy()
# Convert to grayscale:
grayscaleImage = cv2.cvtColor(inputImage, cv2.COLOR_BGR2GRAY)
# Compute the skeleton:
skeleton = cv2.ximgproc.thinning(grayscaleImage, None, 1)
# Threshold the image so that white pixels get a value of 10 and
# black pixels a value of 0:
_, binaryImage = cv2.threshold(skeleton, 128, 10, cv2.THRESH_BINARY)
# Set the convolution kernel:
h = np.array([[1, 1, 1],
[1, 10, 1],
[1, 1, 1]])
# Convolve the image with the kernel:
imgFiltered = cv2.filter2D(binaryImage, -1, h)
So far I convolved the skeleton image with my special kernel. You can inspect the image produced and search for the numerical values at the corners and intersections.
This is the output so far:
Next, identify a corner or an intersection. This bit is tricky, because the threshold value depends directly on the skeleton image, which sometimes doesn't produce good (close to straight) corners:
# Create list of thresholds:
thresh = [130, 110, 40]
# Prepare the final mask of points:
(height, width) = binaryImage.shape
pointsMask = np.zeros((height, width, 1), np.uint8)
# Perform convolution and create points mask:
for t in range(len(thresh)):
# Get current threshold:
currentThresh = thresh[t]
# Locate the threshold in the filtered image:
tempMat = np.where(imgFiltered == currentThresh, 255, 0)
# Convert and shape the image to a uint8 height x width x channels
# numpy array:
tempMat = tempMat.astype(np.uint8)
tempMat = tempMat.reshape(height,width,1)
# Accumulate mask:
pointsMask = cv2.bitwise_or(pointsMask, tempMat)
This is the binary mask:
Let's dilate to join close points:
# Set kernel (structuring element) size:
kernelSize = 3
# Set operation iterations:
opIterations = 4
# Get the structuring element:
morphKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (kernelSize, kernelSize))
# Perform Dilate:
pointsMask = cv2.morphologyEx(pointsMask, cv2.MORPH_DILATE, morphKernel, None, None, opIterations, cv2.BORDER_REFLECT101)
This is the output:
Now simple extract external contours. Get their bounding boxes and calculate their centroid:
# Look for the outer contours (no children):
contours, _ = cv2.findContours(pointsMask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# Store the points here:
pointsList = []
# Loop through the contours:
for i, c in enumerate(contours):
# Get the contours bounding rectangle:
boundRect = cv2.boundingRect(c)
# Get the centroid of the rectangle:
cx = int(boundRect[0] + 0.5 * boundRect[2])
cy = int(boundRect[1] + 0.5 * boundRect[3])
# Store centroid into list:
pointsList.append( (cx,cy) )
# Set centroid circle and text:
color = (0, 0, 255)
cv2.circle(inputImageCopy, (cx, cy), 3, color, -1)
font = cv2.FONT_HERSHEY_COMPLEX
cv2.putText(inputImageCopy, str(i), (cx, cy), font, 0.5, (0, 255, 0), 1)
# Show image:
cv2.imshow("Circles", inputImageCopy)
cv2.waitKey(0)
This is the result. Some corners are missed, you might one to improve the solution before computing the skeleton.
Here's a simple approach, the idea is:
Obtain binary image. Load image, convert to grayscale, Gaussian blur, then Otsu's threshold.
Obtain horizontal and vertical line masks. Create horizontal and vertical structuring elements with cv2.getStructuringElement then perform cv2.morphologyEx to isolate the lines.
Find joints. We cv2.bitwise_and the two masks together to get the joints. The idea is that the intersection points on the two masks are the joints.
Find centroid on joint mask. We find contours then calculate the centroid.
Find leftover endpoints. Endpoints do not correspond to an intersection so to find those, we can use the Shi-Tomasi Corner Detector
Horizontal and vertical line masks
Results (joints in green and endpoints in blue)
Code
import cv2
import numpy as np
# Load image, grayscale, Gaussian blur, Otsus threshold
image = cv2.imread('1.png')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray, (3,3), 0)
thresh = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1]
# Find horizonal lines
horizontal_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5,1))
horizontal = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, horizontal_kernel, iterations=1)
# Find vertical lines
vertical_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1,5))
vertical = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, vertical_kernel, iterations=1)
# Find joint intersections then the centroid of each joint
joints = cv2.bitwise_and(horizontal, vertical)
cnts = cv2.findContours(joints, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
for c in cnts:
# Find centroid and draw center point
x,y,w,h = cv2.boundingRect(c)
centroid, coord, area = cv2.minAreaRect(c)
cx, cy = int(centroid[0]), int(centroid[1])
cv2.circle(image, (cx, cy), 5, (36,255,12), -1)
# Find endpoints
corners = cv2.goodFeaturesToTrack(thresh, 5, 0.5, 10)
corners = np.int0(corners)
for corner in corners:
x, y = corner.ravel()
cv2.circle(image, (x, y), 5, (255,100,0), -1)
cv2.imshow('thresh', thresh)
cv2.imshow('joints', joints)
cv2.imshow('horizontal', horizontal)
cv2.imshow('vertical', vertical)
cv2.imshow('image', image)
cv2.waitKey()
I have pictures of apple slices that have been soaked in an iodine solution. The goal is to segment the apples into individual regions of interest and evaluate the starch level of each one. This is for a school project so my goal is to test different methods of segmentation and objectively find the best solution whether it be a single technique or a combination of multiple techniques.
The problem is that so far I have only come close on one method. That method is using HoughCircles. I had originally planned to use the Watershed method, Morphological operations, or simple thresholding. This plan failed when I couldn't modify any of them to work.
The original images look similar to this, with varying shades of darkness of the apple
I've tried removing the background tray using cv2.inRange with HSV values, but it doesn't work well with darker apples.
This is what the HoughCircles produced on the original image with a grayscale and median blur applied, also with an attempted mask of the tray.
Any advice or direction on where to look next would be greatly appreciated. I can supply the code I'm using if that will help.
Thank you!
EDIT 1 : Adding some code and clarifying the question
Thank you for the responses. My real question is are there any other methods of segmentation that this scenario lends itself well to? I would like to try a couple different methods and compare results on a large set of photos. My next in line to try is using k-means segmentation. Also I'll add some code below to show what I've tried so far.
HSV COLOR FILTERING
import cv2
import numpy as np
# Load image
image = cv2.imread('ApplePic.jpg')
# Set minimum and max HSV values to display
lower = np.array([0, 0, 0])
upper = np.array([105, 200, 255])
# Create HSV Image and threshold into a range.
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(hsv, lower, upper)
maskedImage = cv2.bitwise_and(image, image, mask=mask)
# Show Image
cv2.imshow('HSV Mask', image)
cv2.waitKey(0)
HoughCircles
# import the necessary packages
import numpy as np
import argparse
import cv2
import os
directory = os.fsencode('Photos\\Sample N 100')
for file in os.listdir(directory):
filename = os.fsdecode(file)
if filename.endswith('.jpg'):
# Load the image
image = cv2.imread('Photos\\Sample N 100\\' + filename)
# Calculate scale
scale_factor = 800 / image.shape[0]
width = int(image.shape[1] * scale_factor)
height = 800
dimension = (width, height)
min_radius = int((width / 10) * .8)
max_radius = int((width / 10) * 1.2)
# Resize image
image = cv2.resize(image, dimension, interpolation=cv2.INTER_AREA)
# Copy Image
output = image.copy()
# Grayscale Image
gray = cv2.medianBlur(cv2.cvtColor(image, cv2.COLOR_BGR2GRAY), 5)
# Detect circles in image
circles = cv2.HoughCircles(gray, cv2.HOUGH_GRADIENT, 1, min_radius * 2, 4, 60, 20, min_radius, max_radius)
# ensure at least some circles were found
if circles is not None:
# convert the (x, y) coordinates and radius of the circles to integers
circles = np.round(circles[0, :]).astype("int")
# loop over the (x, y) coordinates and radius of the circles
for (x, y, r) in circles:
# draw the circle in the output image, then draw a rectangle
# corresponding to the center of the circle
cv2.circle(output, (x, y), r, (0, 255, 0), 4)
cv2.rectangle(output, (x - 5, y - 5), (x + 5, y + 5), (0, 128, 255), -1)
cv2.putText(output, '(' + str(x) + ',' + str(y) + ',' + str(r) + ')', (x, y),
cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, 255)
# show the output image
cv2.imshow("output", np.hstack([image, output, maskedImage]))
cv2.waitKey(0)
continue
else:
continue
An alternative approach to segmenting the apples is to perform Kmeans color segmentation before thresholding then using contour filtering to isolate the apple objects:
Apply Kmeans color segmentation. We load the image, resize smaller using imutils.resize then apply Kmeans color segmentation. Depending on the number of clusters, we can segment the image into the desired number of colors.
Obtain binary image. Next we convert to grayscale, Gaussian blur and Otsu's threshold.
Filter using contour approximation. We filter out non-circle contours and small noise.
Morphological operations. We perform a morph close to fill adjacent contours
Draw minimum enclosing circles using contour area as filter. We find contours and draw the approximated circles. For this we use two sections, one where there was a good threshold and another where we approximate the radius.
Kmeans color quantization with clusters=3 and binary image
Morph close and result
The "good" contours that had the radius automatically calculated using cv2.minEnclosingCircle is highlighted in green while the approximated contours are highlighted in teal. These approximated contours were not segmented well from the thresholding process so we average the "good" contours radius and use that to draw the circle.
Code
import cv2
import numpy as np
import imutils
# Kmeans color segmentation
def kmeans_color_quantization(image, clusters=8, rounds=1):
h, w = image.shape[:2]
samples = np.zeros([h*w,3], dtype=np.float32)
count = 0
for x in range(h):
for y in range(w):
samples[count] = image[x][y]
count += 1
compactness, labels, centers = cv2.kmeans(samples,
clusters,
None,
(cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10000, 0.0001),
rounds,
cv2.KMEANS_RANDOM_CENTERS)
centers = np.uint8(centers)
res = centers[labels.flatten()]
return res.reshape((image.shape))
# Load image, resize smaller, perform kmeans, grayscale
# Apply Gaussian blur, Otsu's threshold
image = cv2.imread('1.jpg')
image = imutils.resize(image, width=600)
kmeans = kmeans_color_quantization(image, clusters=3)
gray = cv2.cvtColor(kmeans, cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray, (9,9), 0)
thresh = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1]
# Filter out contours not circle
cnts = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
for c in cnts:
peri = cv2.arcLength(c, True)
approx = cv2.approxPolyDP(c, 0.04 * peri, True)
if len(approx) < 4:
cv2.drawContours(thresh, [c], -1, 0, -1)
# Morph close
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5,5))
close = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=3)
# Find contours and draw minimum enclosing circles
# using contour area as filter
approximated_radius = 63
cnts = cv2.findContours(close, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
for c in cnts:
area = cv2.contourArea(c)
x,y,w,h = cv2.boundingRect(c)
# Large circles
if area > 6000 and area < 15000:
((x, y), r) = cv2.minEnclosingCircle(c)
cv2.circle(image, (int(x), int(y)), int(r), (36, 255, 12), 2)
# Small circles
elif area > 1000 and area < 6000:
((x, y), r) = cv2.minEnclosingCircle(c)
cv2.circle(image, (int(x), int(y)), approximated_radius, (200, 255, 12), 2)
cv2.imshow('kmeans', kmeans)
cv2.imshow('thresh', thresh)
cv2.imshow('close', close)
cv2.imshow('image', image)
cv2.waitKey()
I am tasked to build a license plate detection system and my code does not work if the plate has the same colour of the paint of car (background).
Take a look at this picture below.
I have tried a variety of edge detection technique and my findings are they hardly work.
Here is my image processing pipeline:
Extract the gray channel from the image.
Reduce noise with Iterative Bilaterial Filtering
Detect edges with Adaptive Thresholding
Dilate the edges slightly
Locate contours based on some heuristics.
The edge detection part performed miserably around the plate region.
The pipeline works good and I am able to detect license plates if the car is has a different paint colour than the plate.
Code
def rectangleness(hull):
rect = cv2.boundingRect(hull)
rectPoints = np.array([[rect[0], rect[1]],
[rect[0] + rect[2], rect[1]],
[rect[0] + rect[2], rect[1] + rect[3]],
[rect[0], rect[1] + rect[3]]])
intersection_area = cv2.intersectConvexConvex(np.array(rectPoints), hull)[0]
rect_area = cv2.contourArea(rectPoints)
rectangleness = intersection_area/rect_area
return rectangleness
def preprocess(image):
image = imutils.resize(image, 1000)
# Attenuate shadows by using H channel instead of converting to gray directly
imgHSV = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
_, _, gray = cv2.split(imgHSV)
# Reduce noise while preserve edge with Iterative Bilaterial Filtering
blur = cv2.bilateralFilter(gray, 11, 6, 6)
# Detect edges by thresholding
edge = cv2.adaptiveThreshold(blur, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 11, 5)
# Dilate edges, kernel size cannot be too big as some fonts are very closed to the edge of the plates
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2, 2))
dilated = cv2.dilate(edge, kernel)
# Detect contours
edge, contours, _ = cv2.findContours(dilated, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
# Loop through contours and select the most probable ones
contours = sorted(contours, key = cv2.contourArea, reverse=True)[:10]
for contour in contours:
perimeter = cv2.arcLength(contour, closed=True)
approximate = cv2.approxPolyDP(contour, 0.02*perimeter, closed=True)
if len(approximate) == 4:
(x, y, w, h) = cv2.boundingRect(approximate)
whRatio = w / h
# Heuristics:
# 1. Width of plate should at least be 2x greater than height
# 2. Width of contour should be more than 5 (eliminate false positive)
# 3. Height must not be too small
# 4. Polygon must resemble a rectangle
if (2.0 < whRatio < 6.0) and (w > 5.0) and (h > 20):
hull = cv2.convexHull(approximate, returnPoints=True)
if rectangleness(hull) > 0.75:
print("X Y {} {}".format(x, y))
print("Height: {}".format(h))
print("Width : {}".format(w))
print("Ratio : {}\n".format(w/h))
cv2.drawContours(image, [approximate], -1, (0, 255, 0), 2)
cv2.imshow("Edge", edge)
cv2.imshow("Frame", image)
cv2.waitKey(0)
cv2.destroyAllWindows()
You can use cv2.morphologyEx for making the plate region become more visible. Next step is to find contours and set reasonable conditions to extract the contour that contains the plate. If you want, you can have a look at this github repository where my friend and I show detailed steps about license plate detection and recognition.
import cv2
import numpy as np
img = cv2.imread("a.png")
imgBlurred = cv2.GaussianBlur(img, (7, 7), 0)
gray = cv2.cvtColor(imgBlurred, cv2.COLOR_BGR2GRAY) # convert to gray
sobelx = cv2.Sobel(gray, cv2.CV_8U, 1, 0, ksize=3) # sobelX to get the vertical edges
ret,threshold_img = cv2.threshold(sobelx, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)
morph_img_threshold = threshold_img.copy()
element = cv2.getStructuringElement(shape=cv2.MORPH_RECT, ksize=(22, 3))
cv2.morphologyEx(src=threshold_img, op=cv2.MORPH_CLOSE, kernel=element,
dst=morph_img_threshold)
cv2.imshow("img", img)
cv2.imshow("sobelx", sobelx)
cv2.imshow("morph_img_threshold", morph_img_threshold)
cv2.waitKey()
cv2.destroyAllWindows()
I am working on automatically correcting a bubble-sheet tests that are scanned.
Currently, I can extract the solutions part of the sheet and fix its rotation.
So I have this image.
The output image with detected contours
Running the following code yields in the output image
def get_answers(image):
display_normal("Just image",image)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blurry = cv2.GaussianBlur(gray, (3, 3), 1)
thresh = cv2.threshold(blurry, 225, 255,
cv2.THRESH_BINARY_INV)[1]
display_normal("Binary", thresh)
# find contours in the thresholded image, then initialize
# the list of contours that correspond to questions
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[1]
questionCnts = []
# loop over the contours
for c in cnts:
# compute the bounding box of the contour, then use the
# bounding box to derive the aspect ratio
(x, y, w, h) = cv2.boundingRect(c)
ar = w / float(h)
# in order to label the contour as a question, region
# should be sufficiently wide, sufficiently tall, and
# have an aspect ratio approximately equal to 1
if w >= 18 and h >= 18 and 0.9 <= ar and ar <= 1.2:
questionCnts.append(c)
cv2.drawContours(image, questionCnts, -1, (255, 0, 0), 1)
display_normal("Image with contours",image.copy())
if(questionCnts < 45*4):
raise Exception("Didn't found all possible answers")
Here is the problem : I convert the input image to binary and try to find contours that looks like a circle, but I can't find the whole possible 45*4 choices.. I fail to detect some of these circles..
So is there any better idea/algorithm to do this specific task ?
You could have tried using adaptive threshold:
adapt_thresh = cv2.adaptiveThreshold(equ, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 11, 2)
cv2.imshow('adapt_thresh.jpg', adapt_thresh)
(I resized the original image to keep it smaller)
UPDATE:
Another approach that I just performed.......
I equalized the gray scale image using histogram equalization:
equalized_img = cv2.equalizeHist(gray)
cv2.imshow('Equalized Image.jpg', equalized_img )
I then obtained the median of the equalized image using np.median(equalized_img) and applied a binary threshold by selecting all pixel values below [0.6 * median]
ret, thresh = cv2.threshold(equalized_img, lower, 255, 1)
cv2.imwrite("Final Image.jpg", thresh)
Now you can go ahead and find your desired contours on this image.
Hope it helps .. :)
I'm trying to make an OpenCV detect a bed in the image. I am running the usual Grayscale, Blur, Canny, and I've tried Convex Hull. However, since there's quite a number of "noise" which gives extra contours and messes up the object detection. Because of this, I am unable to detect the bed properly.
Here is the input image as well as the Canny Edge Detection result:
As you can see, it's almost there. I have the outline of the bed already, albeit, that the upper right corner has a gap - which is preventing me from detecting a closed rectangle.
Here's the code I'm running:
import cv2
import numpy as np
def contoursConvexHull(contours):
print("contours length = ", len(contours))
print("contours length of first item = ", len(contours[1]))
pts = []
for i in range(0, len(contours)):
for j in range(0, len(contours[i])):
pts.append(contours[i][j])
pts = np.array(pts)
result = cv2.convexHull(pts)
print(len(result))
return result
def auto_canny(image, sigma = 0.35):
# compute the mediam of the single channel pixel intensities
v = np.median(image)
# apply automatic Canny edge detection using the computed median
lower = int(max(0, (1.0 - sigma) * v))
upper = int(min(255, (1.0 + sigma) *v))
edged = cv2.Canny(image, lower, upper)
# return edged image
return edged
# Get our image in color mode (1)
src = cv2.imread("bed_cv.jpg", 1)
# Convert the color from BGR to Gray
srcGray = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY)
# Use Gaussian Blur
srcBlur = cv2.GaussianBlur(srcGray, (3, 3), 0)
# ret is the returned value, otsu is an image
##ret, otsu = cv2.threshold(srcBlur, 0, 255,
## cv2.THRESH_BINARY+cv2.THRESH_OTSU)
# Use canny
##srcCanny = cv2.Canny(srcBlur, ret, ret*2, 3)
srcCanny1 = auto_canny(srcBlur, 0.70)
# im is the output image
# contours is the contour list
# I forgot what hierarchy was
im, contours, hierarchy = cv2.findContours(srcCanny1,
cv2.RETR_TREE,
cv2.CHAIN_APPROX_SIMPLE)
##cv2.drawContours(src, contours, -1, (0, 255, 0), 3)
ConvexHullPoints = contoursConvexHull(contours)
##cv2.polylines(src, [ConvexHullPoints], True, (0, 0, 255), 3)
cv2.imshow("Source", src)
cv2.imshow("Canny1", srcCanny1)
cv2.waitKey(0)
Since the contour of the bed isn't closed, I can't fit a rectangle nor detect the contour with the largest area.
The solution I can think of is to extrapolate the largest possible rectangle using the contour points in the hopes of bridging that small gap, but I'm not too sure how to proceed since the rectangle is incomplete.
Since you haven't provided any other examples, I provide an algorithm working with this case. But bare in mind that you will have to find ways of adapting it to however the light and background changes on other samples.
Since there is a lot of noise and a relatively high dynamic range, I suggest not to use Canny and instead use Adaptive Thresholding and Find Contours on that (it doesn't need edges as an input), that helps with choosing different threshold values for different parts of the image.
My result:
Code:
import cv2
import numpy as np
def clahe(img, clip_limit=2.0, grid_size=(8,8)):
clahe = cv2.createCLAHE(clipLimit=clip_limit, tileGridSize=grid_size)
return clahe.apply(img)
src = cv2.imread("bed.png")
# HSV thresholding to get rid of as much background as possible
hsv = cv2.cvtColor(src.copy(), cv2.COLOR_BGR2HSV)
lower_blue = np.array([0, 0, 120])
upper_blue = np.array([180, 38, 255])
mask = cv2.inRange(hsv, lower_blue, upper_blue)
result = cv2.bitwise_and(src, src, mask=mask)
b, g, r = cv2.split(result)
g = clahe(g, 5, (3, 3))
# Adaptive Thresholding to isolate the bed
img_blur = cv2.blur(g, (9, 9))
img_th = cv2.adaptiveThreshold(img_blur, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY, 51, 2)
im, contours, hierarchy = cv2.findContours(img_th,
cv2.RETR_CCOMP,
cv2.CHAIN_APPROX_SIMPLE)
# Filter the rectangle by choosing only the big ones
# and choose the brightest rectangle as the bed
max_brightness = 0
canvas = src.copy()
for cnt in contours:
rect = cv2.boundingRect(cnt)
x, y, w, h = rect
if w*h > 40000:
mask = np.zeros(src.shape, np.uint8)
mask[y:y+h, x:x+w] = src[y:y+h, x:x+w]
brightness = np.sum(mask)
if brightness > max_brightness:
brightest_rectangle = rect
max_brightness = brightness
cv2.imshow("mask", mask)
cv2.waitKey(0)
x, y, w, h = brightest_rectangle
cv2.rectangle(canvas, (x, y), (x+w, y+h), (0, 255, 0), 1)
cv2.imshow("canvas", canvas)
cv2.imwrite("result.jpg", canvas)
cv2.waitKey(0)