Does anyone know how to calculate the Coppock Curve in python - python

I'm currently trying to calculate the Coppock Curve for a strategy i'm making in python.
I've written it like this(ROC1 is the 11 length and the ROC2 is the 14 length):
final = wma_onehr*(rocOne_onehr+rocTwo_onehr)
I know my values are correct but this is the only calculation for it and it does not match with tradingview at all. For instance when I run it I get
ROC1: -1.094
ROC2: -0.961
WMA: 7215.866
And my answer is -15037.864744
While Tradingview is at -0.9
These values are know where near close and i'm just wondering why I have not found a way to get a value like that of any kind. (I'm using taapio api if anyones wondering)

Take a look at below function. Note that data_array that is passed to function is a one dimensional numpy array that contains close prices of financial asset.
import numpy as np
def coppock_curve(data_array, sht_roc_length=11, long_roc_length=14, curve_length=10): # Coppock Curve
"""
:param sht_roc_length: Short Rate of Change length
:param long_roc_length: Long Rate of Change length
:param curve_length: Coppock Curve Line length
:return: Coppock oscillator values
"""
data_array = data_array[-(curve_length + max(sht_roc_length, long_roc_length, curve_length) + 1):]
# Calculation of short rate of change
roc11 = (data_array[-(curve_length + 1):] - data_array[-(curve_length + sht_roc_length + 1):-sht_roc_length]) /\
data_array[-(curve_length + sht_roc_length + 1):-sht_roc_length] * 100
roc14 = (data_array[-(curve_length + 1):] - data_array[:-long_roc_length]) / data_array[:-long_roc_length] * 100
sum_values = roc11 + roc14 # calculation of long rate of change
curve = np.convolve(sum_values, np.arange(1, curve_length + 1, dtype=int)[::-1], 'valid') / \
np.arange(1, curve_length + 1).sum() # calculation of coppock curve line

Related

How to fit a piecewise (alternating linear and constant segments) function to a parabolic function?

I do have a function, for example , but this can be something else as well, like a quadratic or logarithmic function. I am only interested in the domain of . The parameters of the function (a and k in this case) are known as well.
My goal is to fit a continuous piece-wise function to this, which contains alternating segments of linear functions (i.e. sloped straight segments, each with intercept of 0) and constants (i.e. horizontal segments joining the sloped segments together). The first and last segments are both sloped. And the number of segments should be pre-selected between around 9-29 (that is 5-15 linear steps + 4-14 constant plateaus).
Formally
The input function:
The fitted piecewise function:
I am looking for the optimal resulting parameters (c,r,b) (in terms of least squares) if the segment numbers (n) are specified beforehand.
The resulting constants (c) and the breakpoints (r) should be whole natural numbers, and the slopes (b) round two decimal point values.
I have tried to do the fitting numerically using the pwlf package using a segmented constant models, and further processed the resulting constant model with some graphical intuition to "slice" the constant steps with the slopes. It works to some extent, but I am sure this is suboptimal from both fitting perspective and computational efficiency. It takes multiple minutes to generate a fitting with 8 slopes on the range of 1-50000. I am sure there must be a better way to do this.
My idea would be to instead using only numerical methods/ML, the fact that we have the algebraic form of the input function could be exploited in some way to at least to use algebraic transforms (integrals) to get to a simpler optimization problem.
import numpy as np
import matplotlib.pyplot as plt
import pwlf
# The input function
def input_func(x,k,a):
return np.power(x,1/a)*k
x = np.arange(1,5e4)
y = input_func(x, 1.8, 1.3)
plt.plot(x,y);
def pw_fit(func, x_r, no_seg, *fparams):
# working on the specified range
x = np.arange(1,x_r)
y_input = func(x, *fparams)
my_pwlf = pwlf.PiecewiseLinFit(x, y_input, degree=0)
res = my_pwlf.fit(no_seg)
yHat = my_pwlf.predict(x)
# Function values at the breakpoints
y_isec = func(res, *fparams)
# Slope values at the breakpoints
slopes = np.round(y_isec / res, decimals=2)
slopes = slopes[1:]
# For the first slope value, I use the intersection of the first constant plateau and the input function
slopes = np.insert(slopes,0,np.round(y_input[np.argwhere(np.diff(np.sign(y_input - yHat))).flatten()[0]] / np.argwhere(np.diff(np.sign(y_input - yHat))).flatten()[0], decimals=2))
plateaus = np.unique(np.round(yHat))
# If due to rounding slope values (to two decimals), there is no change in a subsequent step, I just remove those segments
to_del = np.argwhere(np.diff(slopes) == 0).flatten()
slopes = np.delete(slopes,to_del + 1)
plateaus = np.delete(plateaus,to_del)
breakpoints = [np.ceil(plateaus[0]/slopes[0])]
for idx, j in enumerate(slopes[1:-1]):
breakpoints.append(np.floor(plateaus[idx]/j))
breakpoints.append(np.ceil(plateaus[idx+1]/j))
breakpoints.append(np.floor(plateaus[-1]/slopes[-1]))
return slopes, plateaus, breakpoints
slo, plat, breaks = pw_fit(input_func, 50000, 8, 1.8, 1.3)
# The piecewise function itself
def pw_calc(x, slopes, plateaus, breaks):
x = x.astype('float')
cond_list = [x < breaks[0]]
for idx, j in enumerate(breaks[:-1]):
cond_list.append((j <= x) & (x < breaks[idx+1]))
cond_list.append(breaks[-1] <= x)
func_list = [lambda x: x * slopes[0]]
for idx, j in enumerate(slopes[1:]):
func_list.append(plateaus[idx])
func_list.append(lambda x, j=j: x * j)
return np.piecewise(x, cond_list, func_list)
y_output = pw_calc(x, slo, plat, breaks)
plt.plot(x,y,y_output);
(Not important, but I think the fitted piecewise function is not continuous as it is. Intervals should be x<=r1; r1<x<=r2; ....)
As Anatolyg has pointed out, it looks to me that in the optimal solution (for the function posted at least, and probably for any where the derivative is different from zero), the horizantal segments will collapse to a point or the minimum segment length (in this case 1).
EDIT---------------------------------------------
The behavior above could only be valid if the slopes could have an intercept. If the intercepts are zero, as posted in the question, one consideration must be taken into account: Is the initial parabolic function defined in zero or nearby? Imagine the function y=0.001 *sqrt(x-1000), then the segments defined as b*x will have a slope close to zero and will be so similar to the constant segments that the best fit will be just the line that without intercept that fits better all the function.
Provided that the function is defined in zero or nearby, you can start by approximating the curve just by linear segments (with intercepts):
divide the function domain in N intervals(equal intervals or whose size is a function of the average curvature (or second derivative) of the function along the domain).
linear fit/regression in each intervals
for each interval, if a point (or bunch of points) in the extreme of any interval is better fitted by the line of the neighbor interval than the line of its interval, this point is assigned to the neighbor interval.
Repeat from 2) until no extreme points are moved.
Linear regressions might be optimized not to calculate all the covariance matrixes from scratch on each iteration, but just adding the contributions of the moved points to the previous covariance matrixes.
Then each linear segment (LSi) is replaced by a combination of a small constant segment at the beginning (Cbi), a linear segment without intercept (Si), and another constant segment at the end (Cei). This segments are easy to calculate as Si will contain the middle point of LSi, and Cbi and Cei will have respectively the begin and end values of the segment LSi. Then the intervals of each segment has to be calculated as an intersection between lines.
With this, the constant end segment will be collinear with the constant begin segment from the next interval so they will merge, resulting in a series of constant and linear segments interleaved.
But this would be a floating point start solution. Next, you will have to apply all the roundings which will mess up quite a lot all the segments as the conditions integer intervals and linear segments without slope can be very confronting. In fact, b,c,r are not totally independent. If ci and ri+1 are known, then bi+1 is already fixed
If nothing is broken so far, the final task will be to minimize the error/cost function (I assume that it will be the integral of the error between the parabolic function and the segments). My guess is that gradients here will be quite a pain, as if you change for example one ci, all the rest of the bj and cj will have to adapt as well due to the integer intervals restriction. However, if you can generalize the derivatives between parameters ( how much do I have to adapt bi+1 if ci changes a unit), you can propagate the change of one parameter to all other parameters and have kind of a gradient. Then for each interval, you can estimate what would be the ideal parameter and averaging all intervals calculate the best gradient step. Let me illustrate this:
Assuming first that r parameters are fixed, if I change c1 by one unit, b2 changes by 0.1, c2 changes by -0.2 and b3 changes by 0.2. This would be the gradient.
Then I estimate, comparing with the parabolic curve, that c1 should increase 0.5 (to reduce the cost by 10 points), b2 should increase 0.2 (to reduce the cost by 5 points), c2 should increase 0.2 (to reduce the cost by 6 points) and b3 should increase 0.1 (to reduce the cost by 9 points).
Finally, the gradient step would be (0.5/1·10 + 0.2/0.1·5 - 0.2/(-0.2)·6 + 0.1/0.2·9)/(10 + 5 + 6 + 9)~= 0.45. Thus, c1 would increase 0.45 units, b2 would increase 0.45·0.1, and so on.
When you add the r parameters to the pot, as integer intervals do not have an proper derivative, calculation is not straightforward. However, you can consider r parameters as floating points, calculate and apply the gradient step and then apply the roundings.
We can integrate the squared error function for linear and constant pieces and let SciPy optimize it. Python 3:
import matplotlib.pyplot as plt
import numpy as np
import scipy.optimize
xl = 1
xh = 50000
a = 1.3
p = 1 / a
n = 8
def split_b_and_c(bc):
return bc[::2], bc[1::2]
def solve_for_r(b, c):
r = np.empty(2 * n)
r[0] = xl
r[1:-1:2] = c / b[:-1]
r[2::2] = c / b[1:]
r[-1] = xh
return r
def linear_residual_integral(b, x):
return (
(x ** (2 * p + 1)) / (2 * p + 1)
- 2 * b * x ** (p + 2) / (p + 2)
+ b ** 2 * x ** 3 / 3
)
def constant_residual_integral(c, x):
return x ** (2 * p + 1) / (2 * p + 1) - 2 * c * x ** (p + 1) / (p + 1) + c ** 2 * x
def squared_error(bc):
b, c = split_b_and_c(bc)
r = solve_for_r(b, c)
linear = np.sum(
linear_residual_integral(b, r[1::2]) - linear_residual_integral(b, r[::2])
)
constant = np.sum(
constant_residual_integral(c, r[2::2])
- constant_residual_integral(c, r[1:-1:2])
)
return linear + constant
def evaluate(x, b, c, r):
i = 0
while x > r[i + 1]:
i += 1
return b[i // 2] * x if i % 2 == 0 else c[i // 2]
def main():
bc0 = (xl + (xh - xl) * np.arange(1, 4 * n - 2, 2) / (4 * n - 2)) ** (
p - 1 + np.arange(2 * n - 1) % 2
)
bc = scipy.optimize.minimize(
squared_error, bc0, bounds=[(1e-06, None) for i in range(2 * n - 1)]
).x
b, c = split_b_and_c(bc)
r = solve_for_r(b, c)
X = np.linspace(xl, xh, 1000)
Y = [evaluate(x, b, c, r) for x in X]
plt.plot(X, X ** p)
plt.plot(X, Y)
plt.show()
if __name__ == "__main__":
main()
I have tried to come up with a new solution myself, based on the idea of #Amo Robb, where I have partitioned the domain, and curve fitted a dual - constant and linear - piece together (with the help of np.maximum). I have used the 1 / f(x)' as the function to designate the breakpoints, but I know this is arbitrary and does not provide a global optimum. Maybe there is some optimal function for these breakpoints. But this solution is OK for me, as it might be appropriate to have a better fit at the first segments, at the expense of the error for the later segments. (The task itself is actually a cost based retail margin calculation {supply price -> added margin}, as the retail POS software can only work with such piecewise margin function).
The answer from #David Eisenstat is correct optimal solution if the parameters are allowed to be floats. Unfortunately the POS software can not use floats. It is OK to round up c-s and r-s afterwards. But the b-s should be rounded to two decimals, as those are inputted as percents, and this constraint would ruin the optimal solution with long floats. I will try to further improve my solution with both Amo's and David's valuable input. Thank You for that!
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
# The input function f(x)
def input_func(x,k,a):
return np.power(x,1/a) * k
# 1 / f(x)'
def one_per_der(x,k,a):
return a / (k * np.power(x, 1/a-1))
# 1 / f(x)' inverted
def one_per_der_inv(x,k,a):
return np.power(a / (x*k), a / (1-a))
def segment_fit(start,end,y,first_val):
b, _ = curve_fit(lambda x,b: np.maximum(first_val, b*x), np.arange(start,end), y[start-1:end-1])
b = float(np.round(b, decimals=2))
bp = np.round(first_val / b)
last_val = np.round(b * end)
return b, bp, last_val
def pw_fit(end_range, no_seg, **fparams):
y_bps = np.linspace(one_per_der(1, **fparams), one_per_der(end_range,**fparams) , no_seg+1)[1:]
x_bps = np.round(one_per_der_inv(y_bps, **fparams))
y = input_func(x, **fparams)
slopes = [np.round(float(curve_fit(lambda x,b: x * b, np.arange(1,x_bps[0]), y[:int(x_bps[0])-1])[0]), decimals = 2)]
plats = [np.round(x_bps[0] * slopes[0])]
bps = []
for i, xbp in enumerate(x_bps[1:]):
b, bp, last_val = segment_fit(int(x_bps[i]+1), int(xbp), y, plats[i])
slopes.append(b); bps.append(bp); plats.append(last_val)
breaks = sorted(list(x_bps) + bps)[:-1]
# If due to rounding slope values (to two decimals), there is no change in a subsequent step, I just remove those segments
to_del = np.argwhere(np.diff(slopes) == 0).flatten()
breaks_to_del = np.concatenate((to_del * 2, to_del * 2 + 1))
slopes = np.delete(slopes,to_del + 1)
plats = np.delete(plats[:-1],to_del)
breaks = np.delete(breaks,breaks_to_del)
return slopes, plats, breaks
def pw_calc(x, slopes, plateaus, breaks):
x = x.astype('float')
cond_list = [x < breaks[0]]
for idx, j in enumerate(breaks[:-1]):
cond_list.append((j <= x) & (x < breaks[idx+1]))
cond_list.append(breaks[-1] <= x)
func_list = [lambda x: x * slopes[0]]
for idx, j in enumerate(slopes[1:]):
func_list.append(plateaus[idx])
func_list.append(lambda x, j=j: x * j)
return np.piecewise(x, cond_list, func_list)
fparams = {'k':1.8, 'a':1.2}
end_range = 5e4
no_steps = 10
x = np.arange(1, end_range)
y = input_func(x, **fparams)
slopes, plats, breaks = pw_fit(end_range, no_steps, **fparams)
y_output = pw_calc(x, slopes, plats, breaks)
plt.plot(x,y_output,y);

Average True Range and Exponential Moving Average Functions on PandasDataSeries needed

I am stuck while calculating Average True Range[ATR] of a Series.
ATR is basically a Exp Movin Avg of TrueRange[TR]
TR is nothing but MAX of -
Method 1: Current High less the current Low
Method 2: Current High less the previous Close (absolute value)
Method 3: Current Low less the previous Close (absolute value)
In Pandas we dont have an inbuilt EMA function. Rather we have EWMA which is a weighted moving average.
If someone helps to calculate EMA that also will be good enough
def ATR(df,n):
df['H-L']=abs(df['High']-df['Low'])
df['H-PC']=abs(df['High']-df['Close'].shift(1))
df['L-PC']=abs(df['Low']-df['Close'].shift(1))
df['TR']=df[['H-L','H-PC','L-PC']].max(axis=1)
df['ATR_' + str(n)] =pd.ewma(df['TR'], span = n, min_periods = n)
return df
The above code doesnt give error but it also doesnt give correct values either. I compared it with manually calculating ATR values on same dataseries in excel and values were different
ATR excel formula-
Current ATR = [(Prior ATR x 13) + Current TR] / 14
- Multiply the previous 14-day ATR by 13.
- Add the most recent day's TR value.
- Divide the total by 14
This is the dataseries I used as a sample
start='2016-1-1'
end='2016-10-30'
auro=web.DataReader('AUROPHARMA.NS','yahoo',start,end)
You do need to use ewma
See here: An exponential moving average (EMA) is a type of moving average that is similar to a simple moving average, except that more weight is given to the latest data.
Read more: Exponential Moving Average (EMA) http://www.investopedia.com/terms/e/ema.asp#ixzz4ishZbOGx
I dont think your excel formula is right... Here is a manual way to calculate ema in python
def exponential_average(values, window):
weights = np.exp(np.linspace(-1.,0.,window))
weights /= weights.sum()
a = np.convolve(values, weights) [:len(values)]
a[:window]=a[window]
return a
scipy.signal.lfilter could help you.
scipy.signal.lfilter(b, a, x, axis=-1,zi=None)
The filter function is implemented as a direct II transposed structure. This means that the filter implements:
a[0]*y[n] = b[0]*x[n] + b[1]*x[n-1] + ... + b[M]*x[n-M]
- a[1]*y[n-1] - ... - a[N]*y[n-N]
If we normalize the above formula, we obtain the following one:
y[n] = b'[0]*x[n] + b'[1]*x[n-1] + ... + b'[M]*x[n-M]
- a'[1]*y[n-1] + ... + a'[N]*y[n-N]
where b'[i] = b[i]/a[0], i = 0,1,...,M; a'[j] = a[j]/a[0],j = 1,2,...,N
and a'[0] = 1
Exponential Moving Average formula:
y[n] = alpha*x[n] + (1-alpha)*y[n-1]
So to apply scipy.signal.lfilter, by the formula above we can set a and b as below:
a[0] = 1, a[1] = -(1-alpha)
b[0] = alpha
My implementation is as below, hope it to help you.
def ema(values, window_size):
alpha = 2./ (window_size + 1)
a = np.array([1, alpha - 1.])
b = np.array([alpha])
zi = sig.lfilter_zi(b, a)
y, _ = sig.lfilter(b, a, values, zi=zi)
return y

Is there Implementation of Hawkes Process in PyMC?

I want to use Hawkes process to model some data. I could not find whether PyMC supports Hawkes process. More specifically I want an observed variable with Hawkes Process and learn a posterior on its params.
If it is not there, then could I define it in PyMC in some way e.g. #deterministic etc.??
It's been quite a long time since your question, but I've worked it out on PyMC today so I'd thought I'd share the gist of my implementation for the other people who might get across the same problem. We're going to infer the parameters λ and α of a Hawkes process. I'm not going to cover the temporal scale parameter β, I'll leave that as an exercise for the readers.
First let's generate some data :
def hawkes_intensity(mu, alpha, points, t):
p = np.array(points)
p = p[p <= t]
p = np.exp(p - t)
return mu + alpha * np.sum(p)
def simulate_hawkes(mu, alpha, window):
t = 0
points = []
lambdas = []
while t < window:
m = hawkes_intensity(mu, alpha, points, t)
s = np.random.exponential(scale=1/m)
ratio = hawkes_intensity(mu, alpha, points, t + s)
t = t + s
if t < window:
points.append(t)
lambdas.append(ratio)
else:
break
points = np.sort(np.array(points, dtype=np.float32))
lambdas = np.array(lambdas, dtype=np.float32)
return points, lambdas
# parameters
window = 1000
mu = 8
alpha = 0.25
points, lambdas = simulate_hawkes(mu, alpha, window)
num_points = len(points)
We just generated some temporal points using some functions that I adapted from there : https://nbviewer.jupyter.org/github/MatthewDaws/PointProcesses/blob/master/Temporal%20points%20processes.ipynb
Now, the trick is to create a matrix of size (num_points, num_points) that contains the temporal distance of the ith point from all the other points. So the (i, j) point of the matrix is the temporal interval separating the ith point to the jth. This matrix will be used to compute the sum of the exponentials of the Hawkes process, ie. the self-exciting part. The way to create this matrix as well as the sum of the exponentials is a bit tricky. I'd recommend to check every line yourself so you can see what they do.
tile = np.tile(points, num_points).reshape(num_points, num_points)
tile = np.clip(points[:, None] - tile, 0, np.inf)
tile = np.tril(np.exp(-tile), k=-1)
Σ = np.sum(tile, axis=1)[:-1] # this is our self-exciting sum term
We have points and we have a matrix containg the sum of the excitations term.
The duration between two consecutive events of a Hawkes process follow an exponential distribution of parameter λ = λ0 + ∑ excitation. This is what we are going to model, but first we have to compute the duration between two consecutive points of our generated data.
interval = points[1:] - points[:-1]
We're now ready for inference:
with pm.Model() as model:
λ = pm.Exponential("λ", 1)
α = pm.Uniform("α", 0, 1)
lam = pm.Deterministic("lam", λ + α * Σ)
interarrival = pm.Exponential(
"interarrival", lam, observed=interval)
trace = pm.sample(2000, tune=4000)
pm.plot_posterior(trace, var_names=["λ", "α"])
plt.show()
print(np.mean(trace["λ"]))
print(np.mean(trace["α"]))
7.829
0.284
Note: the tile matrix can become quite large if you have many data points.

Confusion on adding noise using normal distribution in Python

I am very confused about how to sample measurement error using normal distribution (Gaussian pdf) in Python.
What I want to do is just to create noise (error) under Gaussian pdf and add it to measured values. In short, I put the problem as follows:
Inputs:
M(i) - measurement value; i = 1...n, n - number of measurements;
Output:
M_noisy(i) = M(i) + noise(i);
where, noise(i) - noise in measurement; M(i) - measurement value.
Important: This noise should be as a zero-mean Gaussian noise with variance equal to, 10 % of the measurement value.
I put the following code but I could not continue...
My code:
import numpy as np
# sigma - standard deviation of M
# mu - mean value of M
# n - number of measurements
# I dont know if this is correct or not:
noise = sigma * np.random.randn(n) + mu;
## M_noisy(i) - ?
Thanks for any answers/suggestions in advance.
random_scale_ammounts = np.random.randn(n)
#creates a list of values between -1 and 1
offset_from_mean = sigma *random_scales #randomly -std to +std
noise = offset_from_mean + mu;
clean_y_data = np.arange(n)
noisy_y_data = clean_y_data + noise
might be what you are after?

Digitizing an analog signal

I have a array of CSV values representing a digital output. It has been gathered using an analog oscilloscope so it is not a perfect digital signal. I'm trying to filter out the data to have a perfect digital signal for calculating the periods (which may vary).
I would also like to define the maximum error i get from this filtration.
Something like this:
Idea
Apply a treshold od the data. Here is a pseudocode:
for data_point_raw in data_array:
if data_point_raw < 0.8: data_point_perfect = LOW
if data_point_raw > 2 : data_point_perfect = HIGH
else:
#area between thresholds
if previous_data_point_perfect == Low : data_point_perfect = LOW
if previous_data_point_perfect == HIGH: data_point_perfect = HIGH
There are two problems bothering me.
This seems like a common problem in digital signal processing, however i haven't found a predefined standard function for it. Is this an ok way to perform the filtering?
How would I get the maximum error?
Here's a bit of code that might help.
from __future__ import division
import numpy as np
def find_transition_times(t, y, threshold):
"""
Given the input signal `y` with samples at times `t`,
find the times where `y` increases through the value `threshold`.
`t` and `y` must be 1-D numpy arrays.
Linear interpolation is used to estimate the time `t` between
samples at which the transitions occur.
"""
# Find where y crosses the threshold (increasing).
lower = y < threshold
higher = y >= threshold
transition_indices = np.where(lower[:-1] & higher[1:])[0]
# Linearly interpolate the time values where the transition occurs.
t0 = t[transition_indices]
t1 = t[transition_indices + 1]
y0 = y[transition_indices]
y1 = y[transition_indices + 1]
slope = (y1 - y0) / (t1 - t0)
transition_times = t0 + (threshold - y0) / slope
return transition_times
def periods(t, y, threshold):
"""
Given the input signal `y` with samples at times `t`,
find the time periods between the times at which the
signal `y` increases through the value `threshold`.
`t` and `y` must be 1-D numpy arrays.
"""
transition_times = find_transition_times(t, y, threshold)
deltas = np.diff(transition_times)
return deltas
if __name__ == "__main__":
import matplotlib.pyplot as plt
# Time samples
t = np.linspace(0, 50, 501)
# Use a noisy time to generate a noisy y.
tn = t + 0.05 * np.random.rand(t.size)
y = 0.6 * ( 1 + np.sin(tn) + (1./3) * np.sin(3*tn) + (1./5) * np.sin(5*tn) +
(1./7) * np.sin(7*tn) + (1./9) * np.sin(9*tn))
threshold = 0.5
deltas = periods(t, y, threshold)
print("Measured periods at threshold %g:" % threshold)
print(deltas)
print("Min: %.5g" % deltas.min())
print("Max: %.5g" % deltas.max())
print("Mean: %.5g" % deltas.mean())
print("Std dev: %.5g" % deltas.std())
trans_times = find_transition_times(t, y, threshold)
plt.plot(t, y)
plt.plot(trans_times, threshold * np.ones_like(trans_times), 'ro-')
plt.show()
The output:
Measured periods at threshold 0.5:
[ 6.29283207 6.29118893 6.27425846 6.29580066 6.28310224 6.30335003]
Min: 6.2743
Max: 6.3034
Mean: 6.2901
Std dev: 0.0092793
You could use numpy.histogram and/or matplotlib.pyplot.hist to further analyze the array returned by periods(t, y, threshold).
This is not an answer for your question, just and suggestion that may help. Im writing it here because i cant put image in comment.
I think you should normalize data somehow, before any processing.
After normalization to range of 0...1 you should apply your filter.
If you're really only interested in the period, you could plot the Fourier Transform, you'll have a peak where the frequency of the signals occurs (and so you have the period). The wider the peak in the Fourier domain, the larger the error in your period measurement
import numpy as np
data = np.asarray(my_data)
np.fft.fft(data)
Your filtering is fine, it's basically the same as a schmitt trigger, but the main problem you might have with it is speed. The benefit of using Numpy is that it can be as fast as C, whereas you have to iterate once over each element.
You can achieve something similar using the median filter from SciPy. The following should achieve a similar result (and not be dependent on any magnitudes):
filtered = scipy.signal.medfilt(raw)
filtered = numpy.where(filtered > numpy.mean(filtered), 1, 0)
You can tune the strength of the median filtering with medfilt(raw, n_samples), n_samples defaults to 3.
As for the error, that's going to be very subjective. One way would be to discretise the signal without filtering and then compare for differences. For example:
discrete = numpy.where(raw > numpy.mean(raw), 1, 0)
errors = np.count_nonzero(filtered != discrete)
error_rate = errors / len(discrete)

Categories