Plot paraboloid surface fitting - python

How can I plot the paraboloid after fitting it using Python? in order to get that plot
import numpy as np
import scipy.optimize as opt
import matplotlib.pyplot as plt
doex = [0.4,0.165,0.165,0.585,0.585]
doey = [.45, .22, .63, .22, .63]
doez = np.array([1, .99, .98,.97,.96])
def paraBolEqn(data,a,b,c,d):
x,y = data
return -(((x-b)/a)**2+((y-d)/c)**2)+1.0
popt,pcov=opt.curve_fit(paraBolEqn,np.vstack((doex,doey)),doez,p0=[1.5,0.4,1.5,0.4])
print(popt)

Everything you need to know is documented at the mplot3d tutorial, where the different methods to make 3d plots in matplotlib are presented.
Your desired plot can be reproduced using the methods Axes3D.plot_wireframe and Axes3D.scatter:
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure(figsize=(8,6))
ax = fig.add_subplot(111, projection='3d')
x, y = np.meshgrid(np.linspace(np.min(doex), np.max(doex),10), np.linspace(np.min(doey),np.max(doey), 10))
ax.plot_wireframe(x, y, paraBolEqn((x,y), *popt))
ax.scatter(doex, doey, doez, color='b')
which results in the following plot:

Related

python, matplotlib.pyplot, draw graph without the curve

I am trying to draw a curve without a line (skeleton). I want the axis and grid lines only.
Here is the code.
++++++++++
import matplotlib.pyplot as plt
import numpy as np
plt.rcParams["figure.figsize"] = [10.00, 7.00]
plt.rcParams["figure.autolayout"] = True
x = [1.6,2,2.5,3.2,4,5,6.3,8,10,13,16,20,25,32,40,50,63,80,100,130,160,200,250,320,400,500,630,800,1000]
y = range(1,10000,350)#[1,10,100,1000,10000]
# Display grid
plt.grid(True, which="both")
default_x_ticks = range(len(x))
plt.plot(default_x_ticks, y)
plt.yscale('log')
plt.xticks(default_x_ticks, x, rotation=90)
plt.show()
+++++++
Kindly help draw without the curve.
By adding
print(plt.xlim())
print(plt.ylim())
to your code you get the exact axis limits.
These can be used in a second run to create the plot without actually plotting anything:
import matplotlib.pyplot as plt
import numpy as np
plt.rcParams["figure.figsize"] = [10.00, 7.00]
plt.rcParams["figure.autolayout"] = True
x = [1.6,2,2.5,3.2,4,5,6.3,8,10,13,16,20,25,32,40,50,63,80,100,130,160,200,250,320,400,500,630,800,1000]
y = range(1,10000,350)#[1,10,100,1000,10000]
# Display grid
plt.grid(True, which="both")
default_x_ticks = range(len(x))
# plt.plot(default_x_ticks, y)
plt.yscale('log')
plt.xticks(default_x_ticks, x, rotation=90)
plt.xlim(-1.4, 29.4)
plt.ylim(0.6315917965717447, 15517.934294269562)
plt.show()

plt.show() does not show the 3d scatter image

community,
I tried to create the 3d scatter by using matplotlib Axes3D on jupyter notebook.
However, it is not showing the image once I execute 'plt.show()'.
#pip install matplotlib
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
%matplotlib inline
fig = plt.figure()
ax =fig.add_subplot(111, projection = '3d')
x = dframe['CTR']
y = dframe['Clicks']
z = dframe['Avg. CPC']
ax.scatter(x, y, z, c='r', marker='o')
plt.show()
Your code works fine like this:
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111, projection="3d")
# dummy data (your actual data should go here)
x = [1, 2, 3, 4]
y = x
z = x
ax.scatter(x, y, z, c="r", marker="o")
plt.show()
This shows:
May be something is wrong with your data. Also, since you are using plt.show() anyway, you can remove the %matplotlib inline line.

Matplotlib 3d Plot Colorbar Scale

I have a 3d plot with a colorbar and I would like the colorbar's size to scale with the size of the projection, no matter the orientation I select with ax.view_init.
It would also be great if I could get the aspect ratio of the 3d plot to be equal at the same time as well.
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
import matplotlib.colors
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.view_init(elev=90, azim=0)
x = np.arange(3)
X,Y = np.meshgrid(x,x)
Z = np.ones_like(X)
V = np.array([[3,2,2],[1,0,3],[2,1,0]])
norm = matplotlib.colors.Normalize(vmin=0, vmax=3)
ax.plot_surface(X, Y, Z, facecolors=plt.cm.jet(norm(V)), shade=False)
m = cm.ScalarMappable(cmap=plt.cm.jet, norm=norm)
m.set_array([])
plt.colorbar(m)
ax.set_xlabel('x')
ax.set_ylabel('y')
plt.show()
Example code stolen shamelessly from this question

Colouring in between two lines in 3D plot

I am trying the fill the space between my lines in 3D.
I have the following code:
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.collections import PolyCollection
import matplotlib.pyplot as plt
import numpy as np
class plotting3D(object):
"""
Class to plot 3d
"""
def __init__(self):
pass
def cc(self, arg):
return colorConverter.to_rgba(arg, alpha=0.6)
def poly3d(self, df):
"""
Method to create depth of joints plot for GP regression.
"""
fig = plt.figure(figsize=(10,10))
ax = fig.gca(projection='3d')
which_joints = df.columns
dix = df.index.values
zs = [1,4]
verts = []
for j in which_joints:
verts.append(list(zip(dix,df[j])))
poly = PolyCollection(verts,facecolors=[self.cc('r'), self.cc('g')])
poly.set_alpha(0.6)
ax.add_collection3d(poly, zs=zs, zdir='y')
ax.set_ylim([0, 5])
ax.set_zlim([0, 20])
ax.set_xlim([0,dix[-1]])
ax.grid(False)
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
plt.show()
Some synthetic data:
k= pd.DataFrame(20*np.random.rand(10,2),columns=['foot','other_foot'])
Produces this:
Now I want to fill the space between the lines and say z=-30 NOT z=0 which is what I am trying to change.
df.index.values take a values between 0 and say 1000. And the ang dataframe has values ranging from -30 to 10.
Hence, I am trying to produce an offset version of this:
Another solution to my suggestion in the comments is to use fill_between; there you have the possibility to set the lower boundary. fill_between returns a PolyCollection, so you can add it to the 3d figure similar to what you are doing now:
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np
fig = plt.figure(figsize=(10,10))
ax = fig.gca(projection='3d')
# +/- your data:
z = [0,10,10,-20,10,0]
x = [0,1000,1500,2500,3000,3500]
ax.add_collection3d(plt.fill_between(x,z,0), zs=1, zdir='y') # lower boundary z=0
ax.add_collection3d(plt.fill_between(x,z,-30), zs=5, zdir='y') # lower boundary z=-30
ax.set_ylim([0, 5])
ax.set_zlim([-30, 20])
ax.set_xlim([0,3500])

Plot NumPy ndarray into a 3D surface

I have a numpy.ndarray of size 200x200. I want to plot it as a 3D surface where x and y are indexes of the array and z is the value of that array element. Is there any easy way to do it or do I have to transform my array into a long list?
For example using matplotlib:
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
#your index
x = np.linspace(1, 200, 200);
y = np.linspace(1, 200, 200)
X, Y = np.meshgrid(x, y); #making a grid from it
fig = plt.figure()
ax = fig.gca(projection='3d')
R = np.sqrt(X**2 + Y**2) #make some calculations on the grid
Z = np.sin(R) #some more calculations
surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.coolwarm,
linewidth=0, antialiased=False)
ax.set_zlim(-5, 5)
fig.colorbar(surf, shrink=0.5, aspect=5)
plt.show()
However, as your array is already quite large, you might want to consider a different plotting tool like mayavi. matplotlib usually puts a copy of your complete array into the plot. That's memory demanding when dealing with big data. But I'm not sure, whether mayavi does the same or not.
You can also use mayavi and plot your array as a plane with different colors representing the values. It would look like this:
import numpy
from mayavi import mlab
mlab.imshow(yourarray)
mlab.show()
Alternative you can create points with an elevation from the ground plane and get a fitting plane through the points. See here:http://docs.enthought.com/mayavi/mayavi/auto/example_surface_from_irregular_data.html#example-surface-from-irregular-data
What is best for you depends on the continuity of your data.
If what you want is to plot a 3D surface on top of a 2D grid what you could do is something similar to this:
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
# create some fake data
array_distribution3d = np.ones((200, 200))
array_distribution3d[0:25, 0:25] = -1
# create the meshgrid to plot on
x = np.arange(0, array_distribution3d.shape[0])
y = np.arange(0, array_distribution3d.shape[1])
# here are the x,y and respective z values
X, Y = np.meshgrid(x, y)
z = []
for i in range(0, array_distribution3d.shape[0]):
z_y = []
for j in range(0, array_distribution3d.shape[1]):
z_y.append(array_distribution3d[i, j])
z.append(z_y)
Z = np.array(z)
# create the figure, add a 3d axis, set the viewing angle
fig = plt.figure(figsize=(12, 9))
ax = fig.add_subplot(111, projection='3d')
ax.view_init(45, 60)
# here we create the surface plot
ax.plot_surface(X, Y, Z)
However, to the best of my knowledge, this kind of data can be plotted as a colourmap.
This can be plotted as follows:
import numpy as np
import os.path
import matplotlib.pyplot as plt
array_distribution = np.ones((200, 200))
array_distribution[0:25, 0:25] = -1
fig = plt.imshow(array_distribution)
plt.colorbar(fraction=0.035, pad=0.035, ticks=[-1., 0., 1.])
axes = plt.gca()
axes.set_ylim([0, 200])
figure = plt.gcf()
file = os.path.join('demo1.png')
figure.savefig(file, dpi=250)
plt.close('all')
print('done')

Categories