python pandas date convertion to words - python

I have a particular format of date in my dataframe as
df:
Date
12-Jun-16
22-Jan-12
I want to covert it to this format
df:
Date
12-Jan-2015
Any help as to how to do it?

I think you need convert column to_datetime and then if need change format add strftime:
df.Date = pd.to_datetime(df.Date).dt.strftime('%d-%b-%Y')
print (df)
Date
0 12-Jun-2016
1 22-Jan-2012

Related

Convert Month Year to YYYY-MM-DD date format Python Pandas

i want to convert Month and year to YYYY-MM-DD in a dataframe in panda, the date will be the first day of that month
i try using this
pd.to_datetime(df, format='%Y-%m-%d', errors='ignore')
I expected the result to be
Try with format '%b,%Y':
df['date']=pd.to_datetime(df['date'], format='%b,%Y', errors='coerce')
OR
Don't use format at all and let pandas infer it:
df['date']=pd.to_datetime(df['date'], errors='coerce')
For more info regarding format code see docs

How to convert python dataframe timestamp to datetime format

I have a dataframe with date information in one column.
The date visually appears in the dataframe in this format: 2019-11-24
but when you print the type it shows up as:
Timestamp('2019-11-24 00:00:00')
I'd like to convert each value in the dataframe to a format like this:
24-Nov
or
7-Nov
for single digit days.
I've tried using various datetime and strptime commands to convert but I am getting errors.
Here's a way to do:
df = pd.DataFrame({'date': ["2014-10-23","2016-09-08"]})
df['date_new'] = pd.to_datetime(df['date'])
df['date_new'] = df['date_new'].dt.strftime("%d-%b")
date date_new
0 2014-10-23 23-Oct
1 2016-09-08 08-Sept

Convert date string YYYY-MM-DD to YYYYMM in pandas

Is there a way in pandas to convert my column date which has the following format '1997-01-31' to '199701', without including any information about the day?
I tried solution of the following form:
df['DATE'] = df['DATE'].apply(lambda x: datetime.strptime(x, '%Y%m'))
but I obtain this error : 'ValueError: time data '1997-01-31' does not match format '%Y%m''
Probably the reason is that I am not including the day in the format. Is there a way better to pass from YYYY-MM_DD format to YYYYMM in pandas?
One way is to convert the date to date time and then use strftime. Just a note that you do lose the datetime functionality of the date
df = pd.DataFrame({'date':['1997-01-31' ]})
df['date'] = pd.to_datetime(df['date'])
df['date'] = df['date'].dt.strftime('%Y%m')
date
0 199701
Might not need to go through the datetime conversion if the data are sufficiently clean (no incorrect strings like 'foo' or '001231'):
df = pd.DataFrame({'date':['1997-01-31', '1997-03-31', '1997-12-18']})
df['date'] = [''.join(x.split('-')[0:2]) for x in df.date]
# date
#0 199701
#1 199703
#2 199712
Or if you have null values:
df['date'] = df.date.str.replace('-', '').str[0:6]

Pandas to_datetime not formatting as expected

I have a data frame with a column 'Date' with data type datetime64. The values are in YYYY-MM-DD format.
How can I convert it to YYYY-MM format and use it as a datetime64 object itself.
I tried converting my datetime object to a string in YYYY-MM format and then back to datetime object in YYYY-MM format but it didn't work.
Original data = 1988-01-01.
Converting datatime object to string in YY-MM format
df['Date']=df['Date'].dt.strftime('%Y-%m')
This worked as expected, my column value became
1988-01
Converting the string back to datetime object in Y-m format
df['Date']=pd.to_datetime(df['Date'],format= '%Y-%m')
I was expecting the Date column in YYYY-MM format but it became YYYY-MM-DD format.
1988-01-01
Can you please let me know if I am missing something.
Thanks
It is expected behaviour, in datetimes the year, month and day arguments are required.
If want remove days need month period by to_period:
df['Date'] = df['Date'].dt.to_period('M')
df['Date'] = pd.to_datetime(df['Date'],format= '%Y-%m').dt.to_period('M')
Sample:
df = pd.DataFrame({'Date':pd.to_datetime(['1988-01-01','1999-01-15'])})
print (df)
Date
0 1988-01-01
1 1999-01-15
df['Date'] = df['Date'].dt.to_period('M')
print (df)
Date
0 1988-01
1 1999-01

YYMM to date time python

I have a dateframe column in Python that is in the format YYMM. E.g January 1996 is 9601.
I'm having a hard time converting it from 9601 to a useable date time format. I want the new format to be 01-01-1996. Does anyone have any suggestions? I tried pd.to_datetime function but it's not getting the results I'm looking for.
Use to_datetime with parameter format:
df = pd.DataFrame({'col':['9601', '9705']})
df['col'] = pd.to_datetime(df['col'], format='%y%m')
print (df)
col
0 1996-01-01
1 1997-05-01

Categories