I have a dataframe which has one row, and several columns. Some of the columns are single values, and others are lists. All list columns are the same length. I want to split each list column into a separate row, while keeping any non-list column as is.
Sample DF:
from pyspark import Row
from pyspark.sql import SQLContext
from pyspark.sql.functions import explode
sqlc = SQLContext(sc)
df = sqlc.createDataFrame([Row(a=1, b=[1,2,3],c=[7,8,9], d='foo')])
# +---+---------+---------+---+
# | a| b| c| d|
# +---+---------+---------+---+
# | 1|[1, 2, 3]|[7, 8, 9]|foo|
# +---+---------+---------+---+
What I want:
+---+---+----+------+
| a| b| c | d |
+---+---+----+------+
| 1| 1| 7 | foo |
| 1| 2| 8 | foo |
| 1| 3| 9 | foo |
+---+---+----+------+
If I only had one list column, this would be easy by just doing an explode:
df_exploded = df.withColumn('b', explode('b'))
# >>> df_exploded.show()
# +---+---+---------+---+
# | a| b| c| d|
# +---+---+---------+---+
# | 1| 1|[7, 8, 9]|foo|
# | 1| 2|[7, 8, 9]|foo|
# | 1| 3|[7, 8, 9]|foo|
# +---+---+---------+---+
However, if I try to also explode the c column, I end up with a dataframe with a length the square of what I want:
df_exploded_again = df_exploded.withColumn('c', explode('c'))
# >>> df_exploded_again.show()
# +---+---+---+---+
# | a| b| c| d|
# +---+---+---+---+
# | 1| 1| 7|foo|
# | 1| 1| 8|foo|
# | 1| 1| 9|foo|
# | 1| 2| 7|foo|
# | 1| 2| 8|foo|
# | 1| 2| 9|foo|
# | 1| 3| 7|foo|
# | 1| 3| 8|foo|
# | 1| 3| 9|foo|
# +---+---+---+---+
What I want is - for each column, take the nth element of the array in that column and add that to a new row. I've tried mapping an explode accross all columns in the dataframe, but that doesn't seem to work either:
df_split = df.rdd.map(lambda col: df.withColumn(col, explode(col))).toDF()
Spark >= 2.4
You can replace zip_ udf with arrays_zip function
from pyspark.sql.functions import arrays_zip, col, explode
(df
.withColumn("tmp", arrays_zip("b", "c"))
.withColumn("tmp", explode("tmp"))
.select("a", col("tmp.b"), col("tmp.c"), "d"))
Spark < 2.4
With DataFrames and UDF:
from pyspark.sql.types import ArrayType, StructType, StructField, IntegerType
from pyspark.sql.functions import col, udf, explode
zip_ = udf(
lambda x, y: list(zip(x, y)),
ArrayType(StructType([
# Adjust types to reflect data types
StructField("first", IntegerType()),
StructField("second", IntegerType())
]))
)
(df
.withColumn("tmp", zip_("b", "c"))
# UDF output cannot be directly passed to explode
.withColumn("tmp", explode("tmp"))
.select("a", col("tmp.first").alias("b"), col("tmp.second").alias("c"), "d"))
With RDDs:
(df
.rdd
.flatMap(lambda row: [(row.a, b, c, row.d) for b, c in zip(row.b, row.c)])
.toDF(["a", "b", "c", "d"]))
Both solutions are inefficient due to Python communication overhead. If data size is fixed you can do something like this:
from functools import reduce
from pyspark.sql import DataFrame
# Length of array
n = 3
# For legacy Python you'll need a separate function
# in place of method accessor
reduce(
DataFrame.unionAll,
(df.select("a", col("b").getItem(i), col("c").getItem(i), "d")
for i in range(n))
).toDF("a", "b", "c", "d")
or even:
from pyspark.sql.functions import array, struct
# SQL level zip of arrays of known size
# followed by explode
tmp = explode(array(*[
struct(col("b").getItem(i).alias("b"), col("c").getItem(i).alias("c"))
for i in range(n)
]))
(df
.withColumn("tmp", tmp)
.select("a", col("tmp").getItem("b"), col("tmp").getItem("c"), "d"))
This should be significantly faster compared to UDF or RDD. Generalized to support an arbitrary number of columns:
# This uses keyword only arguments
# If you use legacy Python you'll have to change signature
# Body of the function can stay the same
def zip_and_explode(*colnames, n):
return explode(array(*[
struct(*[col(c).getItem(i).alias(c) for c in colnames])
for i in range(n)
]))
df.withColumn("tmp", zip_and_explode("b", "c", n=3))
You'd need to use flatMap, not map as you want to make multiple output rows out of each input row.
from pyspark.sql import Row
def dualExplode(r):
rowDict = r.asDict()
bList = rowDict.pop('b')
cList = rowDict.pop('c')
for b,c in zip(bList, cList):
newDict = dict(rowDict)
newDict['b'] = b
newDict['c'] = c
yield Row(**newDict)
df_split = sqlContext.createDataFrame(df.rdd.flatMap(dualExplode))
One liner (for Spark>=2.4.0):
df.withColumn("bc", arrays_zip("b","c"))
.select("a", explode("bc").alias("tbc"))
.select("a", col"tbc.b", "tbc.c").show()
Import required:
from pyspark.sql.functions import arrays_zip
Steps -
Create a column bc which is an array_zip of columns b and c
Explode bc to get a struct tbc
Select the required columns a, b and c (all exploded as required).
Output:
> df.withColumn("bc", arrays_zip("b","c")).select("a", explode("bc").alias("tbc")).select("a", "tbc.b", col("tbc.c")).show()
+---+---+---+
| a| b| c|
+---+---+---+
| 1| 1| 7|
| 1| 2| 8|
| 1| 3| 9|
+---+---+---+
Related
I want to apply a condition over subsets of my data. In the example, I want to use F.when over "A" and "B" from col1 separately, and return the a DataFrame that contains both "A" and "B" with the condition applied.
I have tried to use a group by to do this, but I'm not interested in aggregating the data, I want to return the same number of rows before and after the condition is applied.
import pandas as pd
from pyspark.sql import SparkSession
spark = SparkSession.builder.master("local").appName("test").getOrCreate()
spark.createDataFrame(pd.DataFrame({"col1": ["A", "A", "A", "B", "B"], "score": [1,2,3,1,2] }))
condition = F.when(F.col("score") > 2, 1).otherwise(0)
Does anyone have any advice as to how to solve this problem? Below is my expected output, but it is crucial that the condition is applied over "A" and "B" separately, as my actual use case is a bit different than the toy example supplied.
Try with:
df.select(df.col1, df.score, condition.alias("send")).show()
# Out:
# +----+-----+----+
# |col1|score|send|
# +----+-----+----+
# | A| 1| 0|
# | A| 2| 0|
# | A| 3| 1|
# | B| 1| 0|
# | B| 2| 0|
# +----+-----+----+
(see: pyspark.sql.Column.when)
To apply multiple conditions depending on the row values use:
from pyspark.sql.functions import when
df.withColumn("send", when((df.col1 == "A") & (F.col("score") > 2), 1)
.when((df.col1 == "B") & (F.col("score") > 1), 1)
.otherwise(0)
).show()
# Out:
# +----+-----+----+
# |col1|score|send|
# +----+-----+----+
# | A| 1| 0|
# | A| 2| 0|
# | A| 3| 1|
# | B| 1| 0|
# | B| 2| 1|
# +----+-----+----+
(pyspark.sql.functions.when)
def fun_1(csv):
# returns int[] of length = Number of New Lines in String csv
def fun_2(csv): # My WorkArround to Pass one CSV Line at One Time
return fun_1(csv)[0]
The Input Data Frame is df
+----+----+-----+
|col1|col2|CSVs |
+----+----+-----+
| 1| a|2,0,1|
| 2| b|2,0,2|
| 3| c|2,0,3|
| 4| a|2,0,1|
| 5| b|2,0,2|
| 6| c|2,0,3|
| 7| a|2,0,1|
+----+----+-----+
Below is a Code Snippet which works but takes long time
from pyspark.sql.functions import udf
from pyspark.sql import functions as sf
funudf = udf(fun_2) # wish it could be fun_1
df=df.withColumn( 'pred' , funudf(sf.col('csv')))
fun_1 , has a memory issue and could only handle 50000 max rows at a time. I wish to use funudf = udf(fun_1) .
Hence, how can I split the PySpark DF into segments of 50000 rows , call funudf ->fun_1 .
Output has two colunms, 'col1' from the input and 'funudf return value' .
You can achieve the desired result of forcing PySpark to operate on fixed batches of rows by using the groupByKey method exposed in the RDD API. Using groupByKey will force PySpark to shuffle all the data for a single key to a single executor.
NOTE: for this very same reason using groupByKey is often discouraged because of the network cost.
Strategy:
Add a column that groups your data into the desired size of batches and groupByKey
Define a function that reproduces the logic of your UDF (and also returns an id for joining later on). This operates on pyspark.resultiterable.ResultIterable, the result of groupByKey. Apply function to your groups using mapValues
Convert the resulting RDD into a DataFrame and join back in.
Example:
# Synthesize DF
data = {'_id': range(9), 'group': ['a', 'b', 'c', 'a', 'b', 'c', 'a', 'b', 'c'], 'vals': [2.0*i for i in range(9)]}
df = spark.createDataFrame(pd.DataFrame(data))
df.show()
##
# Step - 1 Convert to rdd and groupByKey to force each group to separate executor
##
kv = df.rdd.map(lambda r: (r.group, [r._id, r.group, r.vals]))
groups = kv.groupByKey()
##
# Step 2 - Calulate function
##
# Dummy function taking
def mult3(ditr):
data = ditr.data
ids = [v[0] for v in data]
vals = [3*v[2] for v in data]
return zip(ids, vals)
# run mult3 and flaten results
mv = groups.mapValues(mult3).map(lambda r: r[1]).flatMap(lambda r: r) # rdd[(id, val)]
##
# Step 3 - Join results back into base DF
##
# convert results into a DF and join back in
schema = t.StructType([t.StructField('_id', t.LongType()), t.StructField('vals_x_3', t.FloatType())])
df_vals = spark.createDataFrame(mv, schema)
joined = df.join(df_vals, '_id')
joined.show()
>>>
+---+-----+----+
|_id|group|vals|
+---+-----+----+
| 0| a| 0.0|
| 1| b| 2.0|
| 2| c| 4.0|
| 3| a| 6.0|
| 4| b| 8.0|
| 5| c|10.0|
| 6| a|12.0|
| 7| b|14.0|
| 8| c|16.0|
+---+-----+----+
+---+-----+----+--------+
|_id|group|vals|vals_x_3|
+---+-----+----+--------+
| 0| a| 0.0| 0.0|
| 7| b|14.0| 42.0|
| 6| a|12.0| 36.0|
| 5| c|10.0| 30.0|
| 1| b| 2.0| 6.0|
| 3| a| 6.0| 18.0|
| 8| c|16.0| 48.0|
| 2| c| 4.0| 12.0|
| 4| b| 8.0| 24.0|
+---+-----+----+--------+
I've seen various people suggesting that Dataframe.explode is a useful way to do this, but it results in more rows than the original dataframe, which isn't what I want at all. I simply want to do the Dataframe equivalent of the very simple:
rdd.map(lambda row: row + [row.my_str_col.split('-')])
which takes something looking like:
col1 | my_str_col
-----+-----------
18 | 856-yygrm
201 | 777-psgdg
and converts it to this:
col1 | my_str_col | _col3 | _col4
-----+------------+-------+------
18 | 856-yygrm | 856 | yygrm
201 | 777-psgdg | 777 | psgdg
I am aware of pyspark.sql.functions.split(), but it results in a nested array column instead of two top-level columns like I want.
Ideally, I want these new columns to be named as well.
pyspark.sql.functions.split() is the right approach here - you simply need to flatten the nested ArrayType column into multiple top-level columns. In this case, where each array only contains 2 items, it's very easy. You simply use Column.getItem() to retrieve each part of the array as a column itself:
split_col = pyspark.sql.functions.split(df['my_str_col'], '-')
df = df.withColumn('NAME1', split_col.getItem(0))
df = df.withColumn('NAME2', split_col.getItem(1))
The result will be:
col1 | my_str_col | NAME1 | NAME2
-----+------------+-------+------
18 | 856-yygrm | 856 | yygrm
201 | 777-psgdg | 777 | psgdg
I am not sure how I would solve this in a general case where the nested arrays were not the same size from Row to Row.
Here's a solution to the general case that doesn't involve needing to know the length of the array ahead of time, using collect, or using udfs. Unfortunately this only works for spark version 2.1 and above, because it requires the posexplode function.
Suppose you had the following DataFrame:
df = spark.createDataFrame(
[
[1, 'A, B, C, D'],
[2, 'E, F, G'],
[3, 'H, I'],
[4, 'J']
]
, ["num", "letters"]
)
df.show()
#+---+----------+
#|num| letters|
#+---+----------+
#| 1|A, B, C, D|
#| 2| E, F, G|
#| 3| H, I|
#| 4| J|
#+---+----------+
Split the letters column and then use posexplode to explode the resultant array along with the position in the array. Next use pyspark.sql.functions.expr to grab the element at index pos in this array.
import pyspark.sql.functions as f
df.select(
"num",
f.split("letters", ", ").alias("letters"),
f.posexplode(f.split("letters", ", ")).alias("pos", "val")
)\
.show()
#+---+------------+---+---+
#|num| letters|pos|val|
#+---+------------+---+---+
#| 1|[A, B, C, D]| 0| A|
#| 1|[A, B, C, D]| 1| B|
#| 1|[A, B, C, D]| 2| C|
#| 1|[A, B, C, D]| 3| D|
#| 2| [E, F, G]| 0| E|
#| 2| [E, F, G]| 1| F|
#| 2| [E, F, G]| 2| G|
#| 3| [H, I]| 0| H|
#| 3| [H, I]| 1| I|
#| 4| [J]| 0| J|
#+---+------------+---+---+
Now we create two new columns from this result. First one is the name of our new column, which will be a concatenation of letter and the index in the array. The second column will be the value at the corresponding index in the array. We get the latter by exploiting the functionality of pyspark.sql.functions.expr which allows us use column values as parameters.
df.select(
"num",
f.split("letters", ", ").alias("letters"),
f.posexplode(f.split("letters", ", ")).alias("pos", "val")
)\
.drop("val")\
.select(
"num",
f.concat(f.lit("letter"),f.col("pos").cast("string")).alias("name"),
f.expr("letters[pos]").alias("val")
)\
.show()
#+---+-------+---+
#|num| name|val|
#+---+-------+---+
#| 1|letter0| A|
#| 1|letter1| B|
#| 1|letter2| C|
#| 1|letter3| D|
#| 2|letter0| E|
#| 2|letter1| F|
#| 2|letter2| G|
#| 3|letter0| H|
#| 3|letter1| I|
#| 4|letter0| J|
#+---+-------+---+
Now we can just groupBy the num and pivot the DataFrame. Putting that all together, we get:
df.select(
"num",
f.split("letters", ", ").alias("letters"),
f.posexplode(f.split("letters", ", ")).alias("pos", "val")
)\
.drop("val")\
.select(
"num",
f.concat(f.lit("letter"),f.col("pos").cast("string")).alias("name"),
f.expr("letters[pos]").alias("val")
)\
.groupBy("num").pivot("name").agg(f.first("val"))\
.show()
#+---+-------+-------+-------+-------+
#|num|letter0|letter1|letter2|letter3|
#+---+-------+-------+-------+-------+
#| 1| A| B| C| D|
#| 3| H| I| null| null|
#| 2| E| F| G| null|
#| 4| J| null| null| null|
#+---+-------+-------+-------+-------+
Here's another approach, in case you want split a string with a delimiter.
import pyspark.sql.functions as f
df = spark.createDataFrame([("1:a:2001",),("2:b:2002",),("3:c:2003",)],["value"])
df.show()
+--------+
| value|
+--------+
|1:a:2001|
|2:b:2002|
|3:c:2003|
+--------+
df_split = df.select(f.split(df.value,":")).rdd.flatMap(
lambda x: x).toDF(schema=["col1","col2","col3"])
df_split.show()
+----+----+----+
|col1|col2|col3|
+----+----+----+
| 1| a|2001|
| 2| b|2002|
| 3| c|2003|
+----+----+----+
I don't think this transition back and forth to RDDs is going to slow you down...
Also don't worry about last schema specification: it's optional, you can avoid it generalizing the solution to data with unknown column size.
I understand your pain. Using split() can work, but can also lead to breaks.
Let's take your df and make a slight change to it:
df = spark.createDataFrame([('1:"a:3":2001',),('2:"b":2002',),('3:"c":2003',)],["value"])
df.show()
+------------+
| value|
+------------+
|1:"a:3":2001|
| 2:"b":2002|
| 3:"c":2003|
+------------+
If you try to apply split() to this as outlined above:
df_split = df.select(split(df.value,":")).rdd.flatMap(
lambda x: x).toDF(schema=["col1","col2","col3"]).show()
you will get
IllegalStateException: Input row doesn't have expected number of values required by the schema. 4 fields are required while 3 values are provided.
So, is there a more elegant way of addressing this? I was so happy to have it pointed out to me. pyspark.sql.functions.from_csv() is your friend.
Taking my above example df:
from pyspark.sql.functions import from_csv
# Define a column schema to apply with from_csv()
col_schema = ["col1 INTEGER","col2 STRING","col3 INTEGER"]
schema_str = ",".join(col_schema)
# define the separator because it isn't a ','
options = {'sep': ":"}
# create a df from the value column using schema and options
df_csv = df.select(from_csv(df.value, schema_str, options).alias("value_parsed"))
df_csv.show()
+--------------+
| value_parsed|
+--------------+
|[1, a:3, 2001]|
| [2, b, 2002]|
| [3, c, 2003]|
+--------------+
Then we can easily flatten the df to put the values in columns:
df2 = df_csv.select("value_parsed.*").toDF("col1","col2","col3")
df2.show()
+----+----+----+
|col1|col2|col3|
+----+----+----+
| 1| a:3|2001|
| 2| b|2002|
| 3| c|2003|
+----+----+----+
No breaks. Data correctly parsed. Life is good. Have a beer.
Instead of Column.getItem(i) we can use Column[i].
Also, enumerate is useful in big dataframes.
from pyspark.sql import functions as F
Keep parent column:
for i, c in enumerate(['new_1', 'new_2']):
df = df.withColumn(c, F.split('my_str_col', '-')[i])
or
new_cols = ['new_1', 'new_2']
df = df.select('*', *[F.split('my_str_col', '-')[i].alias(c) for i, c in enumerate(new_cols)])
Replace parent column:
for i, c in enumerate(['new_1', 'new_2']):
df = df.withColumn(c, F.split('my_str_col', '-')[i])
df = df.drop('my_str_col')
or
new_cols = ['new_1', 'new_2']
df = df.select(
*[c for c in df.columns if c != 'my_str_col'],
*[F.split('my_str_col', '-')[i].alias(c) for i, c in enumerate(new_cols)]
)
I am working on a PySpark DataFrame with n columns. I have a set of m columns (m < n) and my task is choose the column with max values in it.
For example:
Input: PySpark DataFrame containing :
col_1 = [1,2,3], col_2 = [2,1,4], col_3 = [3,2,5]
Ouput :
col_4 = max(col1, col_2, col_3) = [3,2,5]
There is something similar in pandas as explained in this question.
Is there any way of doing this in PySpark or should I change convert my PySpark df to Pandas df and then perform the operations?
You can reduce using SQL expressions over a list of columns:
from pyspark.sql.functions import max as max_, col, when
from functools import reduce
def row_max(*cols):
return reduce(
lambda x, y: when(x > y, x).otherwise(y),
[col(c) if isinstance(c, str) else c for c in cols]
)
df = (sc.parallelize([(1, 2, 3), (2, 1, 2), (3, 4, 5)])
.toDF(["a", "b", "c"]))
df.select(row_max("a", "b", "c").alias("max")))
Spark 1.5+ also provides least, greatest
from pyspark.sql.functions import greatest
df.select(greatest("a", "b", "c"))
If you want to keep name of the max you can use `structs:
from pyspark.sql.functions import struct, lit
def row_max_with_name(*cols):
cols_ = [struct(col(c).alias("value"), lit(c).alias("col")) for c in cols]
return greatest(*cols_).alias("greatest({0})".format(",".join(cols)))
maxs = df.select(row_max_with_name("a", "b", "c").alias("maxs"))
And finally you can use above to find select "top" column:
from pyspark.sql.functions import max
((_, c), ) = (maxs
.groupBy(col("maxs")["col"].alias("col"))
.count()
.agg(max(struct(col("count"), col("col"))))
.first())
df.select(c)
We can use greatest
Creating DataFrame
df = spark.createDataFrame(
[[1,2,3], [2,1,2], [3,4,5]],
['col_1','col_2','col_3']
)
df.show()
+-----+-----+-----+
|col_1|col_2|col_3|
+-----+-----+-----+
| 1| 2| 3|
| 2| 1| 2|
| 3| 4| 5|
+-----+-----+-----+
Solution
from pyspark.sql.functions import greatest
df2 = df.withColumn('max_by_rows', greatest('col_1', 'col_2', 'col_3'))
#Only if you need col
#from pyspark.sql.functions import col
#df2 = df.withColumn('max', greatest(col('col_1'), col('col_2'), col('col_3')))
df2.show()
+-----+-----+-----+-----------+
|col_1|col_2|col_3|max_by_rows|
+-----+-----+-----+-----------+
| 1| 2| 3| 3|
| 2| 1| 2| 2|
| 3| 4| 5| 5|
+-----+-----+-----+-----------+
You can also use the pyspark built-in least:
from pyspark.sql.functions import least, col
df = df.withColumn('min', least(col('c1'), col('c2'), col('c3')))
Another simple way of doing it. Let us say that the below df is your dataframe
df = sc.parallelize([(10, 10, 1 ), (200, 2, 20), (3, 30, 300), (400, 40, 4)]).toDF(["c1", "c2", "c3"])
df.show()
+---+---+---+
| c1| c2| c3|
+---+---+---+
| 10| 10| 1|
|200| 2| 20|
| 3| 30|300|
|400| 40| 4|
+---+---+---+
You can process the above df as below to get the desited results
from pyspark.sql.functions import lit, min
df.select( lit('c1').alias('cn1'), min(df.c1).alias('c1'),
lit('c2').alias('cn2'), min(df.c2).alias('c2'),
lit('c3').alias('cn3'), min(df.c3).alias('c3')
)\
.rdd.flatMap(lambda r: [ (r.cn1, r.c1), (r.cn2, r.c2), (r.cn3, r.c3)])\
.toDF(['Columnn', 'Min']).show()
+-------+---+
|Columnn|Min|
+-------+---+
| c1| 3|
| c2| 2|
| c3| 1|
+-------+---+
Scala solution:
df = sc.parallelize(Seq((10, 10, 1 ), (200, 2, 20), (3, 30, 300), (400, 40, 4))).toDF("c1", "c2", "c3"))
df.rdd.map(row=>List[String](row(0).toString,row(1).toString,row(2).toString)).map(x=>(x(0),x(1),x(2),x.min)).toDF("c1","c2","c3","min").show
+---+---+---+---+
| c1| c2| c3|min|
+---+---+---+---+
| 10| 10| 1| 1|
|200| 2| 20| 2|
| 3| 30|300| 3|
|400| 40| 4| 4|
+---+---+---+---+
I'm using PySpark and I have a Spark dataframe with a bunch of numeric columns. I want to add a column that is the sum of all the other columns.
Suppose my dataframe had columns "a", "b", and "c". I know I can do this:
df.withColumn('total_col', df.a + df.b + df.c)
The problem is that I don't want to type out each column individually and add them, especially if I have a lot of columns. I want to be able to do this automatically or by specifying a list of column names that I want to add. Is there another way to do this?
This was not obvious. I see no row-based sum of the columns defined in the spark Dataframes API.
Version 2
This can be done in a fairly simple way:
newdf = df.withColumn('total', sum(df[col] for col in df.columns))
df.columns is supplied by pyspark as a list of strings giving all of the column names in the Spark Dataframe. For a different sum, you can supply any other list of column names instead.
I did not try this as my first solution because I wasn't certain how it would behave. But it works.
Version 1
This is overly complicated, but works as well.
You can do this:
use df.columns to get a list of the names of the columns
use that names list to make a list of the columns
pass that list to something that will invoke the column's overloaded add function in a fold-type functional manner
With python's reduce, some knowledge of how operator overloading works, and the pyspark code for columns here that becomes:
def column_add(a,b):
return a.__add__(b)
newdf = df.withColumn('total_col',
reduce(column_add, ( df[col] for col in df.columns ) ))
Note this is a python reduce, not a spark RDD reduce, and the parenthesis term in the second parameter to reduce requires the parenthesis because it is a list generator expression.
Tested, Works!
$ pyspark
>>> df = sc.parallelize([{'a': 1, 'b':2, 'c':3}, {'a':8, 'b':5, 'c':6}, {'a':3, 'b':1, 'c':0}]).toDF().cache()
>>> df
DataFrame[a: bigint, b: bigint, c: bigint]
>>> df.columns
['a', 'b', 'c']
>>> def column_add(a,b):
... return a.__add__(b)
...
>>> df.withColumn('total', reduce(column_add, ( df[col] for col in df.columns ) )).collect()
[Row(a=1, b=2, c=3, total=6), Row(a=8, b=5, c=6, total=19), Row(a=3, b=1, c=0, total=4)]
The most straight forward way of doing it is to use the expr function
from pyspark.sql.functions import *
data = data.withColumn('total', expr("col1 + col2 + col3 + col4"))
The solution
newdf = df.withColumn('total', sum(df[col] for col in df.columns))
posted by #Paul works. Nevertheless I was getting the error, as many other as I have seen,
TypeError: 'Column' object is not callable
After some time I found the problem (at least in my case). The problem is that I previously imported some pyspark functions with the line
from pyspark.sql.functions import udf, col, count, sum, when, avg, mean, min
so the line imported the sum pyspark command while df.withColumn('total', sum(df[col] for col in df.columns)) is supposed to use the normal python sum function.
You can delete the reference of the pyspark function with del sum.
Otherwise in my case I changed the import to
import pyspark.sql.functions as F
and then referenced the functions as F.sum.
Summing multiple columns from a list into one column
PySpark's sum function doesn't support column addition.
This can be achieved using expr function.
from pyspark.sql.functions import expr
cols_list = ['a', 'b', 'c']
# Creating an addition expression using `join`
expression = '+'.join(cols_list)
df = df.withColumn('sum_cols', expr(expression))
This gives us the desired sum of columns.
My problem was similar to the above (bit more complex) as i had to add consecutive column sums as new columns in PySpark dataframe. This approach uses code from Paul's Version 1 above:
import pyspark
from pyspark.sql import SparkSession
import pandas as pd
spark = SparkSession.builder.appName('addColAsCumulativeSUM').getOrCreate()
df=spark.createDataFrame(data=[(1,2,3),(4,5,6),(3,2,1)\
,(6,1,-4),(0,2,-2),(6,4,1)\
,(4,5,2),(5,-3,-5),(6,4,-1)]\
,schema=['x1','x2','x3'])
df.show()
+---+---+---+
| x1| x2| x3|
+---+---+---+
| 1| 2| 3|
| 4| 5| 6|
| 3| 2| 1|
| 6| 1| -4|
| 0| 2| -2|
| 6| 4| 1|
| 4| 5| 2|
| 5| -3| -5|
| 6| 4| -1|
+---+---+---+
colnames=df.columns
add new columns that are cumulative sums (consecutive):
for i in range(0,len(colnames)):
colnameLst= colnames[0:i+1]
colname = 'cm'+ str(i+1)
df = df.withColumn(colname, sum(df[col] for col in colnameLst))
df.show()
+---+---+---+---+---+---+
| x1| x2| x3|cm1|cm2|cm3|
+---+---+---+---+---+---+
| 1| 2| 3| 1| 3| 6|
| 4| 5| 6| 4| 9| 15|
| 3| 2| 1| 3| 5| 6|
| 6| 1| -4| 6| 7| 3|
| 0| 2| -2| 0| 2| 0|
| 6| 4| 1| 6| 10| 11|
| 4| 5| 2| 4| 9| 11|
| 5| -3| -5| 5| 2| -3|
| 6| 4| -1| 6| 10| 9|
+---+---+---+---+---+---+
'cumulative sum' columns added are as follows:
cm1 = x1
cm2 = x1 + x2
cm3 = x1 + x2 + x3
df = spark.createDataFrame([("linha1", "valor1", 2), ("linha2", "valor2", 5)], ("Columna1", "Columna2", "Columna3"))
df.show()
+--------+--------+--------+
|Columna1|Columna2|Columna3|
+--------+--------+--------+
| linha1| valor1| 2|
| linha2| valor2| 5|
+--------+--------+--------+
df = df.withColumn('DivisaoPorDois', df[2]/2)
df.show()
+--------+--------+--------+--------------+
|Columna1|Columna2|Columna3|DivisaoPorDois|
+--------+--------+--------+--------------+
| linha1| valor1| 2| 1.0|
| linha2| valor2| 5| 2.5|
+--------+--------+--------+--------------+
df = df.withColumn('Soma_Colunas', df[2]+df[3])
df.show()
+--------+--------+--------+--------------+------------+
|Columna1|Columna2|Columna3|DivisaoPorDois|Soma_Colunas|
+--------+--------+--------+--------------+------------+
| linha1| valor1| 2| 1.0| 3.0|
| linha2| valor2| 5| 2.5| 7.5|
+--------+--------+--------+--------------+------------+
A very simple approach would be to just use select instead of withcolumn as below:
df = df.select('*', (col("a")+col("b")+col('c).alias("total"))
This should give you required sum with minor changes based on requirements
The following approach works for me:
Import pyspark sql functions
from pyspark.sql import functions as F
Use F.expr(list_of_columns) data_frame.withColumn('Total_Sum',F.expr('col_name1+col_name2+..col_namen)