Execute Python script within Jupyter notebook using a specific virtualenv - python

I would like to execute a long running Python script from within a Jupyter notebook so that I can hack on the data structures generated mid-run.
The script has many dependencies and command line arguments and is executed with a specific virtualenv. Is it possible to interactively run a Python script inside a notebook from a specified virtualenv (different to that of the Jupyter installation)?

Here's what worked for me (non conda python):
(MacOS, brew version of python. if you are working with system python, you may (will) need prepend each command with sudo)
First activate virtualenv. If starting afresh then, e.g., you could use virtualenvwrapper:
$ pip install virtualenvwrapper
$ mkvirtualenv -p python2 py2env
$ workon py2env
# This will activate virtualenv
(py2env)$
# Then install jupyter within the active virtualenv
(py2env)$ pip install jupyter
# jupyter comes with ipykernel, but somehow you manage to get an error due to ipykernel, then for reference ipykernel package can be installed using:
(py2env)$ pip install ipykernel
Next, set up the kernel
(py2env)$ python -m ipykernel install --user --name py2env --display-name "Python2 (py2env)"
then start jupyter notebook (the venv need not be activated for this step)
(py2env)$ jupyter notebook
# or
#$ jupyter notebook
In the jupyter notebook dropdown menu: Kernel >> Change Kernel >> <list of kernels> you should see Python2 (py2env) kernel.
This also makes it easy to identify python version of kernel, and maintain either side by side.
Here is the link to detailed docs:
http://ipython.readthedocs.io/en/stable/install/kernel_install.html

A bit more simple solution to get notebook kernels available in other notebooks.
I'm using Linux + virtualenv + virtualenvwrapper. If you are using different setup, change some commands to the appropriate ones, but you should get the idea.
mkvirtualenv jupyter2
workon jupyter2
(jupyter2) pip install jupyter
(jupyter2) ipython kernel install --name "jupyter2_Python_2" --user
last command creates ~/.local/share/jupyter/kernels/jupyter2\ python\ 2/ directory
same stuff for 3
mkvirtualenv -p /usr/bin/python3 jupyter3
// this uses python3 as default python in virtualenv
workon jupyter3
(jupyter3) pip install jupyter
(jupyter3) ipython kernel install --name "jupyter3_Python_3" --user
When done you should see both kernels, no matter what env are you using to start jupyter.
You can delete links to kernels directly in ~/.local/share/jupyter/kernels/.
To specify location provide options to ipython kernel install (--help) or just copy directories from ~/.local/share/jupyter/kernels/ to ~/envs/jupyter3/share/jupyter if you want to run multiple kerenels from one notebook only.

I found this link to be very useful:
https://ocefpaf.github.io/python4oceanographers/blog/2014/09/01/ipython_kernel/
Make sure that you pip install jupyter into your virtualenv. In case the link goes away later, here's the gist:
You need to create a new kernel. You specify your kernel with a JSON file. Your kernels are usually located at ~/.ipython/kernels. Create a directory with the name of your virtualenv and create your kernel.json file in it. For instance, one of my paths looks like ~./ipython/kernels/datamanip/kernel.json
Here's what my kernel.json file looks like:
{
"display_name": "Data Manipulation (Python2)",
"language": "python",
"codemirror_mode": {
"version": 3,
"name":"ipython"
},
"argv": [
"/Users/ed/.virtualenvs/datamanip/bin/python",
"-c",
"from IPython.kernel.zmq.kernelapp import main; main()",
"-f",
"{connection_file}"
]
}
I am not certain exactly what the codemirror_mode object is doing, but it doesn't seem to do any harm.

It is really simple, based on the documentation
You can use a virtualenv for your IPython notebook. Follow the following steps, actually no need for step one, just make sure you activated your virtualenv via source ~/path-to-your-virtualenv/
Install the ipython kernel module into your virtualenv
workon my-virtualenv-name # activate your virtualenv, if you haven't already
pip install ipykernel
(The most important step) Now run the kernel "self-install" script:
python -m ipykernel install --user --name=my-virtualenv-name
Replacing the --name parameter as appropriate.
You should now be able to see your kernel in the IPython notebook menu: Kernel -> Change kernel and be able to switch to it (you may need to refresh the page before it appears in the list). IPython will remember which kernel to use for that notebook from then on.

#singer's solution didn't work for me. Here's what worked:
. /path/to/virtualenv/.venv/bin/activate
python -m ipykernel install --user --name .venv --display-name .venv
Reference: Kernels for different environments (official docs)

the nb_canda is useful:
conda install nb_conda
so,you can create and select your own python kernel with conda virtual environment,and manage the packages in venv
Screenshots
List item
conda environment manager Conda tab in jupyter notebook allows you to manage your environments right from within your notebook.
Change Kernel
You can also select which kernel to run a notebook in by using the Change kernel option in Kernel menu

Related

Cannot Open Jupyter Notebook From Python 3.5 Environment [duplicate]

I installed Anaconda (with Python 2.7), and installed Tensorflow in an environment called tensorflow. I can import Tensorflow successfully in that environment.
The problem is that Jupyter Notebook does not recognize the new environment I just created. No matter I start Jupyter Notebook from the GUI Navigator or from the command line within the tensorflow env, there is only one kernel in the menu called Python [Root], and Tensorflow cannot be imported. Of course, I clicked on that option multiple times, saved file, re-opened, but these did not help.
Strangely, I can see the two environments when I open the Conda tab on the front page of Jupyter. But when I open the Files tab, and try to new a notebook, I still end up with only one kernel.
I looked at this question:
Link Conda environment with Jupyter Notebook
But there isn't such a directory as ~/Library/Jupyter/kernels on my computer! This Jupyter directory only has one sub-directory called runtime.
I am really confused. Are Conda environments supposed to become kernels automatically? (I followed https://ipython.readthedocs.io/en/stable/install/kernel_install.html to manually set up the kernels, but was told that ipykernel was not found.)
I don't think the other answers are working any more, as conda stopped automatically setting environments up as jupyter kernels. You need to manually add kernels for each environment in the following way:
source activate myenv
python -m ipykernel install --user --name myenv --display-name "Python (myenv)"
As documented here:http://ipython.readthedocs.io/en/stable/install/kernel_install.html#kernels-for-different-environments
Also see this issue.
Addendum:
You should be able to install the nb_conda_kernels package with conda install nb_conda_kernels to add all environments automatically, see https://github.com/Anaconda-Platform/nb_conda_kernels
If your environments are not showing up, make sure you have installed
nb_conda_kernels in the environment with Jupyter
ipykernel and ipywidgets in the Python environment you want to access (note that ipywidgets is to enable some Juptyer functionality, not environment visibility, see related docs).
Anaconda's documentation states that
nb_conda_kernels should be installed in the environment from which
you run Jupyter Notebook or JupyterLab. This might be your base conda
environment, but it need not be. For instance, if the environment
notebook_env contains the notebook package, then you would run
conda install -n notebook_env nb_conda_kernels
Any other environments you wish to access in your notebooks must have
an appropriate kernel package installed. For instance, to access a
Python environment, it must have the ipykernel package; e.g.
conda install -n python_env ipykernel
To utilize an R environment, it must have the r-irkernel package; e.g.
conda install -n r_env r-irkernel
For other languages, their corresponding kernels must be installed.
In addition to Python, by installing the appropriatel *kernel package, Jupyter can access kernels from a ton of other languages including R, Julia, Scala/Spark, JavaScript, bash, Octave, and even MATLAB.
Note that at the time originally posting this, there was a possible cause from nb_conda not yet supporting Python 3.6 environments.
If other solutions fail to get Jupyter to recognize other conda environments, you can always install and run jupyter from within a specific environment. You may not be able to see or switch to other environments from within Jupyter though.
$ conda create -n py36_test -y python=3.6 jupyter
$ source activate py36_test
(py36_test) $ which jupyter
/home/schowell/anaconda3/envs/py36_test/bin/jupyter
(py36_test) $ jupyter notebook
Notice that I am running Python 3.6.1 in this notebook:
Note that if you do this with many environments, the added storage space from installing Jupyter into every environment may be undesirable (depending on your system).
The annoying thing is that in your tensorflow environment, you can run jupyter notebook without installing jupyter in that environment. Just run
(tensorflow) $ conda install jupyter
and the tensorflow environment should now be visible in Jupyter Notebooks started in any of your conda environments as something like Python [conda env:tensorflow].
I had to run all the commands mentioned in the top 3 answers to get this working:
conda install jupyter
conda install nb_conda
conda install ipykernel
python -m ipykernel install --user --name mykernel
Just run conda install ipykernel in your new environment, only then you will get a kernel with this env. This works even if you have different versions installed in each envs and it doesn't install jupyter notebook again. You can start youe notebook from any env you will be able to see newly added kernels.
Summary (tldr)
If you want the 'python3' kernel to always run the Python installation from the environment where it is launched, delete the User 'python3' kernel, which is taking precedence over whatever the current environment is with:
jupyter kernelspec remove python3
Full Solution
I am going to post an alternative and simpler solution for the following case:
You have created a conda environment
This environment has jupyter installed (which also installs ipykernel)
When you run the command jupyter notebook and create a new notebook by clicking 'python3' in the 'New' dropdown menu, that notebook executes python from the base environment and not from the current environment.
You would like it so that launching a new notebook with 'python3' within any environment executes the Python version from that environment and NOT the base
I am going to use the name 'test_env' for the environment for the rest of the solution. Also, note that 'python3' is the name of the kernel.
The currently top-voted answer does work, but there is an alternative. It says to do the following:
python -m ipykernel install --user --name test_env --display-name "Python (test_env)"
This will give you the option of using the test_env environment regardless of what environment you launch jupyter notebook from. But, launching a notebook with 'python3' will still use the Python installation from the base environment.
What likely is happening is that there is a user python3 kernel that exists. Run the command jupyter kernelspec list to list all of your environments. For instance, if you have a mac you will be returned the following (my user name is Ted).
python3 /Users/Ted/Library/Jupyter/kernels/python3
What Jupyter is doing here is searching through three different paths looking for kernels. It goes from User, to Env, to System. See this document for more details on the paths it searches for each operating system.
The two kernels above are both in the User path, meaning they will be available regardless of the environment that you launch a jupyter notebook from. This also means that if there is another 'python3' kernel at the environment level, then you will never be able to access it.
To me, it makes more sense that choosing the 'python3' kernel from the environment you launched the notebook from should execute Python from that environment.
You can check to see if you have another 'python3' environment by looking in the Env search path for your OS (see the link to the docs above). For me (on my mac), I issued the following command:
ls /Users/Ted/anaconda3/envs/test_env/share/jupyter/kernels
And I indeed had a 'python3' kernel listed there.
Thanks to this GitHub issue comment (look at the first response), you can remove the User 'python3' environment with the following command:
jupyter kernelspec remove python3
Now when you run jupyter kernelspec list, assuming the test_env is still active, you will get the following:
python3 /Users/Ted/anaconda3/envs/test_env/share/jupyter/kernels/python3
Notice that this path is located within the test_env directory. If you create a new environment, install jupyter, activate it, and list the kernels, you will get another 'python3' kernel located in its environment path.
The User 'python3' kernel was taking precedence over any of the Env 'python3' kernels. By removing it, the active environment 'python3' kernel was exposed and able to be chosen every time. This eliminates the need to manually create kernels. It also makes more sense in terms of software development where one would want to isolate themselves into a single environment. Running a kernel that is different from the host environment doesn't seem natural.
It also seems that this User 'python3' is not installed for everyone by default, so not everyone is confronted by this issue.
To add a conda environment to Jupyter:
In Anaconda Prompt :
run conda activate <env name>
run conda install -c anaconda ipykernel
run python -m ipykernel install --user --name=<env name>
** tested on conda 4.8.3 4.11.0
$ conda install nb_conda_kernels
(in the conda environment where you run jupyter notebook) will make all conda envs available automatically. For access to other environments, the respective kernels must be installed. Here's the ref.
This worked for me in windows 10 and latest solution :
1) Go inside that conda environment ( activate your_env_name )
2) conda install -n your_env_name ipykernel
3) python -m ipykernel install --user --name build_central --display-name "your_env_name"
(NOTE : Include the quotes around "your_env_name", in step 3)
The nb_conda_kernels package is the best way to use jupyter with conda. With minimal dependencies and configuration, it allows you to use other conda environments from a jupyter notebook running in a different environment. Quoting its documentation:
Installation
This package is designed to be managed solely using conda. It should be installed in the environment from which you run Jupyter Notebook or JupyterLab. This might be your base conda environment, but it need not be. For instance, if the environment notebook_env contains the notebook package, then you would run
conda install -n notebook_env nb_conda_kernels
Any other environments you wish to access in your notebooks must have an appropriate kernel package installed. For instance, to access a Python environment, it must have the ipykernel package; e.g.
conda install -n python_env ipykernel
To utilize an R environment, it
must have the r-irkernel package; e.g.
conda install -n r_env r-irkernel
For other languages, their corresponding kernels must be installed.
Then all you need to do is start the jupyter notebook server:
conda activate notebook_env # only needed if you are not using the base environment for the server
# conda install jupyter # in case you have not installed it already
jupyter
Despite the plethora of answers and #merv's efforts to improve them, it still hard to find a good one. I made this one CW, so please vote it to the top or improve it!
This is an old thread, but running this in Anaconda prompt, in my environment of interest, worked for me:
ipython kernel install --name "myenvname" --user
We have struggle a lot with this issue, and here's what works for us. If you use the conda-forge channel, it's important to make sure you are using updated packages from conda-forge, even in your Miniconda root environment.
So install Miniconda, and then do:
conda config --add channels conda-forge --force
conda update --all -y
conda install nb_conda_kernels -y
conda env create -f custom_env.yml -q --force
jupyter notebook
and your custom environment will show up in Jupyter as an available kernel, as long as ipykernel was listed for installation in your custom_env.yml file, like this example:
name: bqplot
channels:
- conda-forge
- defaults
dependencies:
- python>=3.6
- bqplot
- ipykernel
Just to prove it working with a bunch of custom environments, here's a screen grab from Windows:
I ran into this same problem where my new conda environment, myenv, couldn't be selected as a kernel or a new notebook. And running jupter notebook from within the env gave the same result.
My solution, and what I learned about how Jupyter notebooks recognizes conda-envs and kernels:
Installing jupyter and ipython to myenv with conda:
conda install -n myenv ipython jupyter
After that, running jupter notebook outside any env listed myenv as a kernel along with my previous environments.
Python [conda env:old]
Python [conda env:myenv]
Running the notebook once I activated the environment:
source activate myenv
jupyter notebook
hides all my other environment-kernels and only shows my language kernels:
python 2
python 3
R
This has been so frustrating, My problem was that within a newly constructed conda python36 environment, jupyter refused to load “seaborn” - even though seaborn was installed within that environment. It seemed to be able to import plenty of other files from the same environment — for example numpy and pandas but just not seaborn. I tried many of the fixes suggested here and on other threads without success. Until I realised that Jupyter was not running kernel python from within that environment but running the system python as kernel. Even though a decent looking kernel and kernel.json were already present in the environment. It was only after reading this part of the ipython documentation:
https://ipython.readthedocs.io/en/latest/install/kernel_install.html#kernels-for-different-environments
and using these commands:
source activate other-env
python -m ipykernel install --user --name other-env --display-name "Python (other-env)"
I was able to get everything going nicely. (I didn’t actually use the —user variable).
One thing I have not yet figured is how to set the default python to be the "Python (other-env)" one. At present an existing .ipynb file opened from the Home screen will use the system python. I have to use the Kernel menu “Change kernel” to select the environment python.
I had similar issue and I found a solution that is working for Mac, Windows and Linux. It takes few key ingredients that are in the answer above:
To be able to see conda env in Jupyter notebook, you need:
the following package in you base env:
conda install nb_conda
the following package in each env you create:
conda install ipykernel
check the configurationn of jupyter_notebook_config.py
first check if you have a jupyter_notebook_config.py in one of the location given by jupyter --paths
if it doesn't exist, create it by running jupyter notebook --generate-config
add or be sure you have the following: c.NotebookApp.kernel_spec_manager_class='nb_conda_kernels.manager.CondaKernelSpecManager'
The env you can see in your terminal:
On Jupyter Lab you can see the same env as above both the Notebook and Console:
And you can choose your env when have a notebook open:
The safe way is to create a specific env from which you will run your example of envjupyter lab command. Activate your env. Then add jupyter lab extension example jupyter lab extension. Then you can run jupyter lab
While #coolscitist's answer worked for me, there is also a way that does not clutter your kernel environment with the complete jupyter package+deps.
It is described in the ipython docs and is (I suspect) only necessary if you run the notebook server in a non-base environment.
conda activate name_of_your_kernel_env
conda install ipykernel
python -m ipykernel install --prefix=/home/your_username/.conda/envs/name_of_your_jupyter_server_env --name 'name_of_your_kernel_env'
You can check if it works using
conda activate name_of_your_jupyter_server_env
jupyter kernelspec list
First you need to activate your environment .
pip install ipykernel
Next you can add your virtual environment to Jupyter by typing:
python -m ipykernel install --name = my_env
Follow the instructions in the iPython documentation for adding different conda environments to the list of kernels to choose from in Jupyter Notebook. In summary, after installing ipykernel, you must activate each conda environment one by one in a terminal and run the command python -m ipykernel install --user --name myenv --display-name "Python (myenv)", where myenv is the environment (kernel) you want to add.
Possible Channel-Specific Issue
I had this issue (again) and it turned out I installed from the conda-forge channel; removing it and reinstalling from anaconda channel instead fixed it for me.
Update: I again had the same problem with a new env, this time I did install nb_conda_kernels from anaconda channel, but my jupyter_client was from the conda-forge channel. Uninstalling nb_conda_kernels and reinstalling updated that to a higher-priority channel.
So make sure you've installed from the correct channels :)
I encountered this problem when using vscode server.
In the conda environment named "base", I installed the 1.2.0 version of opennmt-py, but I want to run jupyter notebook in the conda environment "opennmt2", which contains code using opennmt-py 2.0.
I solved the problem by reinstalling jupyter in conda(opennmt2).
conda install jupyter
After reinstalling, executing jupyter notebook in the opennmt2 environment will execute the newly installed jupyter
where jupyter
/root/miniconda3/envs/opennmt2/bin/jupyter
/root/miniconda3/bin/jupyter
For conda 4.5.12, what works for me is (my virtual env is called nwt)
conda create --name nwt python=3
after that I need to activate the virtual environment and install the ipykernel
activate nwt
pip install ipykernel
then what works for me is:
python -m ipykernel install --user --name env_name --display-name "name of your choosing."
As an example, I am using 'nwt' as the display name for the virtual env. And after running the commands above. Run 'jupyter notebook" in Anaconda Prompt again. What I get is:
Using only environment variables:
python -m ipykernel install --user --name $(basename $VIRTUAL_ENV)
I just wanted to add to the previous answers: in case installing nb_conda_kernels, ipywidgets and ipekernel dosen't work, make sure your version of Jupyter is up to date. My envs suddenly stopped showing up after a period of everything working fine, and it resumed working after I simply updated jupyter through the anaconda navigator.
In my case, using Windows 10 and conda 4.6.11, by running the commands
conda install nb_conda
conda install -c conda-forge nb_conda_kernels
from the terminal while having the environment active didn't do the job after I opened Jupyter from the same command line using conda jupyter notebook.
The solution was apparently to opened Jupyter from the Anaconda Navigator by going to my environment in Environments: Open Anaconda Navigator, select the environment in Environments, press on the "play" button on the chosen environment, and select 'open with Jupyter Notebook'.
Environments in Anaconda Navigator to run Jupyter from the selected environment

How to choose your conda environment in Jupyter Notebook

I installed Anaconda 5.3 with Python 3.7 (root environment).
After that I created a new environment (py36) using Python 3.6
I activated the new environment with activate py36
conda env list shows that the environement is active.
But when I start Jupyter Notebook (from the Anaconda prompt with jupyter notebook), it seems to use the root environemt, not the activated environment.
How can I use Jupyter Notebook with the new create environment (py36)?
As #Ista mentioned, the documentation gives an easy solution using notebook extensions.
conda install nb_conda
After installing, you have the option in Jupyter Notebook to 'Change kernel' from the 'Kernel' menu in your Jupyter Notebook.
I managed to find a solution for this in a similar problem. The thing is that IPython is not virtualenv-aware, so a workaround (the one that I found to be most comfortable) is to specify custom IPython kernels to avoid having one Jupyter Notebook installation for each virtualenv (or anaconda environments, in your case).
Jupyter relies on some "kernels" (definitions of where to find the python binary) that are stored somewhere in your OS. These files are something like this:
{
"display_name": "NameOfTheKernel",
"language": "python",
"argv": [
"/usr/bin/python",
"-m",
"ipykernel_launcher",
"-f",
"{connection_file}"
]
Where /usr/bin/python is the path to the python binary that will be executed. However, as these kernels are defined somewhere in your computer by Jupyter, they don't update when you install some other environments (which is the case for anaconda or virtualenv). I found that the easiest way is to define a custom kernel for each environment that you use. Also, doing this supresses the need to activate the environment every single time you want to use it, as it is loaded directly.
The idea is to define a custom kernel so that Jupyter can "see" the environment that you have created with anaconda. For doing so, execute the following line in bash:
ipython kernel install --user --name=NameOfTheKernel
The "NameOfTheKernel" doesn't actually matter that much. If you don't have the ipython package, install it with pip, anaconda, via sudo apt install or whatever.
What this line will do is to define a custom kernel that will be detected by jupyter. For illustration purposes, in Ubuntu, this will be stored in the folder /home/USERNAME/.local/share/jupyter with this data structure:
/home/USERNAME/.local/share/jupyter/kernels/
└── nameofthekernel
├── kernel.json
├── logo-32x32.png
└── logo-64x64.png
Once you have installed the kernel, you have to:
1) Know where your environment has been installed by anaconda. An easy way to do it is to activate your environment in anaconda and, then, write "which python" in the terminal. That will show the full path to the binary.
2) Write that path in the jupyter kernel just created. E.g. using pluma:
pluma /home/USERNAME/.local/share/jupyter/kernels/nameofthekernel/kernel.json
Then, you substitute the path of the python binary you installed with anaconda where /usr/bin/python is.
After this, if Jupyter was running, restart it. This way, the next time you open Jupyter, you can change the kernel (in the notebooks, one of the tabs in the upper part) and you will be using your environment and everything installed alongside that environment.
[TL;DR] I did it with pip, but the steps for anaconda will be more or less the same. The steps are:
#CREATE THE IPYTHON KERNELS
ipython kernel install --user --name=NameOfKernel
#IF PYTHON2 - MODIFY THE KERNELS TO USE THE ANACONDA BINARIES
sed -i -e "s|/usr/bin/python3|/home/${USER}/anaconda/bin/python27|g" /home/$USER/.local/share/jupyter/kernels/nameofkernel/kernel.json
#IF PYTHON3 - MODIFY THE KERNELS TO USE THE ANACONDA BINARIES
sed -i -e "s|/usr/bin/python3|/home/${USER}/anaconda/bin/python36|g" /home/$USER/.local/share/jupyter/kernels/nameofkernel/kernel.json
Or, if you are working with environments:
#CREATE THE IPYTHON KERNELS
ipython kernel install --user --name=NameOfKernel
#IF PYTHON2 - MODIFY THE KERNELS TO USE THE ANACONDA BINARIES
sed -i -e "s|/usr/bin/python3|/home/${USER}/anaconda/envs/nameofenvironment/python27|g" /home/$USER/.local/share/jupyter/kernels/nameofkernel/kernel.json
#IF PYTHON3 - MODIFY THE KERNELS TO USE THE ANACONDA BINARIES
sed -i -e "s|/usr/bin/python3|/home/${USER}/anaconda/envs/nameofenvironment/python36|g" /home/$USER/.local/share/jupyter/kernels/nameofkernel/kernel.json
BEWARE: I DID NOT INSTALL CONDA FOR TESTING THE SOLUTION, SO THE PATHS LEADING TO THE ACTUAL PYTHON BINARIES MIGHT CHANGE. The procedure is the same, however.

ModuleNotFoundError in Jupyter with pipenv

I am at a Python boot camp this weekend but I have not been able to even use Python on my computer because of this issue. All my instructors are stumped too.
The issue is that I get the ModuleNotFoundError on Jupyter with multiple different packages, including Pandas and Requests (but oddly enough, BeautifulSoup and CSV work fine.)
Here is how I start a new Jupyter file:
Create a new directory
Install jupyter and pandas with this command: pipenv install jupyter pandas
Activate virtual environment: pipenv shell
Launch Jupyter: jupyter notebook
Create new Python 3 notebook
At this point, I try a command like import pandas as pd and get back the ModuleNotFoundError.
I am using Python version 3.6.5.
Attempts to fix this that have failed:
double-checked that pandas is installed in my virtual environment with pip graph
created completely new directory
pipenv install jupyter pandas --skip-lock
Uninstalled everything system-wide with these commands:
pip freeze > requirements.txt
pip uninstall -r requirements.txt -y
Updated pandas
Used virtualenv instead of pipenv
virtualenv first-python-notebook
cd first-python-notebook
cd Scripts
activate
cd ..
pip install jupyter pandas
I tested that pandas could be imported when I used python in the command shell (yes) -- still didn't work on Jupyter.
My instructor thinks the issue is that system-wide packages are interfering with virtual ones but we have been working for hours and cannot figure out how to fix this.
Any help would be greatly appreciated. Please include detailed instructions as I am a beginner.
If you're getting 'ModuleNotFoundError: No module named xxyyzz' in jupyter, but the module can be imported by running python via the pipenv shell (pipenv run python -c "import xxyyzz; print(xxyyzz.__version__)":
it's probably jupyter's python path isn't set properly in the kernel config file: ..\jupyter\kernels\<myProjectName>\kernel.json
the kernel needs to be created within the pipenv shell to pick up the right path
With a fresh pipenv install:
pip install pipenv
cd <project directory>
export PIPENV_VENV_IN_PROJECT=1 # creates .venv in project directory
pipenv --python=/path/to/python --site-packages # use python executable for your system or environment
pipenv shell # work in project's virtual environment
python -m ipykernel install --user --name=<myProjectName> # create jupyter kernel for project
exit # exit project's virtual environment
pipenv run jupyter notebook # start jupyter from project directory
in jupyter, choose the kernel "myProjectName"
this post provides additional explanations
Why don't you try to install ipykernel with Anaconda virtual env?
It'll will be more easy to handle.
If you haven't previously used Anaconda before, just go to the official website
https://www.anaconda.com/download/ and download the newest version for your OS.
Then, follow these steps.
Execute Anaconda prompt.
Type 'conda create -y -n $ENVIRONMENT_NAME ipykernel'
Type 'conda activate $ENVIRONMENT_NAME'
Type 'conda install -y $PACKAGES_TO_BE_INSTALLED'
Type 'python -m ipykernel install --user --name $NAME --display-name $IPYKERNEL_NAME'
This ipykernel name will be presented on your list of kernels in jupyter notebook.
You can findout the list of kernels installed by typing jupyter kernelspec list.
Hope this helps!
Thanks for the advice. However, I was advised specifically not to install Anaconda -- can't quite remember the reason but I think it's because, basically, if I ever decided I wanted to use something else then it would be a real headache to switch. I'm happy to hear your reasoning if you disagree with that.
I ended up solving the issue by uninstalling every package both within the virtual environment and the larger computer system, then re-installing it in both places. It worked, but I'm sort of confused as to what the point of a virtual environment is, if I still had to install everything twice.

Python Jupyter Notebook: How to Change Python Executable for Unix Without Environments?

I have different Python environments on my Ubuntu machine:
/home/user/anaconda3/envs/untitled/bin/python
/home/user/anaconda3/bin/python
What is the easiest way to let an ipython / jupyter notebook work with either the first or the second python environment (if possible it would be good if I do not need to create a virtual environment for that)?
Looks like you already have two conda environments available on your machine. You could install the kernelspec for each one, and you should be able to use Jupyter with either.
# for /home/user/anaconda3/envs/my_env/bin/python
source activate my_env
python -m ipykernel install --user --name my_env --display-name "Python (my_env)"
source deactivate
And now you should see Python (my_env) as an available kernel in Jupyter.

Running Jupyter notebook in a virtualenv: installed sklearn module not available

I have installed a created a virtualenv machinelearn and installed a few python modules (pandas, scipy and sklearn) in that environment.
When I run jupyter notebook, I can import pandas and scipy in my notebooks - however, when I try to import sklearn, I get the following error message:
import sklearn
---------------------------------------------------------------------------
ImportError Traceback (most recent call last)
<ipython-input-1-8fd979e02004> in <module>()
----> 1 import sklearn
ImportError: No module named 'sklearn'
I am able to import all modules, at the command line - so I know they have been successfully installed:
(machinelearn) me#yourbox:~/path/to/machinelearn$ python -c "import pandas, scipy, sklearn"
(machinelearn) me#yourbox:~/path/to/machinelearn$
How can I import sklearn in my jupyter notebook running in a virtualenv?
You probably have not installed jupyter / IPython in your virtualenv. Try the following:
python -c "import IPython"
and check that the jupyter command found in your $PATH is the one from the bin folder of your venv:
which jupyter
For windows users in a powershell console, you can use the following to check that the jupyter command in your $env:Path is the one from the Scripts folder of you venv:
get-command jupyter
Edit: if this is the problem, just run python -m pip install jupyter in your venv.
Edit 2: actually you might also need:
python -m ipykernel install --user --name=my-virtualenv-name
and then switch the kernel named "my-virtualenv-name" in the jupyter user interface.
Edit 3: maybe the --user flag in the last command is a bad idea:
python -m ipykernel install --name=my-virtualenv-name
Another approach to take is to have one global jupyter installation, but to point to different kernels to run as the backend.
That approach is outlined here in their docs:
http://help.pythonanywhere.com/pages/IPythonNotebookVirtualenvs
Copying below in case the link breaks:
You can use a virtualenv for your IPython notebook. Follow the following steps:
Install the ipython kernel module into your virtualenv
workon my-virtualenv-name # activate your virtualenv, if you haven't already
pip install ipykernel
Now run the kernel "self-install" script:
python -m ipykernel install --user --name=my-virtualenv-name
Replacing the --name parameter as appropriate.
You should now be able to see your kernel in the IPython notebook menu: Kernel -> Change kernel and be able so switch to it (you may need to refresh the page before it appears in the list). IPython will remember which kernel to use for that notebook from then on.
To use Jupyter notebook with virtual environment (using virtualenvwrapper) plus packages installed in that environment, follow steps below:
create a virtual environment
mkvirtualenv --no-site-packages --python=/your/python/path your_env_name
Activate the virtual environment
workon your_env_name
Install Jupyter and other packages
pip install jupyter, numpy
Add a new kernel to your Jupyter config
ipython kernel install --user --name=your_env_name
Done. You may now use Jupyter notebook under the virtual environment.
jupyter-notebook
Disclaimer: the question has been answered but is hidden in one of the replies. I googled and took sometime to find the right answer. So I just summarize it so someone having the same issue can easily follow.
Assuming that jupyter is installed on your machine, not on the virtual environtment.
Using a virtual environment with Jupyter notebook
VENV_NAME = "YOUR VIRTUAL ENV NAME"
1) virtualenv VENV_NAME
2) source venv/bin/activate
3) Add this package if not present: pip3 install ipykernel
4) Then execute this command: ipython kernel install --user --name=VENV_NAME
5) Now open up the Jupyter Notebook and in change kernel select VENV_NAME
6) To install a new package perform pip3 install <PACKAGE NAME> in your terminal and repeat step 4.
Hope it helps!
Solution without adding a new kernel globally!!
create a new virtual environment by
python3 -m virtualenv envname
Activate your enviroment and install jupyter in it by
pip install jupyter
One thing you have to make sure before installing jupyter is that you don't have following packages already installed in it.
ipykernel
ipython
ipython-genutils
ipywidgets
jupyter
jupyter-client
jupyter-console
jupyter-core
If you've previously installed them then first uninstall them by pip uninstall.
Install your desired packages in activated virtualenv and launch jupyter in it and voila!
Creation of virtualenv with python3 -m venv command
I had the same problem as yours.
In my case I had created the virtualenv with the command
python3 -m venv ./my_virtual_env --system-site-packages
The problem was I could not install jupyter inside the virtual environment as it was already in the system-site-package (when you try to install it, it tells you "Requirement already satisfied").
To install jupyter, (and in a first instance pip, that does not get installed neither in your virtual environment with this command) but still have access to system-site-package you can run :
python3 -m venv ./my_virtual_env
Activate you virtual environment, run pip3 install jupyter (and pip3 install pip) and then turn on the option include-system-site-packages in the file ./my_virtual_env/pyvenv.cfg.
After deactivation and reactivation of you environment, you will have access to system site-packages.
Creation of virtualenv with virtualenv command
Given this answer you can prevent the access to system site-packages by creating a file ./my_virtual_env/lib/python3.4/no-global-site-packages.txt,
and get the access back by removing it.
You can still install jupyter inside your virtual-environment if you have created your virtual env using:
python -m venv --system-site-packages path/to/my-venv
Simply do this:
activate-your-env
pip install -I jupyter
And you are now ready to go
jupyter notebook

Categories