Image classification Using CNN [closed] - python

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 19 hours ago.
Improve this question
I am working on breast cancer classification. I found this online code to train my pre-processed outputs on it. The results was awful but I didn't understand the code, I want to train my own model but I don't how to replace my own code with this one.
Any help would be appreciated.
in_model = tf.keras.applications.DenseNet121(input_shape=(224,224,3),
include_top=False,
weights='imagenet',classes = 2)
in_model.trainable = False
inputs = tf.keras.Input(shape=(224,224,3))
x = in_model(inputs)
flat = Flatten()(x)
dense_1 = Dense(4096,activation = 'relu')(flat)
dense_2 = Dense(4096,activation = 'relu')(dense_1)
prediction = Dense(2,activation = 'softmax')(dense_2)
in_pred = Model(inputs = inputs,outputs = prediction)

#This is a Deep Learning model using Keras.
#the CNN model:
in_model = tf.keras.applications.DenseNet121(input_shape=(224,224,3),
include_top=False,
weights='imagenet',classes = 2)
#First, to all, you need to creates a CNN DenseNet121 model with pre-trained #ImageNet weights. input_shape specifies the shape of the input images to the model. #include_top=False specifies that we don't want to include the last fully-connected #layer in the model. This is because we want to replace the last layer with our own #layers for our specific task. weights='imagenet' specifies that we want to use pre-#trained weights from the ImageNet dataset. Finally, classes = 2 specifies the #number of output classes for our specific task.
in_model.trainable = False
#The model freezes the weights of the pre-trained model, so they will not be updated #during training. This is because we only want to train the new layers that we add #to the model.
inputs = tf.keras.Input(shape=(224,224,3))
the input layer of the model is defined as shape=(224,224,3) specifies the shape of #the input images.
x = in_model(inputs)
#Now is applied the pre-trained model to the input images to extract features.
flat = Flatten()(x)
flattens the output of the pre-trained model into a 1-dimensional array, #so it can be used as input to the fully-connected layers that we will add next.
#Now, in the next two lines add two fully-connected layers with 4096 units each and #ReLU activation functions. These layers are added to learn more complex features #from the flattened output of the pre-trained model.
dense_1 = Dense(4096,activation = 'relu')(flat)
dense_2 = Dense(4096,activation = 'relu')(dense_1)
#The next step involves to adds the output layer of the model. It's a fully-#connected layer with 2 units (one for each output class) and a softmax activation #function. This layer will output the predicted class probabilities for each input #image.
prediction = Dense(2,activation = 'softmax')(dense_2)
#Finally, you create the final model by defining the input and output layers. #inputs and prediction are the input and output layers that we defined earlier. The #resulting in_pred model is a Keras Model object that can be trained on data for a #specific classification task.
in_pred = Model(inputs = inputs,outputs = prediction)

You forgot to preprocess_input:
Note: each Keras Application expects a specific kind of input preprocessing. For DenseNet, call tf.keras.applications.densenet.preprocess_input on your inputs before passing them to the model.
inputs = tf.keras.Input(shape=(224,224,3))
x = tf.keras.applications.densenet.preprocess_input(inputs) # HERE
x = in_model(x)
You can also try to use the default top-net by setting include_top=True or create the same top net:
x = layers.GlobalAveragePooling2D(name="avg_pool")(x)
x = layers.Dense(2, activation='softmax', name='predictions')(x)

Related

How to get the latent vector as an output from a cnn model before training to the fully connected layer?

I am working on CNN model using Tensorflow frames in google collab. I am unable to extract the latent vectors from the convolutional layers. I want to extract the output of the convolutional layers, the layers before fully connected layer.
I have tried with the following code
a = dropout()(classifier_model.output)
print(a)
I am unable to understand the solution suggested on the link Stackoverflow solution to print the value of tensorflow object after applying a-conv-pool-layer
Anyone with any suggestion?
You can use get_layer method of the Model class to get a layer by its name, find bellow an example with a dummy 1D CNN and a binary classifier :
timesteps = 100
nfeatures = 2
# build the model using the functional API
# example of a 1D CNN inspired by the your stack overflow link, but using a model instead of successive *raw* layers
# the values of the Conv1D filters and kernels are different
input = Input((timesteps, nfeatures))
p = Conv1D(filters=16, kernel_size=10)(input)
p = ReLU()(p)
p = MaxPool1D(pool_size=2)(p)
p = Conv1D(filters=32, kernel_size=10)(p)
p = ReLU()(p)
p = MaxPool1D(pool_size=2)(p)
p = Conv1D(filters=64, kernel_size=10)(p)
p = ReLU()(p)
p = MaxPool1D(pool_size=2, name='conv1Dfeat')(p) # give a name to the CNN output
# fully connected part
p = Flatten()(p)
p = Dense(10)(p)
# could add a dropout layer to ease optimization
finaloutput = Dense(1, activation='sigmoid')(p)
# full model
model = Model(inputs=input, outputs=finaloutput)
# compile network, i.e. define optimizer, loss and metrics
model.compile(optimizer='Adam', loss='binary_crossentropy', metrics=['accuracy'])
model.summary()
You need to train the model using the fit method with some data. Then you can get the output of the layer which name is conv1Dfeat (the last layer of the convolutive part) by defining the model:
modelCNN = Model(inputs=input, outputs=model.get_layer('conv1Dfeat').output)
modelCNN.summary()
If you want to get the output of the convolutive part, let's say based on a single numpy input array of shape (timesteps, nfeatures), you can use the predict of the Model class on batched data:
data = np.random.normal(size=(timesteps, nfeatures)) # dummy data
data_tf = tf.expand_dims(data, axis=0) # convert to TF tensor and add batch dimension at the same time
cnn_out_np = modelCNN.predict(data_tf)
cnn_out_np = np.squeeze(cnn_out_np, axis=0) # remove batch dimension
print(cnn_out_np.shape)
(4, 64)

Extract Keras concatenated layer of 3 embedding layers, but it's an empty list

I am constructing a Keras Classification model with Multiple Inputs (3 actually) to predict one single output. Specifically, my 3 inputs are:
Actors
Plot Summary
Relevant Movie Features
Output:
Genre tags
Python Code (create the multiple input keras)
def kera_multy_classification_model():
sentenceLength_actors = 15
vocab_size_frequent_words_actors = 20001
sentenceLength_plot = 23
vocab_size_frequent_words_plot = 17501
sentenceLength_features = 69
vocab_size_frequent_words_features = 20001
model = keras.Sequential(name='Multy-Input Keras Classification model')
actors = keras.Input(shape=(sentenceLength_actors,), name='actors_input')
plot = keras.Input(shape=(sentenceLength_plot,), name='plot_input')
features = keras.Input(shape=(sentenceLength_features,), name='features_input')
emb1 = layers.Embedding(input_dim = vocab_size_frequent_words_actors + 1,
# based on keras documentation input_dim: int > 0. Size of the vocabulary, i.e. maximum integer index + 1.
output_dim = Keras_Configurations_model1.EMB_DIMENSIONS,
# int >= 0. Dimension of the dense embedding
embeddings_initializer = 'uniform',
# Initializer for the embeddings matrix.
mask_zero = False,
input_length = sentenceLength_actors,
name="actors_embedding_layer")(actors)
encoded_layer1 = layers.LSTM(100)(emb1)
emb2 = layers.Embedding(input_dim = vocab_size_frequent_words_plot + 1,
output_dim = Keras_Configurations_model2.EMB_DIMENSIONS,
embeddings_initializer = 'uniform',
mask_zero = False,
input_length = sentenceLength_plot,
name="plot_embedding_layer")(plot)
encoded_layer2 = layers.LSTM(100)(emb2)
emb3 = layers.Embedding(input_dim = vocab_size_frequent_words_features + 1,
output_dim = Keras_Configurations_model3.EMB_DIMENSIONS,
embeddings_initializer = 'uniform',
mask_zero = False,
input_length = sentenceLength_features,
name="features_embedding_layer")(features)
encoded_layer3 = layers.LSTM(100)(emb3)
merged = layers.concatenate([encoded_layer1, encoded_layer2, encoded_layer3])
layer_1 = layers.Dense(Keras_Configurations_model1.BATCH_SIZE, activation='relu')(merged)
output_layer = layers.Dense(Keras_Configurations_model1.TARGET_LABELS, activation='softmax')(layer_1)
model = keras.Model(inputs=[actors, plot, features], outputs=output_layer)
print(model.output_shape)
print(model.summary())
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['sparse_categorical_accuracy'])
Model's Structure
My problem:
After successfully fitting and training the model on some training data, I would like to extract the embeddings of this model for later use. My main approach before using a multiple input keras model, was to train 3 different keras models and extract 3 different embedding layers of shape 100. Now that I have the multiple input keras model, I want to extract the concatenated embedding layer with output shape (None, 300).
Although, when I try to use this python command:
embeddings = model_4.layers[9].get_weights()
print(embeddings)
or
embeddings = model_4.layers[9].get_weights()[0]
print(embeddings)
I get either an empty list (1st code sample) either an IndenError: list index out of range (2nd code sample).
Thank you in advance for any advice or help on this matter. Feel free to ask on the comments any additional information that I may have missed, to make this question more complete.
Note: Python code and model's structure have been also presented to this previously answered question
Concatenate layer does not have any weights (it does not have trainable parameter as you ca see from your model summary) hence your get_weights() output is coming empty. Concatenation is an operation.
For your case you can get weights of your individual embedding layers after training.
model.layers[3].get_weights() # similarly for layer 4 and 5
Alternatively if you want to store your embedding in (None, 300) you can use numpy to concatenate weights.
out_concat = np.concatenate([mdoel.layers[3].get_weights()[0], mdoel.layers[4].get_weights()[0], mdoel.layers[5].get_weights()[0]], axis=-1)
Although you can get output tensor of concatenate layer:
out_tensor = model.layers[9].output
# <tf.Tensor 'concatenate_3_1/concat:0' shape=(?, 300) dtype=float32>

Keras: Share a layer of weights across Training Examples (Not between layers)

The problem is the following. I have a categorical prediction task of vocabulary size 25K. On one of them (input vocab 10K, output dim i.e. embedding 50), I want to introduce a trainable weight matrix for a matrix multiplication between the input embedding (shape 1,50) and the weights (shape(50,128)) (no bias) and the resulting vector score is an input for a prediction task along with other features.
The crux is, I think that the trainable weight matrix varies for each input, if I simply add it in. I want this weight matrix to be common across all inputs.
I should clarify - by input here I mean training examples. So all examples would learn some example specific embedding and be multiplied by a shared weight matrix.
After every so many epochs, I intend to do a batch update to learn these common weights (or use other target variables to do multiple output prediction)
LSTM? Is that something I should look into here?
With the exception of an Embedding layer, layers apply to all examples in the batch.
Take as an example a very simple network:
inp = Input(shape=(4,))
h1 = Dense(2, activation='relu', use_bias=False)(inp)
out = Dense(1)(h1)
model = Model(inp, out)
This a simple network with 1 input layer, 1 hidden layer and an output layer. If we take the hidden layer as an example; this layer has a weights matrix of shape (4, 2,). At each iteration the input data which is a matrix of shape (batch_size, 4) is multiplied by the hidden layer weights (feed forward phase). Thus h1 activation is dependent on all samples. The loss is also computed on a per batch_size basis. The output layer has a shape (batch_size, 1). Given that in the forward phase all the batch samples affected the values of the weights, the same is true for backdrop and gradient updates.
When one is dealing with text, often the problem is specified as predicting a specific label from a sequence of words. This is modelled as a shape of (batch_size, sequence_length, word_index). Lets take a very basic example:
from tensorflow import keras
from tensorflow.keras.layers import *
from tensorflow.keras.models import Model
sequence_length = 80
emb_vec_size = 100
vocab_size = 10_000
def make_model():
inp = Input(shape=(sequence_length, 1))
emb = Embedding(vocab_size, emb_vec_size)(inp)
emb = Reshape((sequence_length, emb_vec_size))(emb)
h1 = Dense(64)(emb)
recurrent = LSTM(32)(h1)
output = Dense(1)(recurrent)
model = Model(inp, output)
model.compile('adam', 'mse')
return model
model = make_model()
model.summary()
You can copy and paste this into colab and see the summary.
What this example is doing is:
Transform a sequence of word indices into a sequence of word embedding vectors.
Applying a Dense layer called h1 to all the batches (and all the elements in the sequence); this layer reduces the dimensions of the embedding vector. It is not a typical element of a network to process text (in isolation). But this seemed to match your question.
Using a recurrent layer to reduce the sequence into a single vector per example.
Predicting a single label from the "sentence" vector.
If I get the problem correctly you can reuse layers or even models inside another model.
Example with a Dense layer. Let's say you have 10 Inputs
import tensorflow as tf
from tensorflow.keras.layers import Input, Dense
from tensorflow.keras.models import Model
# defining 10 inputs in a List with (X,) shape
inputs = [Input(shape = (X,),name='input_{}'.format(k)) for k in
range(10)]
# defining a common Dense layer
D = Dense(64, name='one_layer_to_rule_them_all')
nets = [D(inp) for inp in inputs]
model = Model(inputs = inputs, outputs = nets)
model.compile(optimizer='adam', loss='categorical_crossentropy')
This code is not going to work if the inputs have different shapes. The first call to D defines its properties. In this example, outputs are set directly to nets. But of course you can concatenate, stack, or whatever you want.
Now if you have some trainable model you can use it instead of the D:
import tensorflow as tf
from tensorflow.keras.layers import Input, Dense
from tensorflow.keras.models import Model
# defining 10 inputs in a List with (X,) shape
inputs = [Input(shape = (X,),name='input_{}'.format(k)) for k in
range(10)]
# defining a shared model with the same weights for all inputs
nets = [special_model(inp) for inp in inputs]
model = Model(inputs = inputs, outputs = nets)
model.compile(optimizer='adam', loss='categorical_crossentropy')
The weights of this model are shared among all inputs.

Make fixed timestep length LSTM Keras model free timestep length

I have a Keras LSTM multitask model that performs two tasks. One is a sequence tagging task (so I predict a label per token). The other is a global classification task over the whole sequence using a CNN that is stacked on the hidden states of the LSTM.
In my setup (don't ask why) I only need the CNN task during training, but the labels it predicts have no use on the final product. So, on Keras, one can train a LSTM model without especifiying the input sequence lenght. like this:
l_input = Input(shape=(None,), dtype="int32", name=input_name)
However, if I add the CNN stacked on the LSTM hidden states I need to set a fixed sequence length for the model.
l_input = Input(shape=(timesteps_size,), dtype="int32", name=input_name)
The problem is that once I have trained the model with a fixed timestep_size I can no longer use it to predict longer sequences.
In other frameworks this is not a problem. But in Keras, I cannot get rid of the CNN and change the expected input shape of the model once it has been trained.
Here is a simplified version of the model
l_input = Input(shape=(timesteps_size,), dtype="int32")
l_embs = Embedding(len(input.keys()), 100)(l_input)
l_blstm = Bidirectional(GRU(300, return_sequences=True))(l_embs)
# Sequential output
l_out1 = TimeDistributed(Dense(len(labels.keys()),
activation="softmax"))(l_blstm)
# Global output
conv1 = Conv1D( filters=5 , kernel_size=10 )( l_embs )
conv1 = Flatten()(MaxPooling1D(pool_size=2)( conv1 ))
conv2 = Conv1D( filters=5 , kernel_size=8 )( l_embs )
conv2 = Flatten()(MaxPooling1D(pool_size=2)( conv2 ))
conv = Concatenate()( [conv1,conv2] )
conv = Dense(50, activation="relu")(conv)
l_out2 = Dense( len(global_labels.keys()) ,activation='softmax')(conv)
model = Model(input=input, output=[l_out1, l_out2])
optimizer = Adam()
model.compile(optimizer=optimizer,
loss="categorical_crossentropy",
metrics=["accuracy"])
I would like to know if anyone here has faced this issue, and if there are any solutions to delete layers from a model after training and, more important, how to reshape input layer sizes after training.
Thanks
Variable timesteps length makes a problem not because of using convolution layers (actually the good thing about convolution layers is that they do not depend on the input size). Rather, using Flatten layers cause the problem here since they need an input with specified size. Instead, you can use Global Pooling layers. Further, I think stacking convolution and pooling layers on top of each other might give a better result instead of using two separate convolution layers and merging them (although this depends on the specific problem and dataset you are working on). So considering these two points it might be better to write your model like this:
# Global output
conv1 = Conv1D(filters=16, kernel_size=5)(l_embs)
conv1 = MaxPooling1D(pool_size=2)(conv1)
conv2 = Conv1D(filters=32, kernel_size=5)(conv1)
conv2 = MaxPooling1D(pool_size=2)(conv2)
gpool = GlobalAveragePooling1D()(conv2)
x = Dense(50, activation="relu")(gpool)
l_out2 = Dense(len(global_labels.keys()), activation='softmax')(x)
model = Model(inputs=l_input, outputs=[l_out1, l_out2])
You may need to tune the number of conv+maxpool layers, number of filters, kernel size and even add dropout or batch normalization layers.
As a side note, using TimeDistributed on a Dense layer is redundant as the Dense layer is applied on the last axis.

Constructing a keras model

I don't understand what's happening in this code:
def construct_model(use_imagenet=True):
# line 1: how do we keep all layers of this model ?
model = keras.applications.InceptionV3(include_top=False, input_shape=(IMG_SIZE, IMG_SIZE, 3),
weights='imagenet' if use_imagenet else None) # line 1: how do we keep all layers of this model ?
new_output = keras.layers.GlobalAveragePooling2D()(model.output)
new_output = keras.layers.Dense(N_CLASSES, activation='softmax')(new_output)
model = keras.engine.training.Model(model.inputs, new_output)
return model
Specifically, my confusion is, when we call the last constructor
model = keras.engine.training.Model(model.inputs, new_output)
we specify input layer and output layer, but how does it know we want all the other layers to stay?
In other words, we append the new_output layer to the pre-trained model we load in line 1, that is the new_output layer, and then in the final constructor (final line), we just create and return a model with a specified input and output layers, but how does it know what other layers we want in between?
Side question 1): What is the difference between keras.engine.training.Model and keras.models.Model?
Side question 2): What exactly happens when we do new_layer = keras.layers.Dense(...)(prev_layer)? Does the () operation return new layer, what does it do exactly?
This model was created using the Functional API Model
Basically it works like this (perhaps if you go to the "side question 2" below before reading this it may get clearer):
You have an input tensor (you can see it as "input data" too)
You create (or reuse) a layer
You pass the input tensor to a layer (you "call" a layer with an input)
You get an output tensor
You keep working with these tensors until you have created the entire graph.
But this hasn't created a "model" yet. (One you can train and use other things).
All you have is a graph telling which tensors go where.
To create a model, you define it's start end end points.
In the example.
They take an existing model: model = keras.applications.InceptionV3(...)
They want to expand this model, so they get its output tensor: model.output
They pass this tensor as the input of a GlobalAveragePooling2D layer
They get this layer's output tensor as new_output
They pass this as input to yet another layer: Dense(N_CLASSES, ....)
And get its output as new_output (this var was replaced as they are not interested in keeping its old value...)
But, as it works with the functional API, we don't have a model yet, only a graph. In order to create a model, we use Model defining the input tensor and the output tensor:
new_model = Model(old_model.inputs, new_output)
Now you have your model.
If you use it in another var, as I did (new_model), the old model will still exist in model. And these models are sharing the same layers, in a way that whenever you train one of them, the other gets updated as well.
Question: how does it know what other layers we want in between?
When you do:
outputTensor = SomeLayer(...)(inputTensor)
you have a connection between the input and output. (Keras will use the inner tensorflow mechanism and add these tensors and nodes to the graph). The output tensor cannot exist without the input. The entire InceptionV3 model is connected from start to end. Its input tensor goes through all the layers to yield an ouptut tensor. There is only one possible way for the data to follow, and the graph is the way.
When you get the output of this model and use it to get further outputs, all your new outputs are connected to this, and thus to the first input of the model.
Probably the attribute _keras_history that is added to the tensors is closely related to how it tracks the graph.
So, doing Model(old_model.inputs, new_output) will naturally follow the only way possible: the graph.
If you try doing this with tensors that are not connected, you will get an error.
Side question 1
Prefer to import from "keras.models". Basically, this module will import from the other module:
https://github.com/keras-team/keras/blob/master/keras/models.py
Notice that the file keras/models.py imports Model from keras.engine.training. So, it's the same thing.
Side question 2
It's not new_layer = keras.layers.Dense(...)(prev_layer).
It is output_tensor = keras.layers.Dense(...)(input_tensor).
You're doing two things in the same line:
Creating a layer - with keras.layers.Dense(...)
Calling the layer with an input tensor to get an output tensor
If you wanted to use the same layer with different inputs:
denseLayer = keras.layers.Dense(...) #creating a layer
output1 = denseLayer(input1) #calling a layer with an input and getting an output
output2 = denseLayer(input2) #calling the same layer on another input
output3 = denseLayer(input3) #again
Bonus - Creating a functional model that is equal to a sequential model
If you create this sequential model:
model = Sequential()
model.add(Layer1(...., input_shape=some_shape))
model.add(Layer2(...))
model.add(Layer3(...))
You're doing exactly the same as:
inputTensor = Input(some_shape)
outputTensor = Layer1(...)(inputTensor)
outputTensor = Layer2(...)(outputTensor)
outputTensor = Layer3(...)(outputTensor)
model = Model(inputTensor,outputTensor)
What is the difference?
Well, functional API models are totally free to be build anyway you want. You can create branches:
out1 = Layer1(..)(inputTensor)
out2 = Layer2(..)(inputTensor)
You can join tensors:
joinedOut = Concatenate()([out1,out2])
With this, you can create anything you want with all kinds of fancy stuff, branches, gates, concatenations, additions, etc., which you can't do with a sequential model.
In fact, a Sequential model is also a Model, but created for a quick use in models without branches.
There's this way of building a model from a pretrained one that you may build upon.
See https://keras.io/applications/#fine-tune-inceptionv3-on-a-new-set-of-classes:
base_model = InceptionV3(weights='imagenet', include_top=False)
x = base_model.output
x = GlobalAveragePooling2D()(x)
x = Dense(1024, activation='relu')(x)
predictions = Dense(200, activation='softmax')(x)
model = Model(inputs=base_model.input, outputs=predictions)
for layer in base_model.layers:
layer.trainable = False
model.compile(optimizer='rmsprop', loss='categorical_crossentropy')
Each time a layer is added by an op like "x=Dense(...", information about the computational graph is updated. You can type this interactively to see what it contains:
x.graph.__dict__
You can see there's all kinds of attributes, including about previous and next layers. These are internal implementation details and possibly change over time.

Categories