Whisper module cannot accept my AudioData - python

I attempted to use the SpeechRecognition library to decode Audio into Text. I used the recognize_whisper function to transmit the audio into text. However, I keep getting an error.
CODE:
import speech_recognition as sr
import pyttsx3
import whisper
model = whisper.load_model("base")
r = sr.Recognizer()
with sr.Microphone() as source2:
audio2 = r.listen(source2)
result = r.recognize_whisper(audio2)
print(result["text"])
ERROR:
`Traceback (most recent call last):
File "C:\Users\Ariel\AppData\Local\Programs\Python\Python39\lib\site-packages\whisper\audio.py", line 42, in load_audio
ffmpeg.input(file, threads=0)
File "C:\Users\Ariel\AppData\Local\Programs\Python\Python39\lib\site-packages\ffmpeg_run.py", line 325, in run
raise Error('ffmpeg', out, err)
ffmpeg._run.Error: ffmpeg error (see stderr output for detail)
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "c:\Users\Ariel\Documents\ShoebotFolder\prac.py", line 11, in
result = r.recognize_whisper(audio2)
File "C:\Users\Ariel\AppData\Local\Programs\Python\Python39\lib\site-packages\speech_recognition_init_.py", line 1697, in recognize_whisper
result = self.whisper_model[model].transcribe(
File "C:\Users\Ariel\AppData\Local\Programs\Python\Python39\lib\site-packages\whisper\transcribe.py", line 85, in transcribe
mel = log_mel_spectrogram(audio)
File "C:\Users\Ariel\AppData\Local\Programs\Python\Python39\lib\site-packages\whisper\audio.py", line 111, in log_mel_spectrogram
audio = load_audio(audio)
File "C:\Users\Ariel\AppData\Local\Programs\Python\Python39\lib\site-packages\whisper\audio.py", line 47, in load_audio
raise RuntimeError(f"Failed to load audio: {e.stderr.decode()}") from e
RuntimeError: Failed to load audio: ffmpeg version 5.1.2-essentials_build-www.gyan.dev Copyright (c) 2000-2022 the FFmpeg developers
built with gcc 12.1.0 (Rev2, Built by MSYS2 project)
configuration: --enable-gpl --enable-version3 --enable-static --disable-w32threads --disable-autodetect --enable-fontconfig --enable-iconv --enable-gnutls --enable-libxml2 --enable-gmp --enable-lzma --enable-zlib --enable-libsrt --enable-libssh --enable-libzmq --enable-avisynth --enable-sdl2 --enable-libwebp --enable-libx264 --enable-libx265 --enable-libxvid --enable-libaom --enable-libopenjpeg --enable-libvpx --enable-libass --enable-libfreetype --enable-libfribidi --enable-libvidstab --enable-libvmaf --enable-libzimg --enable-amf --enable-cuda-llvm --enable-cuvid --enable-ffnvcodec --enable-nvdec --enable-nvenc --enable-d3d11va --enable-dxva2 --enable-libmfx --enable-libgme --enable-libopenmpt --enable-libopencore-amrwb --enable-libmp3lame --enable-libtheora --enable-libvo-amrwbenc --enable-libgsm --enable-libopencore-amrnb
--enable-libopus --enable-libspeex --enable-libvorbis --enable-librubberband
libavutil 57. 28.100 / 57. 28.100
libavcodec 59. 37.100 / 59. 37.100
libavformat 59. 27.100 / 59. 27.100
libavdevice 59. 7.100 / 59. 7.100
libavfilter 8. 44.100 / 8. 44.100
libswscale 6. 7.100 / 6. 7.100
libswresample 4. 7.100 / 4. 7.100
libpostproc 56. 6.100 / 56. 6.100
C:\Users\Ariel\AppData\Local\Temp\tmpfvgplzyu.wav: Permission denied`
Thank you in advance.
For some reason the recognize_whisper function cannot take the AudioData as an input since the error comes from line 11 (result = r.recognize_whisper(audio2)).

Related

ERROR Executor: Exception in task 0.0 in stage 0.0 (TID 0) org.apache.spark.SparkException: Python worker failed to connect back

I was trying to read and count the number of files in README.md while I got this error.
I just installed Spark and all the environment variables are set accordingly.
Python 3.8 is already installed and set as PATH variable.
What possibly be the reason for this error ?
This can't be some permission error since the Spark folder has all the permissions required for execution.
ERROR -->
>>> rdd = sc.textFile("README.md")
>>> rdd.count()
Python was not found; run without arguments to install from the Microsoft Store, or disable this shortcut from Settings > Manage App Execution Aliases.
22/11/22 12:17:36 ERROR Executor: Exception in task 0.0 in stage 0.0 (TID 0)/ 2]
org.apache.spark.SparkException: Python worker failed to connect back.
at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:189)
at org.apache.spark.api.python.PythonWorkerFactory.create(PythonWorkerFactory.scala:109)
at org.apache.spark.SparkEnv.createPythonWorker(SparkEnv.scala:124)
at org.apache.spark.api.python.BasePythonRunner.compute(PythonRunner.scala:164)
at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:65)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:365)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:329)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:136)
at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:548)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1504)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:551)
at java.base/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1144)
at java.base/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:642)
at java.base/java.lang.Thread.run(Thread.java:1589)
Caused by: java.net.SocketTimeoutException: Accept timed out
at java.base/sun.nio.ch.NioSocketImpl.timedAccept(NioSocketImpl.java:694)
at java.base/sun.nio.ch.NioSocketImpl.accept(NioSocketImpl.java:738)
at java.base/java.net.ServerSocket.implAccept(ServerSocket.java:690)
at java.base/java.net.ServerSocket.platformImplAccept(ServerSocket.java:655)
at java.base/java.net.ServerSocket.implAccept(ServerSocket.java:631)
at java.base/java.net.ServerSocket.implAccept(ServerSocket.java:588)
at java.base/java.net.ServerSocket.accept(ServerSocket.java:546)
at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:176)
... 14 more
22/11/22 12:17:36 WARN TaskSetManager: Lost task 0.0 in stage 0.0 (TID 0) (ANAY-PC executor driver): org.apache.spark.SparkException: Python worker failed to connect back.
at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:189)
at org.apache.spark.api.python.PythonWorkerFactory.create(PythonWorkerFactory.scala:109)
at org.apache.spark.SparkEnv.createPythonWorker(SparkEnv.scala:124)
at org.apache.spark.api.python.BasePythonRunner.compute(PythonRunner.scala:164)
at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:65)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:365)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:329)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:136)
at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:548)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1504)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:551)
at java.base/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1144)
at java.base/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:642)
at java.base/java.lang.Thread.run(Thread.java:1589)
Caused by: java.net.SocketTimeoutException: Accept timed out
at java.base/sun.nio.ch.NioSocketImpl.timedAccept(NioSocketImpl.java:694)
at java.base/sun.nio.ch.NioSocketImpl.accept(NioSocketImpl.java:738)
at java.base/java.net.ServerSocket.implAccept(ServerSocket.java:690)
at java.base/java.net.ServerSocket.platformImplAccept(ServerSocket.java:655)
at java.base/java.net.ServerSocket.implAccept(ServerSocket.java:631)
at java.base/java.net.ServerSocket.implAccept(ServerSocket.java:588)
at java.base/java.net.ServerSocket.accept(ServerSocket.java:546)
at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:176)
... 14 more
22/11/22 12:17:36 ERROR TaskSetManager: Task 0 in stage 0.0 failed 1 times; aborting job
Python was not found; run without arguments to install from the Microsoft Store, or disable this shortcut from Settings > Manage App Execution Aliases.
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "C:\Spark\python\pyspark\rdd.py", line 1521, in count
return self.mapPartitions(lambda i: [sum(1 for _ in i)]).sum()
File "C:\Spark\python\pyspark\rdd.py", line 1508, in sum
return self.mapPartitions(lambda x: [sum(x)]).fold( # type: ignore[return-value]
File "C:\Spark\python\pyspark\rdd.py", line 1336, in fold
vals = self.mapPartitions(func).collect()
File "C:\Spark\python\pyspark\rdd.py", line 1197, in collect
sock_info = self.ctx._jvm.PythonRDD.collectAndServe(self._jrdd.rdd())
File "C:\Spark\python\lib\py4j-0.10.9.5-src.zip\py4j\java_gateway.py", line 1321, in __call__
File "C:\Spark\python\pyspark\sql\utils.py", line 190, in deco
return f(*a, **kw)
File "C:\Spark\python\lib\py4j-0.10.9.5-src.zip\py4j\protocol.py", line 326, in get_return_value
py4j.protocol.Py4JJavaError: An error occurred while calling z:org.apache.spark.api.python.PythonRDD.collectAndServe.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 0.0 failed 1 times, most recent failure: Lost task 0.0 in stage 0.0 (TID 0) (ANAY-PC executor driver): org.apache.spark.SparkException: Python worker failed to connect back.
at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:189)
at org.apache.spark.api.python.PythonWorkerFactory.create(PythonWorkerFactory.scala:109)
at org.apache.spark.SparkEnv.createPythonWorker(SparkEnv.scala:124)
at org.apache.spark.api.python.BasePythonRunner.compute(PythonRunner.scala:164)
at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:65)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:365)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:329)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:136)
at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:548)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1504)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:551)
at java.base/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1144)
at java.base/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:642)
at java.base/java.lang.Thread.run(Thread.java:1589)
Caused by: java.net.SocketTimeoutException: Accept timed out
at java.base/sun.nio.ch.NioSocketImpl.timedAccept(NioSocketImpl.java:694)
at java.base/sun.nio.ch.NioSocketImpl.accept(NioSocketImpl.java:738)
at java.base/java.net.ServerSocket.implAccept(ServerSocket.java:690)
at java.base/java.net.ServerSocket.platformImplAccept(ServerSocket.java:655)
at java.base/java.net.ServerSocket.implAccept(ServerSocket.java:631)
at java.base/java.net.ServerSocket.implAccept(ServerSocket.java:588)
at java.base/java.net.ServerSocket.accept(ServerSocket.java:546)
at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:176)
... 14 more
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.failJobAndIndependentStages(DAGScheduler.scala:2672)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2(DAGScheduler.scala:2608)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2$adapted(DAGScheduler.scala:2607)
at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62)
at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:2607)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1(DAGScheduler.scala:1182)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1$adapted(DAGScheduler.scala:1182)
at scala.Option.foreach(Option.scala:407)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:1182)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2860)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2802)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2791)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:952)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2228)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2249)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2268)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2293)
at org.apache.spark.rdd.RDD.$anonfun$collect$1(RDD.scala:1021)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:406)
at org.apache.spark.rdd.RDD.collect(RDD.scala:1020)
at org.apache.spark.api.python.PythonRDD$.collectAndServe(PythonRDD.scala:180)
at org.apache.spark.api.python.PythonRDD.collectAndServe(PythonRDD.scala)
at java.base/jdk.internal.reflect.DirectMethodHandleAccessor.invoke(DirectMethodHandleAccessor.java:104)
at java.base/java.lang.reflect.Method.invoke(Method.java:578)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.ClientServerConnection.waitForCommands(ClientServerConnection.java:182)
at py4j.ClientServerConnection.run(ClientServerConnection.java:106)
at java.base/java.lang.Thread.run(Thread.java:1589)
Caused by: org.apache.spark.SparkException: Python worker failed to connect back.
at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:189)
at org.apache.spark.api.python.PythonWorkerFactory.create(PythonWorkerFactory.scala:109)
at org.apache.spark.SparkEnv.createPythonWorker(SparkEnv.scala:124)
at org.apache.spark.api.python.BasePythonRunner.compute(PythonRunner.scala:164)
at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:65)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:365)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:329)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:136)
at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:548)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1504)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:551)
at java.base/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1144)
at java.base/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:642)
... 1 more
Caused by: java.net.SocketTimeoutException: Accept timed out
at java.base/sun.nio.ch.NioSocketImpl.timedAccept(NioSocketImpl.java:694)
at java.base/sun.nio.ch.NioSocketImpl.accept(NioSocketImpl.java:738)
at java.base/java.net.ServerSocket.implAccept(ServerSocket.java:690)
at java.base/java.net.ServerSocket.platformImplAccept(ServerSocket.java:655)
at java.base/java.net.ServerSocket.implAccept(ServerSocket.java:631)
at java.base/java.net.ServerSocket.implAccept(ServerSocket.java:588)
at java.base/java.net.ServerSocket.accept(ServerSocket.java:546)
at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:176)
... 14 more
>>> 22/11/22 12:17:46 WARN TaskSetManager: Lost task 1.0 in stage 0.0 (TID 1) (ANAY-PC executor driver): TaskKilled (Stage cancelled)
Thanks in advance !

Unable to load native-hadoop library for your platform... using builtin-java classes where applicable (Can´t run a python program using Spark)

Unable to load native-hadoop library for your platform... using built-in-java classes where applicable (Can´t run a python program using Spark). I am trying to run this code just for testing if sparks work:
Code
from pyspark.sql import SparkSession
spark = SparkSession.builder.master("local").appName('sparkdf').getOrCreate()
data = [["node.js", "dbms", "integration"],
["jsp", "SQL", "trigonometry"],
["php", "oracle", "statistics"],
[".net", "db2", "Machine Learning"]]
columns = ["Web Technologies", "Data bases", "Maths"]
dataframe = spark.createDataFrame(data, columns)
dataframe.show()
I think enviroment variables are set up correctly and winutils.exe is located at the Hadoop\bin directory. But i kept getting this error:
Error
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
22/04/26 12:48:44 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Traceback (most recent call last):
File "C:\Users\ldocampo\prueba.py", line 10, in <module>
spark = SparkSession.builder.master("local").appName('sparkdf').getOrCreate()
File "C:\Users\ldocampo\AppData\Local\Programs\Python\Python310\lib\site-packages\pyspark\sql\session.py", line 228, in getOrCreate
sc = SparkContext.getOrCreate(sparkConf)
File "C:\Users\ldocampo\AppData\Local\Programs\Python\Python310\lib\site-packages\pyspark\context.py", line 384, in getOrCreate
SparkContext(conf=conf or SparkConf())
File "C:\Users\ldocampo\AppData\Local\Programs\Python\Python310\lib\site-packages\pyspark\context.py", line 146, in __init__
self._do_init(master, appName, sparkHome, pyFiles, environment, batchSize, serializer,
File "C:\Users\ldocampo\AppData\Local\Programs\Python\Python310\lib\site-packages\pyspark\context.py", line 209, in _do_init
self._jsc = jsc or self._initialize_context(self._conf._jconf)
File "C:\Users\ldocampo\AppData\Local\Programs\Python\Python310\lib\site-packages\pyspark\context.py", line 321, in _initialize_context
return self._jvm.JavaSparkContext(jconf)
File "C:\Users\ldocampo\AppData\Local\Programs\Python\Python310\lib\site-packages\py4j\java_gateway.py", line 1568, in __call__
return_value = get_return_value(
File "C:\Users\ldocampo\AppData\Local\Programs\Python\Python310\lib\site-packages\py4j\protocol.py", line 326, in get_return_value
raise Py4JJavaError(
py4j.protocol.Py4JJavaError: An error occurred while calling None.org.apache.spark.api.java.JavaSparkContext.
: java.lang.IllegalAccessError: class org.apache.spark.storage.StorageUtils$ (in unnamed module #0x51f116b8) cannot access class sun.nio.ch.DirectBuffer (in module java.base) because module java.base does not export sun.nio.ch to unnamed module #0x51f116b8
at org.apache.spark.storage.StorageUtils$.<init>(StorageUtils.scala:213)
at org.apache.spark.storage.StorageUtils$.<clinit>(StorageUtils.scala)
at org.apache.spark.storage.BlockManagerMasterEndpoint.<init>(BlockManagerMasterEndpoint.scala:110)
at org.apache.spark.SparkEnv$.$anonfun$create$9(SparkEnv.scala:348)
at org.apache.spark.SparkEnv$.registerOrLookupEndpoint$1(SparkEnv.scala:287)
at org.apache.spark.SparkEnv$.create(SparkEnv.scala:336)
at org.apache.spark.SparkEnv$.createDriverEnv(SparkEnv.scala:191)
at org.apache.spark.SparkContext.createSparkEnv(SparkContext.scala:277)
at org.apache.spark.SparkContext.<init>(SparkContext.scala:460)
at org.apache.spark.api.java.JavaSparkContext.<init>(JavaSparkContext.scala:58)
at java.base/jdk.internal.reflect.DirectConstructorHandleAccessor.newInstance(DirectConstructorHandleAccessor.java:67)
at java.base/java.lang.reflect.Constructor.newInstanceWithCaller(Constructor.java:499)
at java.base/java.lang.reflect.Constructor.newInstance(Constructor.java:483)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:247)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:238)
at py4j.commands.ConstructorCommand.invokeConstructor(ConstructorCommand.java:80)
at py4j.commands.ConstructorCommand.execute(ConstructorCommand.java:69)
at py4j.ClientServerConnection.waitForCommands(ClientServerConnection.java:182)
at py4j.ClientServerConnection.run(ClientServerConnection.java:106)
at java.base/java.lang.Thread.run(Thread.java:833)

Issue with writing spark stream into Mongodb sink

I am trying to write a datafram into Mongodb sink using foreachbach in Pyspark but getting an error. I am using spark version 2.4.7 and python 3.7. the same code work fine when I tried to write the datafram as batch. I used mongo-spark-connector_2.11:2.4.1
this is the code and the error message:
from pyspark.sql import SparkSession
from pyspark.sql.functions import *
from pyspark.sql.types import *
spark = SparkSession.builder \
.master('local[3]') \
.config('spark.jars.packages', 'org.mongodb.spark:mongo-spark-connector_2.11:2.4.1') \
.config('spark.jars.packages', 'org.apache.spark:spark-sql-kafka-0-10_2.11:2.4.7') \
.getOrCreate()
def mongoSink(df, batch_id):
df.write \
.format('mongo') \
.mode('append') \
.option('spark.mongodb.output.uri', 'mongodb://127.0.0.1:27017/db.cl') \
.save()
schema = StructType([....])
# Reading from Kafka topic
kafka_df = spark.readStream \
.format('kafka') \
.option('kafka.bootstrap.servers', 'localhost:9092') \
.option('subscribe', 'kTopic') \
.option('startingOffsets', 'latest') \
.load()
# Processing code
.
.
.
# Writing to MongoDB
write_df_mongodb = f_df.writeStream \
.format('mongo') \
.foreachBatch(mongoSink) \
.option("checkpointLocation", "chk_dir") \
.outputMode('append') \
.start()
write_df_mongodb.awaitTermination()
Error message:
Py4JJavaError: An error occurred while calling o77.awaitTermination.
: org.apache.spark.sql.streaming.StreamingQueryException: An exception was raised by the Python Proxy. Return Message: Traceback (most recent call last):
File "D:\Spark2-4\python\lib\py4j-0.10.7-src.zip\py4j\java_gateway.py", line 2381, in _call_proxy
return_value = getattr(self.pool[obj_id], method)(*params)
File "D:\Spark2-4\python\pyspark\sql\utils.py", line 191, in call
raise e
File "D:\Spark2-4\python\pyspark\sql\utils.py", line 188, in call
self.func(DataFrame(jdf, self.sql_ctx), batch_id)
File "<ipython-input-5-e9393e49a072>", line 5, in mongoSink
.option('spark.mongodb.output.uri', 'mongodb://127.0.0.1:27017/db.cl') \
File "D:\Spark2-4\python\pyspark\sql\readwriter.py", line 737, in save
self._jwrite.save()
File "D:\Spark2-4\python\lib\py4j-0.10.7-src.zip\py4j\java_gateway.py", line 1257, in __call__
answer, self.gateway_client, self.target_id, self.name)
File "D:\Spark2-4\python\pyspark\sql\utils.py", line 63, in deco
return f(*a, **kw)
File "D:\Spark2-4\python\lib\py4j-0.10.7-src.zip\py4j\protocol.py", line 328, in get_return_value
format(target_id, ".", name), value)
py4j.protocol.Py4JJavaError: An error occurred while calling o83.save.
: java.lang.NoClassDefFoundError: com/mongodb/ConnectionString
at com.mongodb.spark.config.MongoCompanionConfig$$anonfun$4.apply(MongoCompanionConfig.scala:278)
at com.mongodb.spark.config.MongoCompanionConfig$$anonfun$4.apply(MongoCompanionConfig.scala:278)
at scala.util.Try$.apply(Try.scala:192)
at com.mongodb.spark.config.MongoCompanionConfig$class.connectionString(MongoCompanionConfig.scala:278)
at com.mongodb.spark.config.WriteConfig$.connectionString(WriteConfig.scala:37)
at com.mongodb.spark.config.WriteConfig$.apply(WriteConfig.scala:239)
at com.mongodb.spark.config.WriteConfig$.apply(WriteConfig.scala:37)
at com.mongodb.spark.config.MongoCompanionConfig$class.apply(MongoCompanionConfig.scala:124)
at com.mongodb.spark.config.WriteConfig$.apply(WriteConfig.scala:37)
at com.mongodb.spark.config.MongoCompanionConfig$class.apply(MongoCompanionConfig.scala:113)
at com.mongodb.spark.config.WriteConfig$.apply(WriteConfig.scala:37)
at com.mongodb.spark.sql.DefaultSource.createRelation(DefaultSource.scala:64)
at org.apache.spark.sql.execution.datasources.SaveIntoDataSourceCommand.run(SaveIntoDataSourceCommand.scala:45)
at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult$lzycompute(commands.scala:70)
at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult(commands.scala:68)
at org.apache.spark.sql.execution.command.ExecutedCommandExec.doExecute(commands.scala:86)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:131)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:127)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:155)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:152)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:127)
at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:83)
at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:81)
at org.apache.spark.sql.DataFrameWriter$$anonfun$runCommand$1.apply(DataFrameWriter.scala:696)
at org.apache.spark.sql.DataFrameWriter$$anonfun$runCommand$1.apply(DataFrameWriter.scala:696)
at org.apache.spark.sql.execution.SQLExecution$$anonfun$withNewExecutionId$1.apply(SQLExecution.scala:80)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:127)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:75)
at org.apache.spark.sql.DataFrameWriter.runCommand(DataFrameWriter.scala:696)
at org.apache.spark.sql.DataFrameWriter.saveToV1Source(DataFrameWriter.scala:305)
at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:291)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source)
at java.lang.reflect.Method.invoke(Unknown Source)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Unknown Source)
Caused by: java.lang.ClassNotFoundException: com.mongodb.ConnectionString
at java.net.URLClassLoader.findClass(Unknown Source)
at java.lang.ClassLoader.loadClass(Unknown Source)
at sun.misc.Launcher$AppClassLoader.loadClass(Unknown Source)
at java.lang.ClassLoader.loadClass(Unknown Source)
... 43 more
Pleas any help
Thank you,

PySpark : java.lang.NoClassDefFoundError: Could not initialize class org.apache.spark.sql.kafka010.KafkaDataConsumer$

Am trying to fetch the messages from Kafka Topic and Print it in the console. Am able to fetch the messages through reader successfully, but when i try to print it in the console through writer, am getting below error,
java.lang.NoClassDefFoundError: Could not initialize class org.apache.spark.sql.kafka010.KafkaDataConsumer$
from pyspark.sql import SparkSession, Row
from pyspark.streaming import StreamingContext
spark = SparkSession.builder\
.appName("Kafka Spark")\
.config("spark.jars", "/C:/Hadoop/Spark/spark-3.0.0-preview2-bin-hadoop2.7/jars/spark-sql-kafka-0-10_2.12-3.0.0-preview2.jar")\
.config("spark.executor.extraClassPath", "/C:/Hadoop/Spark/spark-3.0.0-preview2-bin-hadoop2.7/jars/spark-sql-kafka-0-10_2.12-3.0.0-preview2.jar")\
.config("spark.executor.extraLibrary", "/C:/Hadoop/Spark/spark-3.0.0-preview2-bin-hadoop2.7/jars/spark-sql-kafka-0-10_2.12-3.0.0-preview2.jar")\
.config("spark.driver.extraClassPath", "/C:/Hadoop/Spark/spark-3.0.0-preview2-bin-hadoop2.7/jars/spark-sql-kafka-0-10_2.12-3.0.0-preview2.jar")\
.getOrCreate()
dataFrameRead = spark\
.readStream\
.format("kafka")\
.option("kafka.bootstrap.servers", "localhost:9092")\
.option("subscribe", "Jim_Topic")\
.load()\
.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")\
.writeStream\
.format("console")\
.trigger(continuous="1 second")\
.start()
dataFrameRead.awaitTermination()```
Complete error,
```Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
20/06/13 21:23:03 ERROR Utils: Aborting task
java.lang.NoClassDefFoundError: Could not initialize class org.apache.spark.sql.kafka010.KafkaDataConsumer$
at org.apache.spark.sql.kafka010.KafkaContinuousPartitionReader.<init>(KafkaContinuousStream.scala:195)
at org.apache.spark.sql.kafka010.KafkaContinuousReaderFactory$.createReader(KafkaContinuousStream.scala:174)
at org.apache.spark.sql.execution.streaming.continuous.ContinuousDataSourceRDD.compute(ContinuousDataSourceRDD.scala:83)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:349)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:313)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:349)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:313)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.sql.execution.streaming.continuous.ContinuousWriteRDD.$anonfun$compute$1(ContinuousWriteRDD.scala:53)
at org.apache.spark.sql.execution.streaming.continuous.ContinuousWriteRDD$$Lambda$2098/1825151985.apply$mcV$sp(Unknown Source)
at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
at org.apache.spark.util.Utils$.tryWithSafeFinallyAndFailureCallbacks(Utils.scala:1411)
at org.apache.spark.sql.execution.streaming.continuous.ContinuousWriteRDD.compute(ContinuousWriteRDD.scala:84)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:349)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:313)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:127)
at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:441)
at org.apache.spark.executor.Executor$TaskRunner$$Lambda$2019/307923369.apply(Unknown Source)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1377)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:444)
at java.util.concurrent.ThreadPoolExecutor.runWorker(Unknown Source)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(Unknown Source)
at java.lang.Thread.run(Unknown Source)
20/06/13 21:23:03 ERROR Utils: Aborting task
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "C:/Users/Macaulay/PycharmProjects/Spark/KafkaSpark/KafkaTopic2CSV.py", line 39, in <module>
dataFrameRead.awaitTermination()
File "C:/Hadoop/Spark/spark-3.0.0-preview2-bin-hadoop2.7\python\pyspark\sql\streaming.py", line 103, in awaitTermination
return self._jsq.awaitTermination()
File "C:\Hadoop\Spark\spark-3.0.0-preview2-bin-hadoop2.7\python\lib\py4j-0.10.8.1-src.zip\py4j\java_gateway.py", line 1285, in __call__
File "C:/Hadoop/Spark/spark-3.0.0-preview2-bin-hadoop2.7\python\pyspark\sql\utils.py", line 102, in deco
raise converted
pyspark.sql.utils.StreamingQueryException: Writing job aborted.
=== Streaming Query ===
Identifier: [id = 7f1ca9c7-6345-46a2-9c94-cf22c31c30ff, runId = f540fad6-8797-489e-8fd3-00581282689a]
Current Committed Offsets: {}
Current Available Offsets: {}
Current State: ACTIVE
Thread State: RUNNABLE
Logical Plan:
WriteToContinuousDataSource ConsoleWriter[numRows=20, truncate=true]
+- Project [cast(key#7 as string) AS key#21, cast(value#8 as string) AS value#22]
+- StreamingDataSourceV2Relation [key#7, value#8, topic#9, partition#10, offset#11L, timestamp#12, timestampType#13], org.apache.spark.sql.kafka010.KafkaSourceProvider$KafkaScan#6d216413, KafkaSource[Subscribe[Jim_Topic]]
Process finished with exit code 1```
it missing the jar commons-pool2-2.11.1.jar, try to add it

Spark not executing tasks

I cant get the pyspark to work. I added the necessary paths to the system variable SPARK_HOME. I extracted data from my mongodb database and simply converted the obtained list to dataframe. Then, I want to see the dataframe through show() (the last line of code) which gives the following error. My hadoop version is 2.7, pyspark and local spark both are 2.4.1, python 3.6. Java version is 8.
import os
import sys
spark_path = r"C:\Tools\spark-2.4.0-bin-hadoop2.7" # spark installed folder
os.environ['SPARK_HOME'] = spark_path
sys.path.insert(0, spark_path + "/bin")
sys.path.insert(0, spark_path + "/python/pyspark/")
sys.path.insert(0, spark_path + "/python/lib/pyspark.zip")
sys.path.insert(0, spark_path + "/python/lib/py4j-0.10.7-src.zip")
import pymongo
from pyspark import SparkContext
import pandas as pd
import pyspark
from nltk.corpus import stopwords
import re as re
from pyspark.ml.feature import CountVectorizer , IDF
from pyspark.mllib.linalg import Vector, Vectors
from pyspark.mllib.clustering import LDA, LDAModel
from pyspark.sql.types import StringType
sc = SparkContext(appName = "app")
# print(sc.version)
from pyspark.sql import SQLContext
sqlContext = SQLContext(sc)
myclient = pymongo.MongoClient("mongodb://localhost:27017/")
mydb = myclient["The_Rival_Insights"]
mycol = mydb["twitter"]
def getText(keyword):
myquery = {'keyword': keyword}
for x in mycol.find(myquery): #x is a dictionary
a=x["metadata"]
return a
text=[]
metadata = getText("uber") #list is returned
for b in range(len(metadata)):
text.append(str(metadata[b]["text"]))
data = sqlContext.createDataFrame(text,StringType()).show()
The following error occurs:
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
[Stage 0:> (0 + 1) / 1]2019-04-07 17:50:08 ERROR Executor:91 - Exception in task 0.0 in stage 0.0 (TID 0)
java.net.SocketException: Connection reset
at java.net.SocketInputStream.read(SocketInputStream.java:210)
at java.net.SocketInputStream.read(SocketInputStream.java:141)
at java.io.BufferedInputStream.fill(BufferedInputStream.java:246)
at java.io.BufferedInputStream.read(BufferedInputStream.java:265)
at java.io.DataInputStream.readInt(DataInputStream.java:387)
at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:578)
at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:571)
at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:406)
at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:440)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:255)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:247)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:836)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:836)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:121)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:402)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:408)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
2019-04-07 17:50:08 WARN TaskSetManager:66 - Lost task 0.0 in stage 0.0 (TID 0, localhost, executor driver): java.net.SocketException: Connection reset
at java.net.SocketInputStream.read(SocketInputStream.java:210)
at java.net.SocketInputStream.read(SocketInputStream.java:141)
at java.io.BufferedInputStream.fill(BufferedInputStream.java:246)
at java.io.BufferedInputStream.read(BufferedInputStream.java:265)
at java.io.DataInputStream.readInt(DataInputStream.java:387)
at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:578)
at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:571)
at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:406)
at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:440)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:255)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:247)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:836)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:836)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:121)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:402)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:408)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
2019-04-07 17:50:08 ERROR TaskSetManager:70 - Task 0 in stage 0.0 failed 1 times; aborting job
Traceback (most recent call last):
File "C:/Users/Mujtaba Faizi/Documents/Twitter-Sentiment-Analysis-Using-Spark-Streaming-And-Kafka-master/Analysis/sparkml_testing.py", line 41, in <module>
data = sqlContext.createDataFrame(text,StringType()).show()
File "F:\Softwares\Anaconda\lib\site-packages\pyspark\sql\dataframe.py", line 378, in show
print(self._jdf.showString(n, 20, vertical))
File "F:\Softwares\Anaconda\lib\site-packages\py4j\java_gateway.py", line 1257, in __call__
answer, self.gateway_client, self.target_id, self.name)
File "F:\Softwares\Anaconda\lib\site-packages\pyspark\sql\utils.py", line 63, in deco
return f(*a, **kw)
File "F:\Softwares\Anaconda\lib\site-packages\py4j\protocol.py", line 328, in get_return_value
format(target_id, ".", name), value)
py4j.protocol.Py4JJavaError: An error occurred while calling o37.showString.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 0.0 failed 1 times, most recent failure: Lost task 0.0 in stage 0.0 (TID 0, localhost, executor driver): java.net.SocketException: Connection reset
at java.net.SocketInputStream.read(SocketInputStream.java:210)
at java.net.SocketInputStream.read(SocketInputStream.java:141)
at java.io.BufferedInputStream.fill(BufferedInputStream.java:246)
at java.io.BufferedInputStream.read(BufferedInputStream.java:265)
at java.io.DataInputStream.readInt(DataInputStream.java:387)
at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:578)
at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:571)
at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:406)
at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:440)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:255)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:247)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:836)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:836)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:121)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:402)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:408)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1887)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1875)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1874)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1874)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:926)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:926)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:926)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2108)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2057)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2046)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:737)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2061)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2082)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2101)
at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:365)
at org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:38)
at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$collectFromPlan(Dataset.scala:3384)
at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2545)
at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2545)
at org.apache.spark.sql.Dataset$$anonfun$53.apply(Dataset.scala:3365)
at org.apache.spark.sql.execution.SQLExecution$$anonfun$withNewExecutionId$1.apply(SQLExecution.scala:78)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:125)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:73)
at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3364)
at org.apache.spark.sql.Dataset.head(Dataset.scala:2545)
at org.apache.spark.sql.Dataset.take(Dataset.scala:2759)
at org.apache.spark.sql.Dataset.getRows(Dataset.scala:255)
at org.apache.spark.sql.Dataset.showString(Dataset.scala:292)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Thread.java:748)
Caused by: java.net.SocketException: Connection reset
at java.net.SocketInputStream.read(SocketInputStream.java:210)
at java.net.SocketInputStream.read(SocketInputStream.java:141)
at java.io.BufferedInputStream.fill(BufferedInputStream.java:246)
at java.io.BufferedInputStream.read(BufferedInputStream.java:265)
at java.io.DataInputStream.readInt(DataInputStream.java:387)
at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:578)
at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:571)
at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:406)
at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:440)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:255)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:247)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:836)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:836)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:121)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:402)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:408)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
... 1 more
SUCCESS: The process with PID 152396 (child process of PID 151964) has been terminated.
SUCCESS: The process with PID 151964 (child process of PID 151992) has been terminated.
SUCCESS: The process with PID 151992 (child process of PID 151592) has been terminated.
Process finished with exit code 1
Also, I get another error when I add the code in the end (whilst removing the show() function):
reviews = data.rdd.map(lambda x : x[0]).filter(lambda x: x is not None)
StopWords = stopwords.words("english")
tokens = reviews \
.map( lambda document: document.strip().lower()) \
.map( lambda document: re.split(" ", document)) \
.map( lambda word: [x for x in word if x.isalpha()]) \
.map( lambda word: [x for x in word if len(x) > 3] ) \
.map( lambda word: [x for x in word if x not in StopWords]) \
.zipWithIndex()
Clipped Error Messages:
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
[Stage 0:> (0 + 4) / 4]2019-04-07 19:04:30 ERROR PythonRunner:91 - Python worker exited unexpectedly (crashed)
org.apache.spark.api.python.PythonException: Traceback (most recent call last):
File "C:\Tools\spark-2.4.0-bin-hadoop2.7\python\lib\pyspark.zip\pyspark\worker.py", line 267, in main
Exception: Python in worker has different version 2.7 than that in driver 3.6, PySpark cannot run with different minor versions.Please check environment variables PYSPARK_PYTHON and PYSPARK_DRIVER_PYTHON are correctly set.
at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.handlePythonException(PythonRunner.scala:452)
at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:588)
at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:571)
at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:406)
at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
at scala.collection.Iterator$class.foreach(Iterator.scala:891)
at org.apache.spark.InterruptibleIterator.foreach(InterruptibleIterator.scala:28)
at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:59)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:104)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:48)
at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:310)
at org.apache.spark.InterruptibleIterator.to(InterruptibleIterator.scala:28)
at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:302)
at org.apache.spark.InterruptibleIterator.toBuffer(InterruptibleIterator.scala:28)
at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:289)
at org.apache.spark.InterruptibleIterator.toArray(InterruptibleIterator.scala:28)
at org.apache.spark.rdd.RDD$$anonfun$collect$1$$anonfun$13.apply(RDD.scala:945)
at org.apache.spark.rdd.RDD$$anonfun$collect$1$$anonfun$13.apply(RDD.scala:945)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2101)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2101)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:121)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:402)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:408)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Caused by: java.net.SocketException: Connection reset
at java.net.SocketInputStream.read(SocketInputStream.java:210)
at java.net.SocketInputStream.read(SocketInputStream.java:141)
at java.io.BufferedInputStream.fill(BufferedInputStream.java:246)
at java.io.BufferedInputStream.read(BufferedInputStream.java:265)
at java.io.DataInputStream.readInt(DataInputStream.java:387)
at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:578)
at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:571)
at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:406)
at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37
at
org.apache.spark.util.Utils$.logUncaughtExceptions(Utils.scala:1945)
at org.apache.spark.api.python.BasePythonRunner$WriterThread.run(PythonRunner.scala:194)
2019-04-07 19:04:30 ERROR Executor:91 - Exception in task 2.0 in stage 0.0 (TID 2)
java.net.SocketException: Connection reset
at java.net.SocketInputStream.read(SocketInputStream.java:210)
at java.net.SocketInputStream.read(SocketInputStream.java:141)
at java.io.BufferedInputStream.fill(BufferedInputStream.java:246)
at java.io.BufferedInputStream.read(BufferedInputStream.java:265)
at java.io.DataInputStream.readInt(DataInputStream.java:387)
at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:578)
at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:571)
at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:406)
at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:440)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at org.apache.spark.api.python.SerDeUtil$AutoBatchedPickler.hasNext(SerDeUtil.scala:153)
at scala.collection.Iterator$class.foreach(Iterator.scala:891)
at org.apache.spark.api.python.SerDeUtil$AutoBatchedPickler.foreach(SerDeUtil.scala:148)
at org.apache.spark.api.python.PythonRDD$.writeIteratorToStream(PythonRDD.scala:224)
at org.apache.spark.api.python.PythonRunner$$anon$2.writeIteratorToStream(PythonRunner.scala:557)
at org.apache.spark.api.python.BasePythonRunner$WriterThread$$anonfun$run$1.apply(PythonRunner.scala:345)
at org.apache.spark.util.Utils$.logUncaughtExceptions(Utils.scala:1945)
at org.apache.spark.api.python.BasePythonRunner$WriterThread.run(PythonRunner.scala:194)
2019-04-07 19:04:30 WARN TaskSetManager:66 - Lost task 2.0 in stage 0.0 (TID 2, localhost, executor driver): java.net.SocketException: Connection reset
at java.net.SocketInputStream.read(SocketInputStream.java:210)
at java.net.SocketInputStream.read(SocketInputStream.java:141)
at java.io.BufferedInputStream.fill(BufferedInputStream.java:246)
at java.io.BufferedInputStream.read(BufferedInputStream.java:265)
at java.io.DataInputStream.readInt(DataInputStream.java:387)
at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:578)
at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:571)
at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:406)
at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:440)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at org.apache.spark.api.python.SerDeUtil$AutoBatchedPickler.hasNext(SerDeUtil.scala:153)
at scala.collection.Iterator$class.foreach(Iterator.scala:891)
at org.apache.spark.api.python.SerDeUtil$AutoBatchedPickler.foreach(SerDeUtil.scala:148)
at org.apache.spark.api.python.PythonRDD$.writeIteratorToStream(PythonRDD.scala:224)
at org.apache.spark.api.python.PythonRunner$$anon$2.writeIteratorToStream(PythonRunner.scala:557)
at org.apache.spark.api.python.BasePythonRunner$WriterThread$$anonfun$run$1.apply(PythonRunner.scala:345)
at org.apache.spark.util.Utils$.logUncaughtExceptions(Utils.scala:1945)
at org.apache.spark.api.python.BasePythonRunner$WriterThread.run(PythonRunner.scala:194)
2019-04-07 19:04:30 ERROR TaskSetManager:70 - Task 2 in stage 0.0 failed 1 times; aborting job
Traceback (most recent call last):
File "C:/Users/Mujtaba Faizi/Documents/Twitter-Sentiment-Analysis-Using-Spark-Streaming-And-Kafka-master/Analysis/sparkml_testing.py", line 52, in <module>
.map( lambda word: [x for x in word if x not in StopWords]) \
File "F:\Softwares\Anaconda\lib\site-packages\pyspark\rdd.py", line 2174, in zipWithIndex
nums = self.mapPartitions(lambda it: [sum(1 for i in it)]).collect()
File "F:\Softwares\Anaconda\lib\site-packages\pyspark\rdd.py", line 816, in collect
sock_info = self.ctx._jvm.PythonRDD.collectAndServe(self._jrdd.rdd())
File "F:\Softwares\Anaconda\lib\site-packages\py4j\java_gateway.py", line 1257, in __call__
answer, self.gateway_client, self.target_id, self.name)
File "F:\Softwares\Anaconda\lib\site-packages\pyspark\sql\utils.py", line 63, in deco
return f(*a, **kw)
File "F:\Softwares\Anaconda\lib\site-packages\py4j\protocol.py", line 328, in get_return_value
format(target_id, ".", name), value)
py4j.protocol.Py4JJavaError: An error occurred while calling z:org.apache.spark.api.python.PythonRDD.collectAndServe.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 2 in stage 0.0 failed 1 times, most recent failure: Lost task 2.0 in stage 0.0 (TID 2, localhost, executor driver): java.net.SocketException: Connection reset
If somebody stumbled on this like me and is working on a cluster but with the need to run some local scripts on a target node.
SOLUTION
The easiest foolproof solution would be setting PYSPARK_PYTHON env at the beginning of the script, since in my case pyspark-shell could not pick it up even if configured properly in $SPARK_HOME/conf/spark-env.sh or even in spark-defaults.conf and ~/.bashrc (both less desirable than the first option).
import os
os.environ['PYSPARK_PYTHON'] = '/path/to/python3' # Worker executable
os.environ['PYSPARK_DRIVER_PYTHON'] = '/path/to/python3' # Driver executable
PROBABLE CAUSE
I am not entirely sure, but my guess is pyspark installed from pip in your venv is different than the one that is actually loaded by Spark itself and it doesn't find the correct env variable, resorting to the default python 2.7 executables despite configuring it everywhere.
Firstly, do not use Pymongo. MongoDB has a Spark connector which can be made available via the --packages option in spark-submit.
If you are using a remote MongoDB cluster, you need to whitelist your IP in the Network where MongoDB resides. This is one if the reason the Error message Connection Reset is encountered and I have faced it too.
Spark-MongoDB connector Docs follow this link and you'd be able to work on Spark DFs directly.
UPDATE
After going through your stack-trace (apologies for not reading it thoroughly), it seems your worker nodes do not have Python 3 installed on them. You need to install the correct version of Python which matches the one installed on your driver node. Then on each worker node you need to add the following line PYSPARK_PYTHON=/path/to/python3/executable in your .bash_profile file located in your users' home directory. It should solve your issue.

Categories