Function for calculate matrix determinant:
def determinant(matrix):
def minor(mat,i):
del mat[0]
y=[]
for x in mat:
del x[i]
y.append(x)
return y
if len(matrix)==1:
return matrix[0][0]
if len(matrix)==2:
return matrix[0][0]*matrix[1][1]-matrix[0][1]*matrix[1][0]
det=0
for i in range(len(matrix)):
m=matrix.copy()
det=det+((-1)**i)*m[0][i]*determinant(minor(m,i))
m5 = [[2,4,2],[3,1,1],[1,2,0]]
determinant(m5)
But, when function minor delete elements in her argument mat, whih is a COPY of argument matrix in matrix disappear elements too!
Solved only with this ugly construction:
def determinant(matrix):
m=matrix.copy()
if len(m)==1:
return m[0][0]
if len(m)==2:
return m[0][0]*m[1][1]-m[0][1]*m[1][0]
if len(m)>2:
det=0
for i in range(len(m)):
z=[]
for j in range(1,len(m),1):
x=[]
for k in range(len(m)):
if k!=i:
x.append(m[j][k])
z.append(x)
det=det+((-1)**i)*m[0][i]*determinant(z)
return det
list.copy() is a shallow copy. Use copy.deepcopy() if you want a copy of the sublists as well:
import copy
def determinant(matrix):
def minor(mat,i):
y = copy.deepcopy(mat)
del y[0]
for x in y:
del x[i]
return y
if len(matrix) == 1:
return matrix[0][0]
if len(matrix) == 2:
return matrix[0][0] * matrix[1][1] - matrix[0][1] * matrix[1][0]
det=0
for i in range(len(matrix)):
det += (-1)**i * matrix[0][i] * determinant(minor(matrix,i))
return det
m5 = [[2,4,2],[3,1,1],[1,2,0]]
print(determinant(m5))
other = [[2,4,2,3],[2,8,2,1],[1,2,2,4],[4,3,6,4]]
print(determinant(other))
#verify
import numpy as np
print(np.linalg.det(m5))
print(np.linalg.det(other))
Output:
10
-76
10.000000000000002
-76.0
Related
I am making a program that compares the elements A[i,j] with A[j,i], if it is true once that A[i,j] = A[j,i]= 1, the matrix will not be antisymmetric. In the comparison, the elements A[i,j] where i=j (diagonal of the matrix) should not be evaluated.
import numpy as np
A = np.array([[1,0,0],[0,0,0],[0,0,1]])
for i in range (0,2):
for j in range (0,2):
if A[i,j] ==1 and A[i,j] == A[j,i]:
print('A is not antisymmetric')
antisymmetric = False
break
I have tried to add the condition i != j to not evaluate the diagonal, but it has not worked
It looks like your original example had a typo, as you were checking for values of the matrix to be literally 1, which is not relevant to the matrix being antisymmetric?
You were after:
import numpy as np
def is_antisymmetric(a):
r, c = a.shape
if r != c:
return False
for i in range(r):
for j in range(c):
if a[i, j] != -a[j, i] and j != i:
return False
return True
print(is_antisymmetric(np.array(
[[1,0,-1], [0,0,0], [1,0,1]]
)))
Or, briefer:
def is_antisymmetric(a):
return (
(s := a.shape[0]) == a.shape[1] and
(all(a[i, j] == -a[j, i] or j == i for i in range(s) for j in range(s)))
)
I am trying to recursively generate Hadamard matrices by Sylvester construction, following this recurrence formula:
H(2) = (1 1)
(1 -1)
H(2**k) = ( H(2**(k-1)) H(2**(k-1)) )
( H(2**(k-1)) -H(2**(k-1)) )
this formula as an image of LaTeX
Or using the notation (x) for Kronecker product:
H(2**k) = H(2) (x) H(2**(k-1))
My code to generate a Hadamard matrix by Sylvester construction is as follows:
def deepMap(f,seq):
if seq == []:
return seq
elif type(seq) != list:
return f(seq)
else:
return [deepMap(f,seq[0])] + deepMap(f,seq[1:])
def Hadamard(n): #n is a power of 2
if n == 1:
return [1]
elif n == 2:
return [[1,1],[1,-1]]
else:
k = 2
array = [Hadamard(k)]
while k < n:
k *= 2
matrix,prev = [],array.pop(0)
for i in range(k):
if i < k//2:
matrix.append(prev[i]+prev[i])
else:
matrix.append(prev[i%(k//2)]+deepMap(lambda x: -x,prev[i%(k//2)]))
array.append(matrix)
#print(f'matrix {k} = {matrix}')
return array[0]
The code works, but is pretty slow, and exceeds maximum depth recursion when n > 1024.
How could I make the code handle larger values of n?
Context: This code was written for a Kattis question https://open.kattis.com/problems/sylvester
Fixing your code: recursion in deepMap
With just a small modification to your deepMap function, it becomes faster and avoids stacking up thousands of recursive calls: replace return [deepMap(f,seq[0])] + deepMap(f,seq[1:]) with return [deepMap(f, x) for x in seq].
def deepMap(f,seq):
if seq == []:
return seq
elif type(seq) != list:
return f(seq)
else:
return [deepMap(f, x) for x in seq]
def Hadamard(n): #n is a power of 2
if n == 1:
return [1]
elif n == 2:
return [[1,1],[1,-1]]
else:
k = 2
array = [Hadamard(k)]
while k < n:
k *= 2
matrix,prev = [],array.pop(0)
for i in range(k):
if i < k//2:
matrix.append(prev[i]+prev[i])
else:
matrix.append(prev[i%(k//2)]+deepMap(lambda x: -x,prev[i%(k//2)]))
array.append(matrix)
#print(f'matrix {k} = {matrix}')
return array[0]
print( Hadamard(2048) ) # should take less than a second
A different version: avoiding .append
Since we already know the size of the matrix, I suggest creating a matrix that already has the correct size, then filling it recursively or iteratively. To fill the matrix, I made a function dup that duplicates a quadrant of the matrix to another quadrant.
def dup(h, k, i0,j0, s=1):
for i in range(k):
for j in range(k):
h[i0+i][j0+j] = s * h[i][j]
def had(n):
'''assume n >= 2 is a power of 2'''
h = [[0 for _ in range(n)] for _ in range(n)]
h[0][0]=1
h[0][1]=1
h[1][0]=1
h[1][1]=-1
k = 2
while k < n:
dup(h, k, 0,k)
dup(h, k, k,0)
dup(h, k, k,k, -1)
k *= 2
return h
print( had(2048) )
Using numpy: everything is easy with concatenate
Using numpy.concatenate, the code becomes much shorter, much much faster, and easier to read:
from numpy import array, concatenate
def hadamard(n):
'''assume n is a power of 2'''
if n == 1:
return array([1])
elif n == 2:
return array([[1,1],[1,-1]])
else:
a = hadamard(n // 2)
return concatenate(
(concatenate((a, a), axis=1),
concatenate((a, -a), axis=1)),
axis=0
)
print( hadamard(2048) )
I want to do matrix multiplication with my function that takes 2 matrixs as parameters. My code works for all the test cases except
mul([0, 1, 2],[[0], [1], [2]])= [0, 1, 4]
which should = [5]. Any idea why?
rows_A = get_rowCount(A)
cols_A = get_columnCount(A)
rows_B = get_rowCount(B)
cols_B = get_columnCount(B)
if cols_A != rows_B:
return 'Error(mul): size mismatch'
if isinstance(A[0],list) == False:
# if one is 1d and other is 2d:
if isinstance(B[0], list):
new_list = []
for i in B:
new_list.append(i[0])
B = new_list
return [a*b for a,b in zip(A,B)]
# Create the result matrix
# Dimensions would be rows_A x cols_B
C = [[0 for row in range(cols_B)] for col in range(rows_A)]
for i in range(rows_A):
for j in range(cols_B):
for k in range(cols_A):
C[i][j] += A[i][k] * B[k][j]
return C
I'm about to write some code that computes the determinant of a square matrix (nxn), using the Laplace algorithm (Meaning recursive algorithm) as written Wikipedia's Laplace Expansion.
I already have the class Matrix, which includes init, setitem, getitem, repr and all the things I need to compute the determinant (including minor(i,j)).
So I've tried the code below:
def determinant(self,i=0) # i can be any of the matrix's rows
assert isinstance(self,Matrix)
n,m = self.dim() # Q.dim() returns the size of the matrix Q
assert n == m
if (n,m) == (1,1):
return self[0,0]
det = 0
for j in range(n):
det += ((-1)**(i+j))*(self[i,j])*((self.minor(i,j)).determinant())
return det
As expected, in every recursive call, self turns into an appropriate minor. But when coming back from the recursive call, it doesn't change back to it's original matrix.
This causes trouble when in the for loop (when the function arrives at (n,m)==(1,1), this one value of the matrix is returned, but in the for loop, self is still a 1x1 matrix - why?)
Are you sure that your minor returns the a new object and not a reference to your original matrix object? I used your exact determinant method and implemented a minor method for your class, and it works fine for me.
Below is a quick/dirty implementation of your matrix class, since I don't have your implementation. For brevity I have chosen to implement it for square matrices only, which in this case shouldn't matter as we are dealing with determinants. Pay attention to det method, that is the same as yours, and minor method (the rest of the methods are there to facilitate the implementation and testing):
class matrix:
def __init__(self, n):
self.data = [0.0 for i in range(n*n)]
self.dim = n
#classmethod
def rand(self, n):
import random
a = matrix(n)
for i in range(n):
for j in range(n):
a[i,j] = random.random()
return a
#classmethod
def eye(self, n):
a = matrix(n)
for i in range(n):
a[i,i] = 1.0
return a
def __repr__(self):
n = self.dim
for i in range(n):
print str(self.data[i*n: i*n+n])
return ''
def __getitem__(self,(i,j)):
assert i < self.dim and j < self.dim
return self.data[self.dim*i + j]
def __setitem__(self, (i, j), val):
assert i < self.dim and j < self.dim
self.data[self.dim*i + j] = float(val)
#
def minor(self, i,j):
n = self.dim
assert i < n and j < n
a = matrix(self.dim-1)
for k in range(n):
for l in range(n):
if k == i or l == j: continue
if k < i:
K = k
else:
K = k-1
if l < j:
L = l
else:
L = l-1
a[K,L] = self[k,l]
return a
def det(self, i=0):
n = self.dim
if n == 1:
return self[0,0]
d = 0
for j in range(n):
d += ((-1)**(i+j))*(self[i,j])*((self.minor(i,j)).det())
return d
def __mul__(self, v):
n = self.dim
a = matrix(n)
for i in range(n):
for j in range(n):
a[i,j] = v * self[i,j]
return a
__rmul__ = __mul__
Now for testing
import numpy as np
a = matrix(3)
# same matrix from the Wikipedia page
a[0,0] = 1
a[0,1] = 2
a[0,2] = 3
a[1,0] = 4
a[1,1] = 5
a[1,2] = 6
a[2,0] = 7
a[2,1] = 8
a[2,2] = 9
a.det() # returns 0.0
# trying with numpy the same matrix
A = np.array(a.data).reshape([3,3])
print np.linalg.det(A) # returns -9.51619735393e-16
The residual in case of numpy is because it calculates the determinant through (Gaussian) elimination method rather than the Laplace expansion. You can also compare the results on random matrices to see that the difference between your determinant function and numpy's doesn't grow beyond float precision:
import numpy as np
a = 10*matrix.rand(4)
A = np.array( a.data ).reshape([4,4])
print (np.linalg.det(A) - a.det())/a.det() # varies between zero and 1e-14
use Sarrus' Rule (non recursive method)
example on below link is in Javascript, but easily can be written in python
https://github.com/apanasara/Faster_nxn_Determinant
import numpy as np
def smaller_matrix(original_matrix,row, column):
for ii in range(len(original_matrix)):
new_matrix=np.delete(original_matrix,ii,0)
new_matrix=np.delete(new_matrix,column,1)
return new_matrix
def determinant(matrix):
"""Returns a determinant of a matrix by recursive method."""
(r,c) = matrix.shape
if r != c:
print("Error!Not a square matrix!")
return None
elif r==2:
simple_determinant = matrix[0][0]*matrix[1][1]-matrix[0][1]*matrix[1][0]
return simple_determinant
else:
answer=0
for j in range(r):
cofactor = (-1)**(0+j) * matrix[0][j] * determinant(smaller_matrix(matrix, 0, j))
answer+= cofactor
return answer
#test the function
#Only works for numpy.array input
np.random.seed(1)
matrix=np.random.rand(5,5)
determinant(matrix)
Here's the function in python 3.
Note: I used a one-dimensional list to house the matrix and the size array is the amount of rows or columns in the square array. It uses a recursive algorithm to find the determinant.
def solve(matrix,size):
c = []
d = 0
print_matrix(matrix,size)
if size == 0:
for i in range(len(matrix)):
d = d + matrix[i]
return d
elif len(matrix) == 4:
c = (matrix[0] * matrix[3]) - (matrix[1] * matrix[2])
print(c)
return c
else:
for j in range(size):
new_matrix = []
for i in range(size*size):
if i % size != j and i > = size:
new_matrix.append(matrix[i])
c.append(solve(new_matrix,size-1) * matrix[j] * ((-1)**(j+2)))
d = solve(c,0)
return d
i posted this code because i couldn't fine it on the internet, how to solve n*n determinant using only standard library.
the purpose is to share it with those who will find it useful.
i started by calculating the submatrix Ai related to a(0,i).
and i used recursive determinant to make it short.
def submatrix(M, c):
B = [[1] * len(M) for i in range(len(M))]
for l in range(len(M)):
for k in range(len(M)):
B[l][k] = M[l][k]
B.pop(0)
for i in range(len(B)):
B[i].pop(c)
return B
def det(M):
X = 0
if len(M) != len(M[0]):
print('matrice non carrée')
else:
if len(M) <= 2:
return M[0][0] * M[1][1] - M[0][1] * M[1][0]
else:
for i in range(len(M)):
X = X + ((-1) ** (i)) * M[0][i] * det(submatrix(M, i))
return X
sorry for not commenting before guys :)
if you need any further explanation don't hesitate to ask .
Hello (excuse my English), I have a big doubt in python with matrix multiplication, I create a list of lists and multiplied by a scaling matrix, this is what I've done and I can not alparecer perform a multiplication operation problem with indexes, I check with paper and pencil and it works, I'm doing something bad to accommodate indexes or am I wrong accommodating matrices from the beginning?
def main():
if len(sys.argv) > 1:
v = int(sys.argv[1])
else:
print "error python exe:"
print "\tpython <programa.py> <num_vertices>"
A = []
for i in range(v):
A.append([0]*2)
for i in range(v):
for j in range(2):
A[i][j] = input("v: ")
print A
Escala(A)
def Escala(A):
print "Escala"
sx = input("Sx: ")
sy = input("Sy: ")
S = [(sx,0),(0,sy)]
print S
M = mult(S,A)
print M
def mult(m1,m2):
M = zero(len(m1),len(m2[0]))
for i in range(len(m2)):
for j in range(len(m2[0])):
for k in range(len(m1)):
M[i][j] += m1[k][j]*m2[k][j]
print M
return M
def zero(m,n):
# Create zero matrix
new_matrix = [[0 for row in range(n)] for col in range(m)]
return new_matrix
This seems wrong to me:
M[i][j] += m1[k][j]*m2[k][j]
shouldn't it be:
M[i][j] += m1[i][k]*m2[k][j]