I was trying to create interactive topoplot with python MNE and got stuck. Topomap (or topoplot) is drawn, but it doesn't update. Do you have any idea how to make it interactive?
data:
import mne
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.widgets import Slider, Button
%matplotlib widget
biosemi_montage = mne.channels.make_standard_montage('biosemi64')
n_channels = len(biosemi_montage.ch_names)
fake_info = mne.create_info(ch_names=biosemi_montage.ch_names, sfreq=250.,
ch_types='eeg')
rng = np.random.RandomState(0)
data = rng.normal(size=(n_channels, 100)) * 1e-6
fake_evoked = mne.EvokedArray(data, fake_info)
fake_evoked.set_montage(biosemi_montage)
topoplot:
fig, ax = plt.subplots()
voltage = fake_evoked.data
timing = [round(i, ndigits=3) for i in list(np.linspace(0, 1, 100))]
init_time = 0
mne.viz.plot_topomap(voltage[:, timing.index(init_time)], fake_evoked.info, axes=ax,
#image_interp='cubic',
show=False)
ax.set_title('MNE', fontweight='bold')
axtime = fig.add_axes([0.25, 0.01, 0.65, 0.04])
time_slider = Slider(
ax=axtime,
label='Time [ms]',
valmin=0, valmax=1, valstep=100,
valinit=init_time,
)
# The function to be called anytime a slider's value changes
def update(val):
init_time = round(time_slider.val, ndigits=3)
mne.viz.plot_topomap(voltage[:, timing.index(init_time)], fake_evoked.info, axes=ax,
show=False)
fig.canvas.draw_idle()
# register the update function with each slider
time_slider.on_changed(update)
plt.show()
Related
i am developing a GUI application for which there will be multiple dynamic subplots for which i would like to have a cursor integration for which is used "Matplotlib's MultiCursor widget" the code seems to be all good without any errors but the cursor alone is not being displayed on the screen
The below is a small snippet function which iam currently using
import numpy as np
import PySimpleGUI as sg
from matplotlib.backends.backend_tkagg import (FigureCanvasTkAgg,
NavigationToolbar2Tk)
from matplotlib.widgets import Cursor
from matplotlib.widgets import MultiCursor
from matplotlib.gridspec import GridSpec
from matplotlib.figure import Figure
class Toolbar(NavigationToolbar2Tk):
def __init__(self, *args, **kwargs):
super(Toolbar, self).__init__(*args, **kwargs)
def repack(widget, option):
pack_info = widget.pack_info()
pack_info.update(option)
widget.pack(**pack_info)
def draw_figure_w_toolbar(canvas, fig, canvas_toolbar):
if canvas.children:
for child in canvas.winfo_children():
child.destroy()
if canvas_toolbar.children:
for child in canvas_toolbar.winfo_children():
child.destroy()
figure_canvas_agg = FigureCanvasTkAgg(fig, master=canvas)
figure_canvas_agg.draw_idle()
toolbar = Toolbar(figure_canvas_agg, canvas_toolbar)
toolbar.update()
figure_canvas_agg.get_tk_widget().pack(side='right', fill='both', expand=1)
layout=[
[
sg.Frame(
'Controls',
expand_x=True,
layout=[[
sg.Canvas(key='controls_cv')
]])
],
[
sg.Canvas(
key='fig_cv',
size=(1024, 525), #(W,H)
expand_x=True,
expand_y=True,
background_color='black')
],
]
window = sg.Window('Data Visualization Tool',
layout=layout,
location=(0, 0),
resizable=True,
margins=(0, 0),
finalize=True)
fig = Figure()
def get_data_ax(x_data, y_data, y_label, marker_sym=None):
ax = fig.add_subplot()
lines = ax.step(
x_data,
y_data,
marker=marker_sym,
where='post')
return ax, lines
cursor_handle_list = []
axes_handle_list = []
def on_move(event, flag=False, c_flag=False):
global cursor_present_flag, cursor_handle_list, axes_handle_list
if event.dblclick:
def change_cursor_position(handle_obj):
for handles in handle_obj:
handles.set_xdata(float(event.xdata))
if event.inaxes is not None:
ax = event.inaxes
if ax not in axes_handle_list:
cursor_handle = ax.axvline(event.xdata, color ='red', lw = .75, alpha = 0.65, visible=True)
cursor_handle_list.append(cursor_handle)
axes_handle_list.append(ax)
else:
change_cursor_position(cursor_handle_list)
draw_figure_w_toolbar(window['fig_cv'].TKCanvas, fig,
window['controls_cv'].TKCanvas)
window.refresh()
fig.canvas.mpl_connect("button_press_event", on_move)
t = np.arange(0.0, 2.0, 0.01)
s = 1 + np.sin(2 * np.pi * t)
num_rows = 2
gs = GridSpec(num_rows, 1, hspace=0)
ax0, lines = get_data_ax(t, s, 'test')
ax0.set_subplotspec(gs[0])
fig.add_subplot(ax0)
ax, lines = get_data_ax(t, s, 'test')
ax.set_subplotspec(gs[1])
fig.add_subplot(ax)
ax.get_shared_x_axes().join(ax0, ax)
graph = FigureCanvasTkAgg(fig, master=window['fig_cv'].TKCanvas)
cursor_multi = MultiCursor(graph, [ax,], color='r', lw=2.0, vertOn=True)
graph.draw()
draw_figure_w_toolbar(window['fig_cv'].TKCanvas, fig,
window['controls_cv'].TKCanvas)
while True:
event, values = window.read()
if event in (sg.WIN_CLOSED, 'Exit'):
break
I tried using axvline with matplotlib events but the results were not satisfactory
i saw somewhere that defining the return value of MultiCursor as gloabl should fix the issue but that did not happen in my case
next i tried simple putting plt.var_name as a variable for catching the returned object from MultiCursor but even this did not yeild me any result
Note: The code with mpl_connect and on_move callback with axvline integration were just an workaround i was trying as MultiCursor was not working you can discard that part if not required
It's because you created the MultiCursor widget before you created the FigureCanvasTkAgg for the axes objects. So do like this.
draw_figure_w_toolbar(window['fig_cv'].TKCanvas, ...)
cursor_multi = MultiCursor(None, [ax,], ...)
Also note that the first argument of the MultiCursor() is recommended to be set to None because it is ignored. Also your code contain many problems, such as an unused object graph.
I have the following code. The grid is visible without the Button widget. But when the grid is not shown if I add the button. What am I doing wrong?
from matplotlib import pyplot as plot
from matplotlib.widgets import Button
plot.plot([1,2,3], [1,2,3])
ax = plot.axes([0.5, 0.5, 0.05, 0.05])
Button(ax, "A")
plot.grid()
plot.show()
For me you code is working fine! (Except the button is in the middle of the screen)
Maybe you should try the following snippet:
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.widgets import Button
freqs = np.arange(2, 20, 3)
fig, ax = plt.subplots()
plt.subplots_adjust(bottom=0.2)
t = np.arange(0.0, 1.0, 0.001)
s = np.sin(2*np.pi*freqs[0]*t)
l, = plt.plot(t, s, lw=2)
class Index:
ind = 0
def next(self, event):
self.ind += 1
i = self.ind % len(freqs)
ydata = np.sin(2*np.pi*freqs[i]*t)
l.set_ydata(ydata)
plt.draw()
def prev(self, event):
self.ind -= 1
i = self.ind % len(freqs)
ydata = np.sin(2*np.pi*freqs[i]*t)
l.set_ydata(ydata)
plt.draw()
callback = Index()
axprev = plt.axes([0.7, 0.05, 0.1, 0.075])
axnext = plt.axes([0.81, 0.05, 0.1, 0.075])
bnext = Button(axnext, 'Next')
bnext.on_clicked(callback.next)
bprev = Button(axprev, 'Previous')
bprev.on_clicked(callback.prev)
plt.show()
To read more about matplotlib buttons read and see the snippet: https://matplotlib.org/stable/gallery/widgets/buttons.html
Also you might want to rename the button to have a bigger name like "TEST" to avoid problems regarding the size of the label.
The Button() instantiation changes the current axes. So when I call plot.grid() it is operated on Button axes. I changed the order of calling plot.grid() and it worked. I have shown the modified code below.
from matplotlib import pyplot as plot
from matplotlib.widgets import Button
plot.plot([1,2,3], [1,2,3])
# note grid() is called before Button
plot.grid()
ax = plot.axes([0.5, 0.5, 0.05, 0.05])
Button(ax, "A", hovercolor="red")
plot.show()
matplotlib noob here.
I am trying to create an animation (which starts on a button click) of a normal distribution being populated, where the distribution parameters (mean and std dev) are selected using two slider widgets.
Please help. I have pasted my code below
%matplotlib notebook
from pdb import set_trace as bp
import matplotlib.animation as animation
import numpy as np
from matplotlib.widgets import Slider, Button, RadioButtons
fig = plt.figure()
n = 1000
x = np.array([])
bins = np.arange(-4, 4, 0.5)
plt.hist(x, bins=bins)
plt.subplots_adjust(bottom=0.25)
def update(curr):
if curr == n:
a.event_source.stop()
plt.cla()
plt.hist(x[:curr], bins=bins)
plt.axis([-4,4,0,500])
plt.gca().set_title('Sampling the Normal Distribution')
plt.gca().set_ylabel('Frequency')
plt.gca().set_xlabel('Value')
plt.annotate('n = {}'.format(curr), [3,480])
axcolor = 'lightgoldenrodyellow'
axmu = plt.axes([0.15, 0.1, 0.65, 0.03], facecolor=axcolor)
axstdev = plt.axes([0.15, 0.15, 0.65, 0.03], facecolor=axcolor)
muslider = Slider(axmu, 'mean', 0.1, 30.0, valinit=0)
stdevslider = Slider(axstdev, 'stdev', 0.1, 10.0, valinit=1.0)
startax = plt.axes([0.4, 0.025, 0.1, 0.04])
startbutton = Button(startax, 'Start', color=axcolor, hovercolor='0.975')
newmean = 0
newstdev = 1.0
def getnewparams(val):
global newmean
global newstdev
newmean = muslider.val
newstdev = stdevslider.val
def startanimation(event):
print(f"params now is {newmean} {newstdev}")
global x
x = np.random.normal(loc=newmean, scale=newstdev, size=n)
a = animation.FuncAnimation(fig, update, interval=100)
a.event_source.start()
muslider.on_changed(getnewparams)
stdevslider.on_changed(getnewparams)
startbutton.on_clicked(startanimation)
How my plot looks now
Using #jasonharper's suggestion, I was able to resolve the issue on my own. I am pasting the working code below
%matplotlib notebook
import matplotlib.pyplot as plt
from pdb import set_trace as bp
import matplotlib.animation as animation
import numpy as np
from matplotlib.widgets import Slider, Button, RadioButtons
fig = plt.figure()
n = 1000
a = None
x = np.array([])
# bins = np.arange(-4, 4, 0.5)
plt.hist(x, bins=bins)
plt.subplots_adjust(bottom=0.25)
histaxis = plt.gca()
def update(curr):
if curr == n:
a.event_source.stop()
histaxis.cla()
histaxis.hist(x[:curr], bins=100)
# histaxis.axis([-4,4,0,500])
histaxis.set_title('Sampling the Normal Distribution')
histaxis.set_ylabel('Frequency')
histaxis.set_xlabel('Value')
histaxis.annotate('n = {}'.format(curr), [3,480])
axcolor = 'lightgoldenrodyellow'
axmu = plt.axes([0.15, 0.1, 0.65, 0.03], facecolor=axcolor)
axstdev = plt.axes([0.15, 0.15, 0.65, 0.03], facecolor=axcolor)
muslider = Slider(axmu, 'mean', 0.1, 30.0, valinit=0)
stdevslider = Slider(axstdev, 'stdev', 0.1, 10.0, valinit=1.0)
startax = plt.axes([0.4, 0.025, 0.1, 0.04])
startbutton = Button(startax, 'Start', color=axcolor, hovercolor='0.975')
newmean = 0
newstdev = 1.0
def getnewparams(val):
global newmean
global newstdev
newmean = muslider.val
newstdev = stdevslider.val
def startanimation(event):
print(f"params now is {newmean} {newstdev}")
global x
x = np.random.normal(loc=newmean, scale=newstdev, size=n)
global a
a = animation.FuncAnimation(fig, update, interval=100)
a.event_source.start()
muslider.on_changed(getnewparams)
stdevslider.on_changed(getnewparams)
startbutton.on_clicked(startanimation)
I have an application that should get data from a sensor into a live graph, a subplot that is added into a Figure.
I have now a problem after adding the subplot that I don't know how to change the plot parameters as xlabel, ylabel. This works if I import plt, but not if I import a Figure that will be further added to the window in Tkinter.
#file livegraph.py
import matplotlib.animation as animation
import datetime
#this is a draft for the liveGraph class
#the objective is to get live data from a sensor
class liveGraph:
#by default define the interval as being 1000 mSec
intervalAnim = 1000
def __init__(self,fig):
self.xax = 0
self.xs = []
self.ys = []
self.ax = fig.add_subplot(111)
self.ax.set_xlabel('teeeest')
#fig.title('Graph test')
#fig.set_xlabel("Time")
#fig.ylabel("% SMS")
self.anim = animation.FuncAnimation(fig, self.animate, interval = self.intervalAnim)
def animate(self,i):
self.xs.append(self.xax)
self.ys.append(datetime.datetime.now().second)
self.xax+=1
self.ax.clear()
self.ax.plot(self.xs,self.ys)
if self.xax > 90:
self.anim.event_source.stop()
from tkinter import *
from matplotlib import style
import matplotlib.pyplot as plt
from matplotlib.figure import Figure
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
from livegraph import liveGraph
# Define the main_screen as a tkinter
app_screen = Tk() # create a GUI window
app_screen.geometry("1920x1080") # set the configuration of GUI window
app_screen.resizable(width=True,height=True)
app_screen.title("Testare izolator") # set the title of GUI window
style.use('bmh')
#figure represents the graphic part of the system
figure = Figure(figsize=(10, 5), facecolor='white',frameon=True)
figure.suptitle('This is the figure title', fontsize=12)
#figure.add_gridspec(10,10)
#this are some parameters that I can easily change if I am using plt
# plt.title('Graph test')
#plt.xlabel("Time")
#plt.ylabel("% SMS")
#x = [ 0, 1, 2, 3, 4 ]
#y = [ 0, 1, 2, 3, 4 ]
#lines = plt.plot(x, y)
#plt.grid()
#plt.axis([0,10,0,10])
#plt.setp(lines, color= "b")
canvas = FigureCanvasTkAgg(figure, app_screen)
canvas.get_tk_widget().pack(side=TOP, anchor =NW, padx=100, pady=10)
newAnimation = liveGraph(figure)
app_screen.mainloop() # start the GUI
You should use self.ax. to add elements
self.ax.set_xlabel('teeeest')
self.ax.set_title('Graph test')
self.ax.set_xlabel("Time")
self.ax.set_ylabel("% SMS")
but then there is other problem because self.ax.clear() removes these elements.
First method:
If you use self.ax.clear() then you remove labels and you have to put labels again and again
def animate(self, i):
self.xs.append(self.xax)
#self.ys.append(datetime.datetime.now().second)
self.ys.append(random.randint(0, 10))
self.xax += 1
self.ax.clear()
self.ax.plot(self.xs,self.ys)
if self.xax > 90:
self.anim.event_source.stop()
self.ax.set_xlabel('teeeest')
self.ax.set_title('Graph test')
self.ax.set_xlabel("Time")
self.ax.set_ylabel("% SMS")
Second method:
To add elements only once you have to remove self.ax.clear() and instead of plot() you should create empty plot in `init
self.ax = fig.add_subplot(111)
self.ax.set_xlabel('teeeest')
self.ax.set_title('Graph test')
self.ax.set_xlabel("Time")
self.ax.set_ylabel("% SMS")
self.line, = self.ax.plot([], [])
and in animation use set_data() to update data in existing plot
self.line.set_data(self.xs, self.ys)
but it will not rescale plot and you will have to do it manually (if you want to rescale it)
self.ax.relim() # recalculate limits
self.ax.autoscale_view(True,True,True) # rescale using limits
Full code for first method
import matplotlib.animation as animation
import datetime
import random
#this is a draft for the liveGraph class
#the objective is to get live data from a sensor
class liveGraph:
#by default define the interval as being 1000 mSec
intervalAnim = 1000
def __init__(self, fig):
self.xax = 0
self.xs = []
self.ys = []
self.ax = fig.add_subplot(111)
self.ax.set_xlabel('teeeest')
self.anim = animation.FuncAnimation(fig, self.animate, interval=self.intervalAnim)
def animate(self, i):
self.xs.append(self.xax)
#self.ys.append(datetime.datetime.now().second)
self.ys.append(random.randint(0, 10))
self.xax += 1
self.ax.clear()
self.ax.plot(self.xs,self.ys)
if self.xax > 90:
self.anim.event_source.stop()
self.ax.set_title('Graph test')
self.ax.set_xlabel("Time")
self.ax.set_ylabel("% SMS")
from tkinter import *
from matplotlib import style
import matplotlib.pyplot as plt
from matplotlib.figure import Figure
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
#from livegraph import liveGraph
# Define the main_screen as a tkinter
app_screen = Tk() # create a GUI window
app_screen.geometry("1920x1080") # set the configuration of GUI window
app_screen.resizable(width=True, height=True)
app_screen.title("Testare izolator") # set the title of GUI window
style.use('bmh')
#figure represents the graphic part of the system
figure = Figure(figsize=(10, 5), facecolor='white', frameon=True)
figure.suptitle('This is the figure title', fontsize=12)
#figure.add_gridspec(10,10)
#this are some parameters that I can easily change if I am using plt
#plt.title('Graph test')
#plt.xlabel("Time")
#plt.ylabel("% SMS")
#x = [ 0, 1, 2, 3, 4 ]
#y = [ 0, 1, 2, 3, 4 ]
#lines = plt.plot(x, y)
#plt.grid()
#plt.axis([0,10,0,10])
#plt.setp(lines, color= "b")
canvas = FigureCanvasTkAgg(figure, app_screen)
canvas.get_tk_widget().pack(side=TOP, anchor=NW, padx=100, pady=10)
newAnimation = liveGraph(figure)
#canvas.draw()
app_screen.mainloop() # start the GUI
Full code for second method
import matplotlib.animation as animation
import datetime
import random
#this is a draft for the liveGraph class
#the objective is to get live data from a sensor
class liveGraph:
#by default define the interval as being 1000 mSec
intervalAnim = 1000
def __init__(self, fig):
self.xax = 0
self.xs = []
self.ys = []
self.ax = fig.add_subplot(111)
self.ax.set_xlabel('teeeest')
self.ax.set_title('Graph test')
self.ax.set_xlabel("Time")
self.ax.set_ylabel("% SMS")
# create empty plot at start
self.line, = self.ax.plot([], [])
self.anim = animation.FuncAnimation(fig, self.animate, interval=self.intervalAnim)
def animate(self, i):
self.xs.append(self.xax)
#self.ys.append(datetime.datetime.now().second)
self.ys.append(random.randint(0, 2))
self.xax += 1
# update data in existing plot
self.line.set_data(self.xs, self.ys)
# rescale plot (if you need it)
self.ax.relim() # recalculate limits
self.ax.autoscale_view(True,True,True) # rescale using limits
if self.xax > 90:
self.anim.event_source.stop()
from tkinter import *
from matplotlib import style
import matplotlib.pyplot as plt
from matplotlib.figure import Figure
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
#from livegraph import liveGraph
# Define the main_screen as a tkinter
app_screen = Tk() # create a GUI window
app_screen.geometry("1920x1080") # set the configuration of GUI window
app_screen.resizable(width=True, height=True)
app_screen.title("Testare izolator") # set the title of GUI window
style.use('bmh')
#figure represents the graphic part of the system
figure = Figure(figsize=(10, 5), facecolor='white', frameon=True)
figure.suptitle('This is the figure title', fontsize=12)
#figure.add_gridspec(10,10)
#this are some parameters that I can easily change if I am using plt
#plt.title('Graph test')
#plt.xlabel("Time")
#plt.ylabel("% SMS")
#x = [ 0, 1, 2, 3, 4 ]
#y = [ 0, 1, 2, 3, 4 ]
#lines = plt.plot(x, y)
#plt.grid()
#plt.axis([0,10,0,10])
#plt.setp(lines, color= "b")
canvas = FigureCanvasTkAgg(figure, app_screen)
canvas.get_tk_widget().pack(side=TOP, anchor=NW, padx=100, pady=10)
newAnimation = liveGraph(figure)
#canvas.draw()
app_screen.mainloop() # start the GUI
I'm trying to create an interactive matplotlib plot of a multidimensional function with three parameters to vary. The problem is that the parameters can vary over a very large range, so I'd rather not use sliders but directly type the value I'd like. Basically, I'd like to recreate the canonical example below where instead of sliders I'd like text boxes in which I can input parameters
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.widgets import Slider, Button, RadioButtons
fig, ax = plt.subplots()
plt.subplots_adjust(bottom=0.35)
t = np.arange(0.0, 1.0, 0.001)
a0 = 5
f0 = 3
s = a0*np.sin(2*np.pi*f0*t)
l, = plt.plot(t,s, lw=2, color='red')
plt.axis([0, 1, -10, 10])
ax.plot(t,t)
axcolor = 'lightgoldenrodyellow'
axamp = plt.axes([0.25, 0.25, 0.65, 0.03], axisbg=axcolor)
axfreq = plt.axes([0.25, 0.2, 0.65, 0.03], axisbg=axcolor)
sfreq = Slider(axfreq, 'Freq', 0.1, 30.0, valinit=f0)
samp = Slider(axamp, 'Amp', 0.1, 10.0, valinit=a0)
def update(val):
amp = samp.val
freq = sfreq.val
l.set_ydata(amp*np.sin(2*np.pi*freq*t))
fig.canvas.draw_idle()
sfreq.on_changed(update)
samp.on_changed(update)
resetax = plt.axes([0.8, 0.025, 0.1, 0.04])
button = Button(resetax, 'Reset', color=axcolor, hovercolor='0.975')
def reset(event):
sfreq.reset()
samp.reset()
button.on_clicked(reset)
plt.show()
You can add a GUI panel to the figure window. Here is an example to use the Qt4Agg backend, and add a QDockWidget to the main figure window, and then you can add QWidgets to the dock window.
import numpy as np
import matplotlib
matplotlib.use("Qt4Agg") # This program works with Qt only
import pylab as pl
fig, ax1 = pl.subplots()
t = np.linspace(0, 10, 200)
line, = ax1.plot(t, np.sin(t))
### control panel ###
from PyQt4 import QtGui
from PyQt4 import QtCore
from PyQt4.QtCore import Qt
def update():
freq = float(textbox.text())
y = np.sin(2*np.pi*freq*t)
line.set_data(t, y)
fig.canvas.draw_idle()
root = fig.canvas.manager.window
panel = QtGui.QWidget()
hbox = QtGui.QHBoxLayout(panel)
textbox = QtGui.QLineEdit(parent = panel)
textbox.textChanged.connect(update)
hbox.addWidget(textbox)
panel.setLayout(hbox)
dock = QtGui.QDockWidget("control", root)
root.addDockWidget(Qt.BottomDockWidgetArea, dock)
dock.setWidget(panel)
######################
pl.show()
Here is the screen: