I try to assign two numbers diagonally to each other in the matrix according to certain procedures.
At first the first 1st number in the penultimate line of the line with the 2nd number in the last line, then the first number in the line up with the 2nd number in the penultimate line, etc..This sequence is shown in the example below. The matrix does not always have to be the same size.
Example
a=np.array([[11,12,13],
[21,22,23],
[31,32,33]])
required output:
21 32
11 22
11 33
22 33
12 23
or
a=np.array([[11,12,13,14],
[21,22,23,24],
[31,32,33,34],
[41,42,43,44]])
required output:
31 42
21 32
21 43
32 43
11 22
11 33
11 44
22 33
22 44
12 23
12 34
23 34
13 24
It is possible?
Here's an iterative solution, assuming a square matrix. Modifying this for non-square matrices shouldn't be hard.
import numpy as np
a=np.array([[11,12,13,14],
[21,22,23,24],
[31,32,33,34],
[41,42,43,44]])
w,h = a.shape
for y0 in range(1,h):
y = h-y0-1
for x in range(h-y-1):
print( a[y+x,x], a[y+x+1,x+1] )
for x in range(1,w-1):
for y in range(w-x-1):
print( a[y,x+y], a[y+1,x+y+1] )
What I ultimately want to do is round the expected value of a discrete random variable distribution to a valid number in the distribution. For example if I am drawing evenly from the numbers [1, 5, 6], the expected value is 4 but I want to return the closest number to that (ie, 5).
from scipy.stats import *
xk = (1, 5, 6)
pk = np.ones(len(xk))/len(xk)
custom = rv_discrete(name='custom', values=(xk, pk))
print(custom.expect())
# 4.0
def round_discrete(discrete_rv_dist, val):
# do something here
return answer
print(round_discrete(custom, custom.expect()))
# 5.0
I don't know apriori what distribution will be used (ie might not be integers, might be an unbounded distribution), so I'm really struggling to think of an algorithm that is sufficiently generic. Edit: I just learned that rv_discrete doesn't work on non-integer xk values.
As to why I want to do this, I'm putting together a monte-carlo simulation, and want a "nominal" value for each distribution. I think that the EV is the most physically appropriate rather than the mode or median. I might have values in the downstream simulation that have to be one of several discrete choices, so passing a value that is not within that set is not acceptable.
If there's already a nice way to do this in Python that would be great, otherwise I can interpret math into code.
Here is R code that I think will do what you want, using Poisson data to illustrate:
set.seed(322)
x = rpois(100, 7) # 100 obs from POIS(7)
a = mean(x); a
[1] 7.16 # so 7 is the value we want
d = min(abs(x-a)); d # min distance btw a and actual Pois val
[1] 0.16
u = unique(x); u # unique Pois values observed
[1] 7 5 4 10 2 9 8 6 11 3 13 14 12 15
v = u[abs(u-a)==d]; v # unique val closest to a
[1] 7
Hope you can translate it to Python.
Another run:
set.seed(323)
x = rpois(100, 20)
a = mean(x); a
[1] 20.32
d = min(abs(x-a)); d
[1] 0.32
u = unique(x)
v = u[abs(u-a)==d]; v
[1] 20
x
[1] 17 16 20 23 23 20 19 23 21 19 21 20 22 25 13 15 19 19 14 27 19 30 17 19 23
[26] 16 23 26 33 16 11 23 14 21 24 12 18 20 20 19 26 12 22 24 20 22 17 23 11 19
[51] 19 26 17 17 11 17 23 21 26 13 18 28 22 14 17 25 28 24 16 15 25 26 22 15 23
[76] 27 19 21 17 23 21 24 23 22 23 18 25 14 24 25 19 19 21 22 16 28 18 11 25 23
u
[1] 17 16 20 23 19 21 22 25 13 15 14 27 30 26 33 11 24 12 18 28
Figured it out, and tested it working. If I plug my value X into the cdf, then I can plug that probability P = cdf(X) into the ppf. The values at ppf(P +- epsilon) will give me the closest values in the set to X.
Or more geometrically, for a discrete pmf, the point (X,P) will lie on a horizontal portion of the corresponding cdf. When you invert the cdf, (P,X) is now on a vertical section of the ppf. Taking P +- eps will give you the 2 nearest flat portions of the ppf connected to that vertical jump, which correspond to the valid values X1, X2. You can then do a simple difference to figure out which is closer to your target value.
import numpy as np
eps = np.finfo(float).eps
ev = custom.expect()
p = custom.cdf(ev)
ev_candidates = custom.ppf([p - eps, p, p + eps])
ev_candidates_distance = abs(ev_candidates - ev)
ev_closest = ev_candidates[np.argmin(ev_candidates_distance)]
print(ev_closest)
# 5.0
Terms:
pmf - probability mass function
cdf - cumulative distribution function (cumulative sum of the pdf)
ppf - percentage point function (inverse of the cdf)
eps - epsilon (smallest possible increment)
Would the function ceil from the math library help? For example:
from math import ceil
print(float(ceil(3.333333333333333)))
Any help is greatly appreciated!! I have been trying to solve this for the last few days....
I have two arrays:
import pandas as pd
OldDataSet = {
'id': [20,30,40,50,60,70]
,'OdoLength': [26.12,43.12,46.81,56.23,111.07,166.38]}
NewDataSet = {
'id': [3000,4000,5000,6000,7000,8000]
,'OdoLength': [25.03,42.12,45.74,46,110.05,165.41]}
df1= pd.DataFrame(OldDataSet)
df2 = pd.DataFrame(NewDataSet)
OldDataSetArray = df1.as_matrix()
NewDataSetArray = df2.as_matrix()
The result that I am trying to get is:
Array 1 and Array 2 Match by closes difference, based on left over number from Array2
20 26.12 3000 25.03
30 43.12 4000 42.12
40 46.81 6000 46
50 56.23 7000 110.05
60 111.07 8000 165.41
70 166.38 0 0
Starting at Array 1, ID 20, find the nearest which in this case would be the first Number in Array 2 ID 3000 (26.12-25.03). so ID 20, gets matched to 3000.
Where it gets tricky is if one value in Array 2 is not the closest, then it is skipped. for example, ID 40 value 46.81 is compared to 45.74, 46 and the smallest value is .81 from 46 ID 6000. So ID 40--> ID 6000. ID 5000 in array 2 is now skipped for any future comparisons. So now when comparing array 1 ID 50, it is compared to the next available number in array 2, 110.05. array 1 ID 50 is matched to Array 2 ID 7000.
UPDATE
so here's the code that i have tried and it works. Yes, it is not the greatest, so if someone has another suggestion please let me know.
import pandas as pd
import operator
OldDataSet = {
'id': [20,30,40,50,60,70]
,'OdoLength': [26.12,43.12,46.81,56.23,111.07,166.38]}
NewDataSet = {
'id': [3000,4000,5000,6000,7000,8000]
,'OdoLength': [25.03,42.12,45.74,46,110.05,165.41]}
df1= pd.DataFrame(OldDataSet)
df2 = pd.DataFrame(NewDataSet)
OldDataSetArray = df1.as_matrix()
NewDataSetArray = df2.as_matrix()
newPos = 1
CurrentNumber = 0
OldArrayLen = len(OldDataSetArray) -1
NewArrayLen = len(NewDataSetArray) -1
numberResults = []
for oldPos in range(len(OldDataSetArray)):
PreviousNumber = abs(OldDataSetArray[oldPos, 0]- NewDataSetArray[oldPos, 0])
while newPos <= len(NewDataSetArray) - 1:
CurrentNumber = abs(OldDataSetArray[oldPos, 0] - NewDataSetArray[newPos, 0])
#if it is the last row for the inner array, then match the next available
#in Array 1 to that last record
if newPos == NewArrayLen and oldPos < newPos and oldPos +1 <= OldArrayLen:
numberResults.append([OldDataSetArray[oldPos +1, 1],NewDataSetArray[newPos, 1],OldDataSetArray[oldPos +1, 0],NewDataSetArray[newPos, 0]])
if PreviousNumber < CurrentNumber:
numberResults.append([OldDataSetArray[oldPos, 1], NewDataSetArray[newPos - 1, 1], OldDataSetArray[oldPos, 0], NewDataSetArray[newPos - 1, 0]])
newPos +=1
break
elif PreviousNumber > CurrentNumber:
PreviousNumber = CurrentNumber
newPos +=1
#sort by array one values
numberResults = sorted(numberResults, key=operator.itemgetter(0))
numberResultsDf = pd.DataFrame(numberResults)
You can use NumPy broadcasting to build a distance matrix:
a = numpy.array([26.12, 43.12, 46.81, 56.23, 111.07, 166.38,])
b = numpy.array([25.03, 42.12, 45.74, 46, 110.05, 165.41,])
numpy.abs(a[:, None] - b[None, :])
# array([[ 1.09, 16. , 19.62, 19.88, 83.93, 139.29],
# [ 18.09, 1. , 2.62, 2.88, 66.93, 122.29],
# [ 21.78, 4.69, 1.07, 0.81, 63.24, 118.6 ],
# [ 31.2 , 14.11, 10.49, 10.23, 53.82, 109.18],
# [ 86.04, 68.95, 65.33, 65.07, 1.02, 54.34],
# [ 141.35, 124.26, 120.64, 120.38, 56.33, 0.97]])
of that matrix you can then find the closest elements using argmin, either row- or columnwise (depending of if you want to search in a or b).
numpy.argmin(numpy.abs(a[:, None] - b[None, :]), axis=1)
# array([0, 1, 3, 3, 4, 5])
Compute all the differences, and use `np.argmin to lookup the closest.
a,b=np.random.rand(2,10)
all_differences=np.abs(np.subtract.outer(a,b))
ia=all_differences.argmin(axis=1)
for i in range(10):
print(i,a[i],ia[i], b[ia[i]])
0 0.231603891949 8 0.21177584152
1 0.27810475456 7 0.302647382888
2 0.582133214953 2 0.548920922033
3 0.892858042793 1 0.872622982632
4 0.67293347218 6 0.677971552011
5 0.985227546492 1 0.872622982632
6 0.82431697833 5 0.83765895237
7 0.426992114791 4 0.451084369838
8 0.181147161752 8 0.21177584152
9 0.631139744522 3 0.653554586691
EDIT
with dataframes and indexes:
va,vb=np.random.rand(2,10)
na,nb=np.random.randint(0,100,(2,10))
dfa=pd.DataFrame({'id':na,'odo':va})
dfb=pd.DataFrame({'id':nb,'odo':vb})
all_differences=np.abs(np.subtract.outer(dfa.odo,dfb.odo))
ia=all_differences.argmin(axis=1)
dfc=dfa.merge(dfb.loc[ia].reset_index(drop=True),\
left_index=True,right_index=True)
Input :
In [337]: dfa
Out[337]:
id odo
0 72 0.426457
1 12 0.315997
2 96 0.623164
3 9 0.821498
4 72 0.071237
5 5 0.730634
6 45 0.963051
7 14 0.603289
8 5 0.401737
9 63 0.976644
In [338]: dfb
Out[338]:
id odo
0 95 0.333215
1 7 0.023957
2 61 0.021944
3 57 0.660894
4 22 0.666716
5 6 0.234920
6 83 0.642148
7 64 0.509589
8 98 0.660273
9 19 0.658639
Output :
In [339]: dfc
Out[339]:
id_x odo_x id_y odo_y
0 72 0.426457 64 0.509589
1 12 0.315997 95 0.333215
2 96 0.623164 83 0.642148
3 9 0.821498 22 0.666716
4 72 0.071237 7 0.023957
5 5 0.730634 22 0.666716
6 45 0.963051 22 0.666716
7 14 0.603289 83 0.642148
8 5 0.401737 95 0.333215
9 63 0.976644 22 0.666716
I have a list consisting of 148 entries. Each entry is a four digit number. I would like to print out the result as this:
1 14 27 40
2 15 28 41
3 16 29 42
4 17 30 43
5 18 31 44
6 19 32 45
7 20 33 46
8 21 34 47
9 22 35 48
10 23 36 49
11 24 37 50
12 25 38 51
13 26 39 52
53
54
55... and so on
I have some code that work for the first 13 rows and 4 columns:
kort_identifier = [my_list_with_the_entries]
print_val = 0
print_num_1 = 0
print_num_2 = 13
print_num_3 = 26
print_num_4 = 39
while (print_val <= 36):
print kort_identifier[print_num_1], '%10s' % kort_identifier[print_num_2], '%10s' % kort_identifier[print_num_3], '%10s' % kort_identifier[print_num_4]
print_val += 1
print_num_1 += 1
print_num_2 += 1
print_num_3 += 1
print_num_4 += 1
I feel this is an awful solution and there has to be a better and simpler way of doing this. I have searched through here (searched for printing tables and matrices) and tried those solution but none seems to work with this odd table/matrix behaviour that I need.
Please point me in the right direction.
A bit tricky, but here you go. I opted to manipulate the list until it had the right shape, instead of messing around with indexes.
lst = range(1, 149)
lst = [lst[i:i+13] for i in xrange(0, len(lst), 13)]
lst = zip(*[lst[i] + lst[i+4] + lst[i+8] for i in xrange(4)])
for row in lst:
for col in row:
print col,
print
It might be overkill, but you could just make a numpy array.
import numpy as np
x = np.array(kort_identifier).reshape(2, 13, 4)
for subarray in x:
for row in subarray:
print row