I have a pandas dataframe with a date index column and a second one with the Port outs I need to predict using a time series model.
For better prediction accuracy I need to normalize and preprocess the second column. So I created another one named Normalized Variable.
The problem is when I try to Denormalize to get the actual predicted number as the accuracy falls.
How can I change the denormalize def to not lose accuracy and is there a way to do it by not using the original training data values as I think it affects my result? I also tried using sklearn preprocessing libs but I find it difficult to accurately use them to a pd df column. These are the stats of my dataset.
PORT_OUTS NORMALIZED VARIABLE
count 19.000000 19.000000
mean 6026.631579 1.522419
std 1001.819689 0.183148
min 4281.000000 1.203291
25% 5350.500000 1.398812
50% 5922.000000 1.503291
75% 6889.000000 1.680073
max 7843.000000 1.854479
And this is the code I used:
print(f'Mean Absolute Percentage Error = {mean_absolute_percentage_error(test[train_variable],test_predictions)}')
def NormalizeDataForMul(data):
return ((data - np.min(data)) / (np.max(data) - np.min(data))) + 1
def DeNormalizeData(data_to_denormalize,orginal_data):
return (data_to_denormalize-1)*(np.max(orginal_data) - np.min(orginal_data)) + np.min(orginal_data)
actual_values = DeNormalizeData(test[train_variable],forecasting_dataset['PORT_OUTS'])
predicted_values = DeNormalizeData(test_predictions,forecasting_dataset['PORT_OUTS'])
print(f'Mean Absolute Percentage Error = {mean_absolute_percentage_error(actual_values,predicted_values)}')
And the output:
Mean Absolute Percentage Error = 0.08221370354752675
Mean Absolute Percentage Error = 0.11749164277173904
I also added 1 to the first def because I needed values >0 to use the model I want.
Related
I'm facing an imbalanced regression problem and I've already tried several ways to solve this problem. Eventually I came a cross this new metric called SERA (Squared Error Relevance Area) as a custom scoring function for imbalanced regression as mentioned in this paper. https://link.springer.com/article/10.1007/s10994-020-05900-9
In order to calculate SERA you have to compute the relevance function phi, which is varied from 0 to 1 in small steps. For each value of relevance (phi) (e.g. 0.45) a subset of the training dataset is selected where the relevance is greater or equal to that value (e.g. 0.45). And for that selected training subset sum of squared errors is calculated i.e. sum(y_true - y_pred)**2 which is known as squared error relevance (SER). Then a plot us created for SER vs phi and area under the curve is calculated i.e. SERA.
Here is my implementation, inspired by this other question here in StackOverflow:
import pandas as pd
from scipy.integrate import simps
from sklearn.metrics import make_scorer
def calc_sera(y_true, y_pred,x_relevance=None):
# creating a list from 0 to 1 with 0.001 interval
start_range = 0
end_range = 1
interval_size = 0.001
list_1 = [round(val * interval_size, 3) for val in range(1, 1000)]
list_1.append(start_range)
list_1.append(end_range)
epsilon = sorted(list_1, key=lambda x: float(x))
df = pd.concat([y_true,y_pred,x_relevance],axis=1,keys= ['true', 'pred', 'phi'])
# Initiating lists to store relevance(phi) and squared-error relevance (ser)
relevance = []
ser = []
# Converting the dataframe to a numpy array
rel_arr = x_relevance
# selecting a phi value
for phi in epsilon:
relevance.append(phi)
error_squared_sum = 0
error_squared_sum = sum((df[df.phi>=phi]['true'] - df[df.phi>=phi]['pred'])**2)
ser.append(error_squared_sum)
# squared-error relevance area (sera)
# numerical integration using simps(y, x)
sera = simps(ser, relevance)
return sera
sera = make_scorer(calc_sera, x_relevance=X['relevance'], greater_is_better=False)
I implemented a simple GridSearch using this score as an evaluation metric to select the best model:
model = CatBoostRegressor(random_state=0)
cv = KFold(n_splits = 5, shuffle = True, random_state = 42)
parameters = {'depth': [6,8,10],'learning_rate' : [0.01, 0.05, 0.1],'iterations': [100, 200, 500,1000]}
clf = GridSearchCV(estimator=model,
param_grid=parameters,
scoring=sera,
verbose=0,cv=cv)
clf.fit(X=X.drop(columns=['relevance']),
y=y,
sample_weight=X['relevance'])
print("Best parameters:", clf.best_params_)
print("Lowest SERA: ", clf.best_score_)
I also added the relevance function as weights to the model so it could apply this weights in the learning task. However, what I am getting as output is this:
Best parameters: {'depth': 6, 'iterations': 100, 'learning_rate': 0.01}
Lowest SERA: nan
Any clue on why SERA value is returning nan? Should I implement this another way?
Whenever you get unexpected NaN scores in a grid search, you should set the parameter error_score="raise" to get an error traceback, and debug from there.
In this case I think I see the problem though: sera is defined with x_relevance=X['relevance'], which includes all the rows of X. But in the search, you're cross-validating: each testing set has fewer rows, and those are what sera will be called on. I can think of a couple of options; I haven't tested either, so let me know if something doesn't work.
Use pandas index
In your pd.concat, just set join="inner". If y_true is a slice of the original pandas series (I think this is how GridSearchCV will pass it...), then the concatenation will join on those row indices, so keeping the whole of X['relevance'] is fine: it will just drop the irrelevant rows. y_pred may well be a numpy array, so you might need to set its index appropriately first?
Keep relevance in X
Then your scorer can reference the relevance column directly from the sliced X. For this, you will want to drop that column from the fitting data, which could be difficult to do for the training but not the testing set; however, CatBoost has an ignored_features parameter that I think ought to work.
I have 913000 rows data:
data image
First, Let me explain this data
this data is sales data for 10 stores and 50 item from 2013-01-01 to 2017-12-31.
i understand why this data has 913000, by leap year.
anyway, i made my training set.
training = TimeSeriesDataSet(
train_df[train_df.apply(lambda x:x['time_idx']<=training_cutoff,axis=1)],
time_idx = "time_idx",
target = "sales",
group_ids = ["store","item"], # list of column names identifying a time series
max_encoder_length = max_encoder_length,
max_prediction_length = max_prediction_length,
static_categoricals = ["store","item"],
# Categorical variables that do nat change over time (e.g. product length)
time_varying_unknown_reals = ["sales"],
)
Now
First Question: i have known as the TimeSeriesDataSet has data param, reflected data minus prediction horizon by training_cutoff and minus max_encoder_length for prediction. this is right? if no please tell me truth.
Second Question: Similarly, this is output of over code
output image
Why the length is 863500
i calculate the length on my knowledge.
prediction horizon by training_cutoff - 205010 =10000
max_encoder_length for prediction - 605010 = 30000
Thus 913000-40000 = 873000.
where is 9500?
i do my best in googling. please tell me truth..
In Python 3.7, I have a time series represented by a Pandas dataframe in which the index is a DateTimeIndex and the single value column is stock price:
The gaps correspond to NaN "price" values, and there are 126 non-NaN values and 20 NaN values. What I'm trying to do is to interpolate the non-NaN values to predict the values that are NaN. I tried several interpolation methods (linear, cubic spline) but they're not sufficiently accurate, and looking at the plot above, it appears there is a significant upward trend and also some traces of weekly periodicity, so I decided to use statsmodel ARIMA. Here is my code:
def fill_in_dataframe_ARIMA( df ):
price_is_not_NaN = df[ 'price' ].notnull()
price_is_NaN = np.logical_not( price_is_not_NaN )
# Convert the datetimes of the index into milliseconds:
datetime_ms = df.index.map( to_ms )
# Train the ARIMA model:
train_datetime_ms = datetime_ms[ price_is_not_NaN ]
train_price = df.price[ price_is_not_NaN ]
arima_model = ARIMA( train_price, ( 5, 1, 2 ), train_datetime_ms ).fit()
# Use model to predict the missing prices:
missing_datetime_ms = datetime_ms[ price_is_NaN ]
missing_price = arima_model.predict( exog = missing_datetime_ms )
return missing_price
What I'm expecting is that missing_price ends up being an array-like object of twenty entries, like missing_datetime_ms. Instead, missing_price has 125 entries, one fewer than the number of samples in train_datetime_ms:train_price.
Clearly I am not understanding what's meant by endogenous and exogenous (not to mention interpolate vs. extrapolate). Can someone please explain how I can get the intended result of 20 predicted entries?
I'm trying to use statsmodels to run separate logistic regressions for each "group" in a pandas dataframe and save the predicted probabilities for each observations (row). Each "group" represents about 2500 respondents or observations; I would like to get the predicted probability for each respondent - similar to how with SPSS you can "save" predicted probabilities when running a logistic regression.
I've read what others have attempted, but nothing seems to work. I'm using SPSS to check that the looping operation in Python is working correctly - the predicted probabilities should be the same (SPSS has a split function which makes this really easy).
import pandas as pd
import numpy as np
from statsmodels.formula.api import logit
df = pd.read_csv('test_data.csv')
for cat in df['Brand'].unique():
df_slice = df[df.Brand == cat]
est = logit('binary ~ var_1', df_slice)
est_result = est.fit()
pred = est_result.predict(df)
print(est_result.summary())
df['pred'] = pred
The model summaries are correct (est_result.summary()) and match SPSS exactly. However, the saved predicted values do not match at all. I cannot seem to understand how to get it to work correctly.
Any advice is appreciated.
I solved it in a really un-pythonic kind of way. I hope someone can improve this code. The probabilities now match exactly what SPSS produces when you split the file by group, and run individual regressions by group.
result =[]
for cat in df['Brand'].unique():
df_slice = df[df.Brand == cat]
est = logit('binary ~ var_1', df_slice)
est_result = est.fit()
pred = est_result.predict(df_slice)
results.append(pred)
# print(est_result.summary())
n = len(df['Brand'].unique())
r = pd.DataFrame(results) #put the results into a dataframe
rt = r.T #tranpose the dataframe
r_small = rt[rt.columns[-n:]] #remove all but the last n columns, n = number of categories
r_new = r_small.bfill(axis=1).iloc[:, 0] #merge the n columns and remove the NaNs
r_new #show us
df['predicted'] = r_new # combine the r_new array with the original dataframe
df #show us.
I have some skin temperature data (collected at 1Hz) which I intend to analyse.
However, the sensors were not always in contact with the skin. So I have a challenge of removing this non-skin temperature data, whilst preserving the actual skin temperature data. I have about 100 files to analyse, so I need to make this automated.
I'm aware that there is already this similar post, however I've not been able to use that to solve my problem.
My data roughly looks like this:
df =
timeStamp Temp
2018-05-04 10:08:00 28.63
. .
. .
2018-05-04 21:00:00 31.63
The first step I've taken is to simply apply a minimum threshold- this has got rid of the majority of the non-skin data. However, I'm left with the sharp jumps where the sensor was either removed or attached:
To remove these jumps, I was thinking about taking an approach where I use the first order differential of the temp and then use another set of thresholds to get rid of the data I'm not interested in.
e.g.
df_diff = df.diff(60) # period of about 60 makes jumps stick out
filter_index = np.nonzero((df.Temp <-1) | (df.Temp>0.5)) # when diff is less than -1 and greater than 0.5, most likely data jumps.
However, I find myself stuck here. The main problem is that:
1) I don't know how to now use this index list to delete the non-skin data in df. How is best to do this?
The more minor problem is that
2) I think I will still be left with some residual artefacts from the data jumps near the edges (e.g. where a tighter threshold would start to chuck away good data). Is there either a better filtering strategy or a way to then get rid of these artefacts?
*Edit as suggested I've also calculated the second order diff, but to be honest, I think the first order diff would allow for tighter thresholds (see below):
*Edit 2: Link to sample data
Try the code below (I used a tangent function to generate data). I used the second order difference idea from Mad Physicist in the comments.
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
df = pd.DataFrame()
df[0] = np.arange(0,10,0.005)
df[1] = np.tan(df[0])
#the following line calculates the absolute value of a second order finite
#difference (derivative)
df[2] = 0.5*(df[1].diff()+df[1].diff(periods=-1)).abs()
df.loc[df[2] < .05][1].plot() #select out regions of a high rate-of-change
df[1].plot() #plot original data
plt.show()
Following is a zoom of the output showing what got filtered. Matplotlib plots a line from beginning to end of the removed data.
Your first question I believe is answered with the .loc selection above.
You second question will take some experimentation with your dataset. The code above only selects out high-derivative data. You'll also need your threshold selection to remove zeroes or the like. You can experiment with where to make the derivative selection. You can also plot a histogram of the derivative to give you a hint as to what to select out.
Also, higher order difference equations are possible to help with smoothing. This should help remove artifacts without having to trim around the cuts.
Edit:
A fourth-order finite difference can be applied using this:
df[2] = (df[1].diff(periods=1)-df[1].diff(periods=-1))*8/12 - \
(df[1].diff(periods=2)-df[1].diff(periods=-2))*1/12
df[2] = df[2].abs()
It's reasonable to think that it may help. The coefficients above can be worked out or derived from the following link for higher orders.
Finite Difference Coefficients Calculator
Note: The above second and fourth order central difference equations are not proper first derivatives. One must divide by the interval length (in this case 0.005) to get the actual derivative.
Here's a suggestion that targets your issues regarding
[...]an approach where I use the first order differential of the temp and then use another set of thresholds to get rid of the data I'm not interested in.
[..]I don't know how to now use this index list to delete the non-skin data in df. How is best to do this?
using stats.zscore() and pandas.merge()
As it is, it will still have a minor issue with your concerns regarding
[...]left with some residual artefacts from the data jumps near the edges[...]
But we'll get to that later.
First, here's a snippet to produce a dataframe that shares some of the challenges with your dataset:
# Imports
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
from scipy import stats
np.random.seed(22)
# A function for noisy data with a trend element
def sample():
base = 100
nsample = 50
sigma = 10
# Basic df with trend and sinus seasonality
trend1 = np.linspace(0,1, nsample)
y1 = np.sin(trend1)
dates = pd.date_range(pd.datetime(2016, 1, 1).strftime('%Y-%m-%d'), periods=nsample).tolist()
df = pd.DataFrame({'dates':dates, 'trend1':trend1, 'y1':y1})
df = df.set_index(['dates'])
df.index = pd.to_datetime(df.index)
# Gaussian Noise with amplitude sigma
df['y2'] = sigma * np.random.normal(size=nsample)
df['y3'] = df['y2'] + base + (np.sin(trend1))
df['trend2'] = 1/(np.cos(trend1)/1.05)
df['y4'] = df['y3'] * df['trend2']
df=df['y4'].to_frame()
df.columns = ['Temp']
df['Temp'][20:31] = np.nan
# Insert spikes and missing values
df['Temp'][19] = df['Temp'][39]/4000
df['Temp'][31] = df['Temp'][15]/4000
return(df)
# Dataframe with random data
df_raw = sample()
df_raw.plot()
As you can see, there are two distinct spikes with missing numbers between them. And it's really the missing numbers that are causing the problems here if you prefer to isolate values where the differences are large. The first spike is not a problem since you'll find the difference between a very small number and a number that is more similar to the rest of the data:
But for the second spike, you're going to get the (nonexisting) difference between a very small number and a non-existing number, so that the extreme data-point you'll end up removing is the difference between your outlier and the next observation:
This is not a huge problem for one single observation. You could just fill it right back in there. But for larger data sets that would not be a very viable soution. Anyway, if you can manage without that particular value, the below code should solve your problem. You will also have a similar problem with your very first observation, but I think it would be far more trivial to decide whether or not to keep that one value.
The steps:
# 1. Get some info about the original data:
firstVal = df_raw[:1]
colName = df_raw.columns
# 2. Take the first difference and
df_diff = df_raw.diff()
# 3. Remove missing values
df_clean = df_diff.dropna()
# 4. Select a level for a Z-score to identify and remove outliers
level = 3
df_Z = df_clean[(np.abs(stats.zscore(df_clean)) < level).all(axis=1)]
ix_keep = df_Z.index
# 5. Subset the raw dataframe with the indexes you'd like to keep
df_keep = df_raw.loc[ix_keep]
# 6.
# df_keep will be missing some indexes.
# Do the following if you'd like to keep those indexes
# and, for example, fill missing values with the previous values
df_out = pd.merge(df_keep, df_raw, how='outer', left_index=True, right_index=True)
# 7. Keep only the first column
df_out = df_out.ix[:,0].to_frame()
# 8. Fill missing values
df_complete = df_out.fillna(axis=0, method='ffill')
# 9. Replace first value
df_complete.iloc[0] = firstVal.iloc[0]
# 10. Reset column names
df_complete.columns = colName
# Result
df_complete.plot()
Here's the whole thing for an easy copy-paste:
# Imports
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
from scipy import stats
np.random.seed(22)
# A function for noisy data with a trend element
def sample():
base = 100
nsample = 50
sigma = 10
# Basic df with trend and sinus seasonality
trend1 = np.linspace(0,1, nsample)
y1 = np.sin(trend1)
dates = pd.date_range(pd.datetime(2016, 1, 1).strftime('%Y-%m-%d'), periods=nsample).tolist()
df = pd.DataFrame({'dates':dates, 'trend1':trend1, 'y1':y1})
df = df.set_index(['dates'])
df.index = pd.to_datetime(df.index)
# Gaussian Noise with amplitude sigma
df['y2'] = sigma * np.random.normal(size=nsample)
df['y3'] = df['y2'] + base + (np.sin(trend1))
df['trend2'] = 1/(np.cos(trend1)/1.05)
df['y4'] = df['y3'] * df['trend2']
df=df['y4'].to_frame()
df.columns = ['Temp']
df['Temp'][20:31] = np.nan
# Insert spikes and missing values
df['Temp'][19] = df['Temp'][39]/4000
df['Temp'][31] = df['Temp'][15]/4000
return(df)
# A function for removing outliers
def noSpikes(df, level, keepFirst):
# 1. Get some info about the original data:
firstVal = df[:1]
colName = df.columns
# 2. Take the first difference and
df_diff = df.diff()
# 3. Remove missing values
df_clean = df_diff.dropna()
# 4. Select a level for a Z-score to identify and remove outliers
df_Z = df_clean[(np.abs(stats.zscore(df_clean)) < level).all(axis=1)]
ix_keep = df_Z.index
# 5. Subset the raw dataframe with the indexes you'd like to keep
df_keep = df_raw.loc[ix_keep]
# 6.
# df_keep will be missing some indexes.
# Do the following if you'd like to keep those indexes
# and, for example, fill missing values with the previous values
df_out = pd.merge(df_keep, df_raw, how='outer', left_index=True, right_index=True)
# 7. Keep only the first column
df_out = df_out.ix[:,0].to_frame()
# 8. Fill missing values
df_complete = df_out.fillna(axis=0, method='ffill')
# 9. Reset column names
df_complete.columns = colName
# Keep the first value
if keepFirst:
df_complete.iloc[0] = firstVal.iloc[0]
return(df_complete)
# Dataframe with random data
df_raw = sample()
df_raw.plot()
# Remove outliers
df_cleaned = noSpikes(df=df_raw, level = 3, keepFirst = True)
df_cleaned.plot()