Related
Two part question:
Trying to determine the largest prime factor of 600851475143, I found this program online that seems to work. The problem is, I'm having a hard time figuring out how it works exactly, though I understand the basics of what the program is doing. Also, I'd like if you could shed some light on any method you may know of finding prime factors, perhaps without testing every number, and how your method works.
Here's the code that I found online for prime factorization [NOTE: This code is incorrect. See Stefan's answer below for better code.]:
n = 600851475143
i = 2
while i * i < n:
while n % i == 0:
n = n / i
i = i + 1
print(n)
#takes about ~0.01secs
Why is that code so much faster than this code, which is just to test the speed and has no real purpose other than that?
i = 1
while i < 100:
i += 1
#takes about ~3secs
This question was the first link that popped up when I googled "python prime factorization".
As pointed out by #quangpn88, this algorithm is wrong (!) for perfect squares such as n = 4, 9, 16, ... However, #quangpn88's fix does not work either, since it will yield incorrect results if the largest prime factor occurs 3 or more times, e.g., n = 2*2*2 = 8 or n = 2*3*3*3 = 54.
I believe a correct, brute-force algorithm in Python is:
def largest_prime_factor(n):
i = 2
while i * i <= n:
if n % i:
i += 1
else:
n //= i
return n
Don't use this in performance code, but it's OK for quick tests with moderately large numbers:
In [1]: %timeit largest_prime_factor(600851475143)
1000 loops, best of 3: 388 µs per loop
If the complete prime factorization is sought, this is the brute-force algorithm:
def prime_factors(n):
i = 2
factors = []
while i * i <= n:
if n % i:
i += 1
else:
n //= i
factors.append(i)
if n > 1:
factors.append(n)
return factors
Ok. So you said you understand the basics, but you're not sure EXACTLY how it works. First of all, this is a great answer to the Project Euler question it stems from. I've done a lot of research into this problem and this is by far the simplest response.
For the purpose of explanation, I'll let n = 20. To run the real Project Euler problem, let n = 600851475143.
n = 20
i = 2
while i * i < n:
while n%i == 0:
n = n / i
i = i + 1
print (n)
This explanation uses two while loops. The biggest thing to remember about while loops is that they run until they are no longer true.
The outer loop states that while i * i isn't greater than n (because the largest prime factor will never be larger than the square root of n), add 1 to i after the inner loop runs.
The inner loop states that while i divides evenly into n, replace n with n divided by i. This loop runs continuously until it is no longer true. For n=20 and i=2, n is replaced by 10, then again by 5. Because 2 doesn't evenly divide into 5, the loop stops with n=5 and the outer loop finishes, producing i+1=3.
Finally, because 3 squared is greater than 5, the outer loop is no longer true and prints the result of n.
Thanks for posting this. I looked at the code forever before realizing how exactly it worked. Hopefully, this is what you're looking for in a response. If not, let me know and I can explain further.
It looks like people are doing the Project Euler thing where you code the solution yourself. For everyone else who wants to get work done, there's the primefac module which does very large numbers very quickly:
#!python
import primefac
import sys
n = int( sys.argv[1] )
factors = list( primefac.primefac(n) )
print '\n'.join(map(str, factors))
For prime number generation I always use the Sieve of Eratosthenes:
def primes(n):
if n<=2:
return []
sieve=[True]*(n+1)
for x in range(3,int(n**0.5)+1,2):
for y in range(3,(n//x)+1,2):
sieve[(x*y)]=False
return [2]+[i for i in range(3,n,2) if sieve[i]]
In [42]: %timeit primes(10**5)
10 loops, best of 3: 60.4 ms per loop
In [43]: %timeit primes(10**6)
1 loops, best of 3: 1.01 s per loop
You can use Miller-Rabin primality test to check whether a number is prime or not. You can find its Python implementations here.
Always use timeit module to time your code, the 2nd one takes just 15us:
def func():
n = 600851475143
i = 2
while i * i < n:
while n % i == 0:
n = n / i
i = i + 1
In [19]: %timeit func()
1000 loops, best of 3: 1.35 ms per loop
def func():
i=1
while i<100:i+=1
....:
In [21]: %timeit func()
10000 loops, best of 3: 15.3 us per loop
If you are looking for pre-written code that is well maintained, use the function sympy.ntheory.primefactors from SymPy.
It returns a sorted list of prime factors of n.
>>> from sympy.ntheory import primefactors
>>> primefactors(6008)
[2, 751]
Pass the list to max() to get the biggest prime factor: max(primefactors(6008))
In case you want the prime factors of n and also the multiplicities of each of them, use sympy.ntheory.factorint.
Given a positive integer n, factorint(n) returns a dict containing the
prime factors of n as keys and their respective multiplicities as
values.
>>> from sympy.ntheory import factorint
>>> factorint(6008) # 6008 = (2**3) * (751**1)
{2: 3, 751: 1}
The code is tested against Python 3.6.9 and SymPy 1.1.1.
"""
The prime factors of 13195 are 5, 7, 13 and 29.
What is the largest prime factor of the number 600851475143 ?
"""
from sympy import primefactors
print(primefactors(600851475143)[-1])
def find_prime_facs(n):
list_of_factors=[]
i=2
while n>1:
if n%i==0:
list_of_factors.append(i)
n=n/i
i=i-1
i+=1
return list_of_factors
Isn't largest prime factor of 27 is 3 ??
The above code might be fastest,but it fails on 27 right ?
27 = 3*3*3
The above code returns 1
As far as I know.....1 is neither prime nor composite
I think, this is the better code
def prime_factors(n):
factors=[]
d=2
while(d*d<=n):
while(n>1):
while n%d==0:
factors.append(d)
n=n/d
d+=1
return factors[-1]
Another way of doing this:
import sys
n = int(sys.argv[1])
result = []
for i in xrange(2,n):
while n % i == 0:
#print i,"|",n
n = n/i
result.append(i)
if n == 1:
break
if n > 1: result.append(n)
print result
sample output :
python test.py 68
[2, 2, 17]
The code is wrong with 100. It should check case i * i = n:
I think it should be:
while i * i <= n:
if i * i = n:
n = i
break
while n%i == 0:
n = n / i
i = i + 1
print (n)
My code:
# METHOD: PRIME FACTORS
def prime_factors(n):
'''PRIME FACTORS: generates a list of prime factors for the number given
RETURNS: number(being factored), list(prime factors), count(how many loops to find factors, for optimization)
'''
num = n #number at the end
count = 0 #optimization (to count iterations)
index = 0 #index (to test)
t = [2, 3, 5, 7] #list (to test)
f = [] #prime factors list
while t[index] ** 2 <= n:
count += 1 #increment (how many loops to find factors)
if len(t) == (index + 1):
t.append(t[-2] + 6) #extend test list (as much as needed) [2, 3, 5, 7, 11, 13...]
if n % t[index]: #if 0 does else (otherwise increments, or try next t[index])
index += 1 #increment index
else:
n = n // t[index] #drop max number we are testing... (this should drastically shorten the loops)
f.append(t[index]) #append factor to list
if n > 1:
f.append(n) #add last factor...
return num, f, f'count optimization: {count}'
Which I compared to the code with the most votes, which was very fast
def prime_factors2(n):
i = 2
factors = []
count = 0 #added to test optimization
while i * i <= n:
count += 1 #added to test optimization
if n % i:
i += 1
else:
n //= i
factors.append(i)
if n > 1:
factors.append(n)
return factors, f'count: {count}' #print with (count added)
TESTING, (note, I added a COUNT in each loop to test the optimization)
# >>> prime_factors2(600851475143)
# ([71, 839, 1471, 6857], 'count: 1472')
# >>> prime_factors(600851475143)
# (600851475143, [71, 839, 1471, 6857], 'count optimization: 494')
I figure this code could be modified easily to get the (largest factor) or whatever else is needed. I'm open to any questions, my goal is to improve this much more as well for larger primes and factors.
In case you want to use numpy here's a way to create an array of all primes not greater than n:
[ i for i in np.arange(2,n+1) if 0 not in np.array([i] * (i-2) ) % np.arange(2,i)]
Check this out, it might help you a bit in your understanding.
#program to find the prime factors of a given number
import sympy as smp
try:
number = int(input('Enter a number : '))
except(ValueError) :
print('Please enter an integer !')
num = number
prime_factors = []
if smp.isprime(number) :
prime_factors.append(number)
else :
for i in range(2, int(number/2) + 1) :
"""while figuring out prime factors of a given number, n
keep in mind that a number can itself be prime or if not,
then all its prime factors will be less than or equal to its int(n/2 + 1)"""
if smp.isprime(i) and number % i == 0 :
while(number % i == 0) :
prime_factors.append(i)
number = number / i
print('prime factors of ' + str(num) + ' - ')
for i in prime_factors :
print(i, end = ' ')
This is my python code:
it has a fast check for primes and checks from highest to lowest the prime factors.
You have to stop if no new numbers came out. (Any ideas on this?)
import math
def is_prime_v3(n):
""" Return 'true' if n is a prime number, 'False' otherwise """
if n == 1:
return False
if n > 2 and n % 2 == 0:
return False
max_divisor = math.floor(math.sqrt(n))
for d in range(3, 1 + max_divisor, 2):
if n % d == 0:
return False
return True
number = <Number>
for i in range(1,math.floor(number/2)):
if is_prime_v3(i):
if number % i == 0:
print("Found: {} with factor {}".format(number / i, i))
The answer for the initial question arrives in a fraction of a second.
Below are two ways to generate prime factors of given number efficiently:
from math import sqrt
def prime_factors(num):
'''
This function collectes all prime factors of given number and prints them.
'''
prime_factors_list = []
while num % 2 == 0:
prime_factors_list.append(2)
num /= 2
for i in range(3, int(sqrt(num))+1, 2):
if num % i == 0:
prime_factors_list.append(i)
num /= i
if num > 2:
prime_factors_list.append(int(num))
print(sorted(prime_factors_list))
val = int(input('Enter number:'))
prime_factors(val)
def prime_factors_generator(num):
'''
This function creates a generator for prime factors of given number and generates the factors until user asks for them.
It handles StopIteration if generator exhausted.
'''
while num % 2 == 0:
yield 2
num /= 2
for i in range(3, int(sqrt(num))+1, 2):
if num % i == 0:
yield i
num /= i
if num > 2:
yield int(num)
val = int(input('Enter number:'))
prime_gen = prime_factors_generator(val)
while True:
try:
print(next(prime_gen))
except StopIteration:
print('Generator exhausted...')
break
else:
flag = input('Do you want next prime factor ? "y" or "n":')
if flag == 'y':
continue
elif flag == 'n':
break
else:
print('Please try again and enter a correct choice i.e. either y or n')
Since nobody has been trying to hack this with old nice reduce method, I'm going to take this occupation. This method isn't flexible for problems like this because it performs loop of repeated actions over array of arguments and there's no way how to interrupt this loop by default. The door open after we have implemented our own interupted reduce for interrupted loops like this:
from functools import reduce
def inner_func(func, cond, x, y):
res = func(x, y)
if not cond(res):
raise StopIteration(x, y)
return res
def ireducewhile(func, cond, iterable):
# generates intermediary results of args while reducing
iterable = iter(iterable)
x = next(iterable)
yield x
for y in iterable:
try:
x = inner_func(func, cond, x, y)
except StopIteration:
break
yield x
After that we are able to use some func that is the same as an input of standard Python reduce method. Let this func be defined in a following way:
def division(c):
num, start = c
for i in range(start, int(num**0.5)+1):
if num % i == 0:
return (num//i, i)
return None
Assuming we want to factor a number 600851475143, an expected output of this function after repeated use of this function should be this:
(600851475143, 2) -> (8462696833 -> 71), (10086647 -> 839), (6857, 1471) -> None
The first item of tuple is a number that division method takes and tries to divide by the smallest divisor starting from second item and finishing with square root of this number. If no divisor exists, None is returned.
Now we need to start with iterator defined like this:
def gener(prime):
# returns and infinite generator (600851475143, 2), 0, 0, 0...
yield (prime, 2)
while True:
yield 0
Finally, the result of looping is:
result = list(ireducewhile(lambda x,y: div(x), lambda x: x is not None, iterable=gen(600851475143)))
#result: [(600851475143, 2), (8462696833, 71), (10086647, 839), (6857, 1471)]
And outputting prime divisors can be captured by:
if len(result) == 1: output = result[0][0]
else: output = list(map(lambda x: x[1], result[1:]))+[result[-1][0]]
#output: [2, 71, 839, 1471]
Note:
In order to make it more efficient, you might like to use pregenerated primes that lies in specific range instead of all the values of this range.
You shouldn't loop till the square root of the number! It may be right some times, but not always!
Largest prime factor of 10 is 5, which is bigger than the sqrt(10) (3.16, aprox).
Largest prime factor of 33 is 11, which is bigger than the sqrt(33) (5.5,74, aprox).
You're confusing this with the propriety which states that, if a number has a prime factor bigger than its sqrt, it has to have at least another one other prime factor smaller than its sqrt. So, with you want to test if a number is prime, you only need to test till its sqrt.
def prime(n):
for i in range(2,n):
if n%i==0:
return False
return True
def primefactors():
m=int(input('enter the number:'))
for i in range(2,m):
if (prime(i)):
if m%i==0:
print(i)
return print('end of it')
primefactors()
Another way that skips even numbers after 2 is handled:
def prime_factors(n):
factors = []
d = 2
step = 1
while d*d <= n:
while n>1:
while n%d == 0:
factors.append(d)
n = n/d
d += step
step = 2
return factors
Two part question:
Trying to determine the largest prime factor of 600851475143, I found this program online that seems to work. The problem is, I'm having a hard time figuring out how it works exactly, though I understand the basics of what the program is doing. Also, I'd like if you could shed some light on any method you may know of finding prime factors, perhaps without testing every number, and how your method works.
Here's the code that I found online for prime factorization [NOTE: This code is incorrect. See Stefan's answer below for better code.]:
n = 600851475143
i = 2
while i * i < n:
while n % i == 0:
n = n / i
i = i + 1
print(n)
#takes about ~0.01secs
Why is that code so much faster than this code, which is just to test the speed and has no real purpose other than that?
i = 1
while i < 100:
i += 1
#takes about ~3secs
This question was the first link that popped up when I googled "python prime factorization".
As pointed out by #quangpn88, this algorithm is wrong (!) for perfect squares such as n = 4, 9, 16, ... However, #quangpn88's fix does not work either, since it will yield incorrect results if the largest prime factor occurs 3 or more times, e.g., n = 2*2*2 = 8 or n = 2*3*3*3 = 54.
I believe a correct, brute-force algorithm in Python is:
def largest_prime_factor(n):
i = 2
while i * i <= n:
if n % i:
i += 1
else:
n //= i
return n
Don't use this in performance code, but it's OK for quick tests with moderately large numbers:
In [1]: %timeit largest_prime_factor(600851475143)
1000 loops, best of 3: 388 µs per loop
If the complete prime factorization is sought, this is the brute-force algorithm:
def prime_factors(n):
i = 2
factors = []
while i * i <= n:
if n % i:
i += 1
else:
n //= i
factors.append(i)
if n > 1:
factors.append(n)
return factors
Ok. So you said you understand the basics, but you're not sure EXACTLY how it works. First of all, this is a great answer to the Project Euler question it stems from. I've done a lot of research into this problem and this is by far the simplest response.
For the purpose of explanation, I'll let n = 20. To run the real Project Euler problem, let n = 600851475143.
n = 20
i = 2
while i * i < n:
while n%i == 0:
n = n / i
i = i + 1
print (n)
This explanation uses two while loops. The biggest thing to remember about while loops is that they run until they are no longer true.
The outer loop states that while i * i isn't greater than n (because the largest prime factor will never be larger than the square root of n), add 1 to i after the inner loop runs.
The inner loop states that while i divides evenly into n, replace n with n divided by i. This loop runs continuously until it is no longer true. For n=20 and i=2, n is replaced by 10, then again by 5. Because 2 doesn't evenly divide into 5, the loop stops with n=5 and the outer loop finishes, producing i+1=3.
Finally, because 3 squared is greater than 5, the outer loop is no longer true and prints the result of n.
Thanks for posting this. I looked at the code forever before realizing how exactly it worked. Hopefully, this is what you're looking for in a response. If not, let me know and I can explain further.
It looks like people are doing the Project Euler thing where you code the solution yourself. For everyone else who wants to get work done, there's the primefac module which does very large numbers very quickly:
#!python
import primefac
import sys
n = int( sys.argv[1] )
factors = list( primefac.primefac(n) )
print '\n'.join(map(str, factors))
For prime number generation I always use the Sieve of Eratosthenes:
def primes(n):
if n<=2:
return []
sieve=[True]*(n+1)
for x in range(3,int(n**0.5)+1,2):
for y in range(3,(n//x)+1,2):
sieve[(x*y)]=False
return [2]+[i for i in range(3,n,2) if sieve[i]]
In [42]: %timeit primes(10**5)
10 loops, best of 3: 60.4 ms per loop
In [43]: %timeit primes(10**6)
1 loops, best of 3: 1.01 s per loop
You can use Miller-Rabin primality test to check whether a number is prime or not. You can find its Python implementations here.
Always use timeit module to time your code, the 2nd one takes just 15us:
def func():
n = 600851475143
i = 2
while i * i < n:
while n % i == 0:
n = n / i
i = i + 1
In [19]: %timeit func()
1000 loops, best of 3: 1.35 ms per loop
def func():
i=1
while i<100:i+=1
....:
In [21]: %timeit func()
10000 loops, best of 3: 15.3 us per loop
If you are looking for pre-written code that is well maintained, use the function sympy.ntheory.primefactors from SymPy.
It returns a sorted list of prime factors of n.
>>> from sympy.ntheory import primefactors
>>> primefactors(6008)
[2, 751]
Pass the list to max() to get the biggest prime factor: max(primefactors(6008))
In case you want the prime factors of n and also the multiplicities of each of them, use sympy.ntheory.factorint.
Given a positive integer n, factorint(n) returns a dict containing the
prime factors of n as keys and their respective multiplicities as
values.
>>> from sympy.ntheory import factorint
>>> factorint(6008) # 6008 = (2**3) * (751**1)
{2: 3, 751: 1}
The code is tested against Python 3.6.9 and SymPy 1.1.1.
"""
The prime factors of 13195 are 5, 7, 13 and 29.
What is the largest prime factor of the number 600851475143 ?
"""
from sympy import primefactors
print(primefactors(600851475143)[-1])
def find_prime_facs(n):
list_of_factors=[]
i=2
while n>1:
if n%i==0:
list_of_factors.append(i)
n=n/i
i=i-1
i+=1
return list_of_factors
Isn't largest prime factor of 27 is 3 ??
The above code might be fastest,but it fails on 27 right ?
27 = 3*3*3
The above code returns 1
As far as I know.....1 is neither prime nor composite
I think, this is the better code
def prime_factors(n):
factors=[]
d=2
while(d*d<=n):
while(n>1):
while n%d==0:
factors.append(d)
n=n/d
d+=1
return factors[-1]
Another way of doing this:
import sys
n = int(sys.argv[1])
result = []
for i in xrange(2,n):
while n % i == 0:
#print i,"|",n
n = n/i
result.append(i)
if n == 1:
break
if n > 1: result.append(n)
print result
sample output :
python test.py 68
[2, 2, 17]
The code is wrong with 100. It should check case i * i = n:
I think it should be:
while i * i <= n:
if i * i = n:
n = i
break
while n%i == 0:
n = n / i
i = i + 1
print (n)
My code:
# METHOD: PRIME FACTORS
def prime_factors(n):
'''PRIME FACTORS: generates a list of prime factors for the number given
RETURNS: number(being factored), list(prime factors), count(how many loops to find factors, for optimization)
'''
num = n #number at the end
count = 0 #optimization (to count iterations)
index = 0 #index (to test)
t = [2, 3, 5, 7] #list (to test)
f = [] #prime factors list
while t[index] ** 2 <= n:
count += 1 #increment (how many loops to find factors)
if len(t) == (index + 1):
t.append(t[-2] + 6) #extend test list (as much as needed) [2, 3, 5, 7, 11, 13...]
if n % t[index]: #if 0 does else (otherwise increments, or try next t[index])
index += 1 #increment index
else:
n = n // t[index] #drop max number we are testing... (this should drastically shorten the loops)
f.append(t[index]) #append factor to list
if n > 1:
f.append(n) #add last factor...
return num, f, f'count optimization: {count}'
Which I compared to the code with the most votes, which was very fast
def prime_factors2(n):
i = 2
factors = []
count = 0 #added to test optimization
while i * i <= n:
count += 1 #added to test optimization
if n % i:
i += 1
else:
n //= i
factors.append(i)
if n > 1:
factors.append(n)
return factors, f'count: {count}' #print with (count added)
TESTING, (note, I added a COUNT in each loop to test the optimization)
# >>> prime_factors2(600851475143)
# ([71, 839, 1471, 6857], 'count: 1472')
# >>> prime_factors(600851475143)
# (600851475143, [71, 839, 1471, 6857], 'count optimization: 494')
I figure this code could be modified easily to get the (largest factor) or whatever else is needed. I'm open to any questions, my goal is to improve this much more as well for larger primes and factors.
In case you want to use numpy here's a way to create an array of all primes not greater than n:
[ i for i in np.arange(2,n+1) if 0 not in np.array([i] * (i-2) ) % np.arange(2,i)]
Check this out, it might help you a bit in your understanding.
#program to find the prime factors of a given number
import sympy as smp
try:
number = int(input('Enter a number : '))
except(ValueError) :
print('Please enter an integer !')
num = number
prime_factors = []
if smp.isprime(number) :
prime_factors.append(number)
else :
for i in range(2, int(number/2) + 1) :
"""while figuring out prime factors of a given number, n
keep in mind that a number can itself be prime or if not,
then all its prime factors will be less than or equal to its int(n/2 + 1)"""
if smp.isprime(i) and number % i == 0 :
while(number % i == 0) :
prime_factors.append(i)
number = number / i
print('prime factors of ' + str(num) + ' - ')
for i in prime_factors :
print(i, end = ' ')
This is my python code:
it has a fast check for primes and checks from highest to lowest the prime factors.
You have to stop if no new numbers came out. (Any ideas on this?)
import math
def is_prime_v3(n):
""" Return 'true' if n is a prime number, 'False' otherwise """
if n == 1:
return False
if n > 2 and n % 2 == 0:
return False
max_divisor = math.floor(math.sqrt(n))
for d in range(3, 1 + max_divisor, 2):
if n % d == 0:
return False
return True
number = <Number>
for i in range(1,math.floor(number/2)):
if is_prime_v3(i):
if number % i == 0:
print("Found: {} with factor {}".format(number / i, i))
The answer for the initial question arrives in a fraction of a second.
Below are two ways to generate prime factors of given number efficiently:
from math import sqrt
def prime_factors(num):
'''
This function collectes all prime factors of given number and prints them.
'''
prime_factors_list = []
while num % 2 == 0:
prime_factors_list.append(2)
num /= 2
for i in range(3, int(sqrt(num))+1, 2):
if num % i == 0:
prime_factors_list.append(i)
num /= i
if num > 2:
prime_factors_list.append(int(num))
print(sorted(prime_factors_list))
val = int(input('Enter number:'))
prime_factors(val)
def prime_factors_generator(num):
'''
This function creates a generator for prime factors of given number and generates the factors until user asks for them.
It handles StopIteration if generator exhausted.
'''
while num % 2 == 0:
yield 2
num /= 2
for i in range(3, int(sqrt(num))+1, 2):
if num % i == 0:
yield i
num /= i
if num > 2:
yield int(num)
val = int(input('Enter number:'))
prime_gen = prime_factors_generator(val)
while True:
try:
print(next(prime_gen))
except StopIteration:
print('Generator exhausted...')
break
else:
flag = input('Do you want next prime factor ? "y" or "n":')
if flag == 'y':
continue
elif flag == 'n':
break
else:
print('Please try again and enter a correct choice i.e. either y or n')
Since nobody has been trying to hack this with old nice reduce method, I'm going to take this occupation. This method isn't flexible for problems like this because it performs loop of repeated actions over array of arguments and there's no way how to interrupt this loop by default. The door open after we have implemented our own interupted reduce for interrupted loops like this:
from functools import reduce
def inner_func(func, cond, x, y):
res = func(x, y)
if not cond(res):
raise StopIteration(x, y)
return res
def ireducewhile(func, cond, iterable):
# generates intermediary results of args while reducing
iterable = iter(iterable)
x = next(iterable)
yield x
for y in iterable:
try:
x = inner_func(func, cond, x, y)
except StopIteration:
break
yield x
After that we are able to use some func that is the same as an input of standard Python reduce method. Let this func be defined in a following way:
def division(c):
num, start = c
for i in range(start, int(num**0.5)+1):
if num % i == 0:
return (num//i, i)
return None
Assuming we want to factor a number 600851475143, an expected output of this function after repeated use of this function should be this:
(600851475143, 2) -> (8462696833 -> 71), (10086647 -> 839), (6857, 1471) -> None
The first item of tuple is a number that division method takes and tries to divide by the smallest divisor starting from second item and finishing with square root of this number. If no divisor exists, None is returned.
Now we need to start with iterator defined like this:
def gener(prime):
# returns and infinite generator (600851475143, 2), 0, 0, 0...
yield (prime, 2)
while True:
yield 0
Finally, the result of looping is:
result = list(ireducewhile(lambda x,y: div(x), lambda x: x is not None, iterable=gen(600851475143)))
#result: [(600851475143, 2), (8462696833, 71), (10086647, 839), (6857, 1471)]
And outputting prime divisors can be captured by:
if len(result) == 1: output = result[0][0]
else: output = list(map(lambda x: x[1], result[1:]))+[result[-1][0]]
#output: [2, 71, 839, 1471]
Note:
In order to make it more efficient, you might like to use pregenerated primes that lies in specific range instead of all the values of this range.
You shouldn't loop till the square root of the number! It may be right some times, but not always!
Largest prime factor of 10 is 5, which is bigger than the sqrt(10) (3.16, aprox).
Largest prime factor of 33 is 11, which is bigger than the sqrt(33) (5.5,74, aprox).
You're confusing this with the propriety which states that, if a number has a prime factor bigger than its sqrt, it has to have at least another one other prime factor smaller than its sqrt. So, with you want to test if a number is prime, you only need to test till its sqrt.
def prime(n):
for i in range(2,n):
if n%i==0:
return False
return True
def primefactors():
m=int(input('enter the number:'))
for i in range(2,m):
if (prime(i)):
if m%i==0:
print(i)
return print('end of it')
primefactors()
Another way that skips even numbers after 2 is handled:
def prime_factors(n):
factors = []
d = 2
step = 1
while d*d <= n:
while n>1:
while n%d == 0:
factors.append(d)
n = n/d
d += step
step = 2
return factors
I'm new to python, I'm trying to help my girlfriend learn coding through project Euler, I suggested she start with python. Unfortunately on problem 3 we came to a strange error.
For finding the prime factors of smaller numbers, this seems to work fine, but trying to find the prime factors of 600851475143 it just chokes.
I was under the impression python was extremely forgiving for maximum integer values, so I don't know why it doesn't work here.
def is_prime (n) :
for i in range (2, n) :
if n % i == 0:
return 0
return 1
n = 600851475143
for i in range (1, n) :
if n % i == 0 :
if is_prime (i) == 1 :
print i
If anyone could lead me right, I'd be very thankful!
David
edit: I'm well aware how sub-optimal this all is!
Since no one answered the obvious, use xrange instead of range:
def is_prime (n) :
for i in xrange (2, n) :
if n % i == 0:
return 0
return 1
n = 600851475143
for i in xrange (1, n) :
if n % i == 0 :
if is_prime (i) == 1 :
print i
But keep in mind this is still very slow, but you won't run into MemoryErrors.
see this algorithm to go through numbers by dividing on factors, it's more efficient:
while num > 1:
if num % div == 0:
num /= div
div -= 1
div += 1
Finding the prime factors of big numbers is not a trivial thing. Criptography is based in keys that are the product of two keys big enough so that event the biggest parallel computers choke on them. When there is an improvement on computing power or methods you just use bigger nimbers to keep it safe,
Trial division chockes very fast, For bigger numbers there are trial and error methods as Brent's that can go further.
The code i attach found 600851475143 = [71, 839, 1471, 6857] in 0,1 seconds, but it chokes the same for bigger numbers.
It uses trial division up to 1M then switches to Brent's method.
I can't explain Brent, I just copied the code...
#Py3.4
from fractions import gcd
from random import randint
from time import clock
def brent(N):
# brent returns a divisor, not guaranteed to be prime
if N%2==0: return 2
y,c,m = randint(1, N-1),randint(1, N-1),randint(1, N-1)
g,r,q = 1,1,1
while g==1:
x = y
for i in range(r):
y = ((y*y)%N+c)%N
k = 0
while (k<r and g==1):
ys = y
for i in range(min(m,r-k)):
y = ((y*y)%N+c)%N
q = q*(abs(x-y))%N
g = gcd(q,N)
k = k + m
r = r*2
if g==N:
while True:
ys = ((ys*ys)%N+c)%N
g = gcd(abs(x-ys),N)
if g>1: break
return g
def factorize(n1):
if n1<=0: return []
if n1==1: return [1]
n=n1
b=[]
p=0
mx=1000000
while n % 2 ==0 : b.append(2);n//=2
while n % 3 ==0 : b.append(3);n//=3
i=5
inc=2
while i <=mx:
while n % i ==0 : b.append(i); n//=i
i+=inc
inc=6-inc
while n>mx:
p1=n
#iterate until divisor is prime
while p1!=p:
p=p1
p1=brent(p)
print(p1)
b.append(p1);n//=p1
if n!=1:b.append(n)
b.sort()
return b
from functools import reduce
from sys import argv
def main():
if len(argv)==2:
n=int(argv[1])
else:
n=int(eval(input(" Integer to factorize? ")))
t1=clock()
li=factorize(n)
print (n,"= ",li)
print(clock()-t1, " seconds")
print ("n - product of factors = ",n - reduce(lambda x,y :x*y ,li))
if __name__ == "__main__":
main()
Here is the code for generating a prime number sequence. This code in particular, takes the users input as an integer (if it can), and prints out that many numbers of the prime number sequence. Is there any way to optimize this particular script so that it runs faster and can process bigger numbers at a greater speed?
P = 2
Count = 1
X = int(raw_input('choose number: '))
def Main(P, X):
while Count <= X:
isprime = True
for x in range(2, P - 1):
if P % x == 0:
isprime = False
if isprime:
print P
Count += 1
P += 1
Main(P, X)
n-th prime is less than N = max(12, n*(log(n) + log(log(n)))). Knowing N, you could use any solution from Fastest way to list all primes below N link provided by #Jonathan Davies.
For example, using a simple Sieve of Eratosthenes implementation, here's live example:
#!/usr/bin/env python2
from itertools import islice
from math import log
def iprimes_upto(limit):
is_prime = [True] * limit
for n in xrange(2, limit):
if is_prime[n]:
yield n
for i in xrange(n*n, limit, n): # start at ``n`` squared
is_prime[i] = False
n = int(raw_input('Choose number of primes to print: '))
N = max(12, int(n*(log(n) + log(log(n))) + .5)) # find limit
for p in islice(iprimes_upto(N), n): # get n primes
print p
As an alternative, you could use an infinite prime generator (you don't need to compute the limit in this case).
I can't seem to make random prime numbers using this code, please can someone help me?
def RandomPrime():
prime = False
while prime == False:
n = random.randint(10000, 100000)
if n % 2 != 0:
for x in range(3, int(n**0.5), 2):
if n % x ==0:
prime = False
else:
prime = True
return n
Imagine what happens if the last number in range(3, int(n**0.5), 2) is not an integer divisor of n:
if n % x ==0:
prime = False # not this
else:
prime = True # this
So even if all previous checks evaluated False, you call n a prime. The minimal change to your code to fix this is:
prime = prime and True # or 'prime &= True'
So if prime is already False, it remains False.
However, bear in mind that, for primality, if any of those checks is False n is not prime. You can use this and Python's and and all (which are evaluated lazily, i.e. don't keep checking once finding a False) to implement much more efficiently:
def rand_prime():
while True:
p = randint(10000, 100000)
if (r % 2 != 0 and
all(p % n != 0 for n in range(3, int(((p ** 0.5) + 1), 2))):
return p
For even better performance, note that randrange incorporates a step argument, just like range, so you can skip all of the even numbers (which definitely aren't prime!):
def rand_prime():
while True:
p = randrange(10001, 100000, 2)
if all(p % n != 0 for n in range(3, int((p ** 0.5) + 1), 2)):
return p
Note: sqrt(n) (from math) is, in my opinion, a little clearer to other, less-technical readers than n ** 0.5 (although it may or may not be more efficient).
Take a look to the tabs: The else should refer to the whole for loop, not to the iF
def RandomPrime():
prime = False
while prime == False:
n = random.randint(10000, 100000)
if n % 2 != 0:
for x in range(3, int(n**0.5), 2):
if n % x ==0:
break
else:
prime = True
return n
There're errors in your code:
Incorrect "else:"; you can't declare number being prime if a remainder is not 0;
All the remaiders should be non-zeros
int(n*0.5) should be int(n*0.5 + 1) to prevent round-up errors
The possible solution is
def RandomPrime():
while True:
n = random.randint(10000, 100000)
if n % 2 == 0:
continue;
prime = True;
for x in range(3, int(n**0.5 + 1), 2):
if n % x == 0:
prime = False;
break;
if prime:
return n
Correct logic, you are setting True when n % x ! = 0 for first time:
for x in range(3, int(n**0.5), 2):
if n % x ==0:
prime = False
else:
prime = True
should be:
prime = False
for x in range(3, int(n**0.5), 2):
if n % x ==0:
break
else:
prime = True
Read break and continue Statements, and else Clauses on Loops.
The shorter way of writing equivalent code will be (from #Steve Jesso):
prime = all(n % x != 0 for x in range(3, int(n**0.5), 2)
Generating big primes over and over can cost a lot of time. For this reason I used increments.
import random
def generate_big_prime(size):
p = random.randrange(2 ** (size - 1), 2 ** size - 1)
if p % 2 == 0:
p += 1
while not is_prime(p):
p += 2
return p
Where is_prime() is a primality test. I would recommend the Miller-Rabin primality test for its efficiency.