How to move South Pole in cartopy projection? - python

I'm plotting maps of Antarctica about 38 million years ago with cartopy, see this plot made with the code below. The continent, however, was then more to the southeast with respect to present day as you can see by the contours, so therefore I would like the continent to be at the center of my map (i.e., to choose a different location for the South Pole). I think I need another projection, but I don't know which one and how then to use the arguments for that projection.
#Defining circle for maps
theta = np.linspace(0, 2*np.pi, 100)
center, radius = [0.5, 0.5], 0.5
verts = np.vstack([np.sin(theta), np.cos(theta)]).T
circle = mpath.Path(verts*radius + center)
#Plotting
fig = plt.figure(figsize = (12,5))
ax1 = fig.add_subplot(111, projection = ccrs.Orthographic(central_longitude = 0, central_latitude = -90))
ax1.set_extent([0, 360, -90, -57], ccrs.PlateCarree())
ax1.set_boundary(circle, transform = ax1.transAxes)
MI.plot.contourf(ax = ax1, transform = ccrs.PlateCarree(), cmap = "Reds", levels = 11, cbar_kwargs = {"label": "monsoonal index [-]"})
plt.show()

Thanks to swatchai: changing the center, radius values helped:
#Defining circle for maps
theta = np.linspace(0, 2*np.pi, 100)
center, radius = [0.58, 0.44], 0.5
verts = np.vstack([np.sin(theta), np.cos(theta)]).T
circle = mpath.Path(verts*radius + center)
#Plotting
fig = plt.figure(figsize = (12,5))
ax1 = fig.add_subplot(111, projection = ccrs.Orthographic(central_longitude = 0, central_latitude = -90))
ax1.set_extent([0, 360, -90, -57], ccrs.PlateCarree())
ax1.set_boundary(circle, transform = ax1.transAxes)
MI.plot.contourf(ax = ax1, transform = ccrs.PlateCarree(), cmap = "Reds", levels = 11, cbar_kwargs = {"label": "monsoonal index [-]"})
plt.show()
This results in the plot:

Related

polar pcolormesh plot projected onto cartopy map

To simplify, as much as possible, a question I already asked, how would you OVERLAY or PROJECT a polar plot onto a cartopy map.
phis = np.linspace(1e-5,10,10) # SV half cone ang, measured up from nadir
thetas = np.linspace(0,2*np.pi,361)# SV azimuth, 0 coincides with the vel vector
X,Y = np.meshgrid(thetas,phis)
Z = np.sin(X)**10 + np.cos(10 + Y*X) * np.cos(X)
fig, ax = plt.subplots(figsize=(4,4),subplot_kw=dict(projection='polar'))
im = ax.pcolormesh(X,Y,Z, cmap=mpl.cm.jet_r,shading='auto')
ax.set_theta_direction(-1)
ax.set_theta_offset(np.pi / 2.0)
ax.grid(True)
that results in
Over a cartopy map like this...
flatMap = ccrs.PlateCarree()
resolution = '110m'
fig = plt.figure(figsize=(12,6), dpi=96)
ax = fig.add_subplot(111, projection=flatMap)
ax.imshow(np.tile(np.array([[cfeature.COLORS['water'] * 255]], dtype=np.uint8), [2, 2, 1]), origin='upper', transform=ccrs.PlateCarree(), extent=[-180, 180, -180, 180])
ax.add_feature(cfeature.NaturalEarthFeature('physical', 'land', resolution, edgecolor='black', facecolor=cfeature.COLORS['land']))
ax.pcolormesh(X,Y,Z, cmap=mpl.cm.jet_r,shading='auto')
gc.collect()
I'd like to project this polar plot over an arbitrary lon/lat... I can convert the polar theta/phi into lon/lat, but lon/lat coords (used on the map) are more 'cartesian like' than polar, hence you cannot just substitute lon/lat for theta/phi ... This is a conceptual problem. How would you tackle it?
Firstly, the data must be prepared/transformed into certain projection coordinates for use as input. And the instruction/option of the data's CRS must be specified correctly when used in the plot statement.
In your specific case, you need to transform your data into (long,lat) values.
XX = X/np.pi*180 # wrap around data in EW direction
YY = Y*9 # spread across N hemisphere
And plot it with an instruction transform=ccrs.PlateCarree().
ax.pcolormesh(XX,YY,Z, cmap=mpl.cm.jet_r,shading='auto',
transform=ccrs.PlateCarree())
The same (XX,YY,Z) data set can be plotted on orthographic projection.
Edit1
Update of the code and plots.
Part 1 (Data)
import matplotlib.colors
import matplotlib.pyplot as plt
import cartopy.crs as ccrs
import numpy as np
import matplotlib.pyplot as mpl
import cartopy.feature as cfeature
#
# Part 1
#
phis = np.linspace(1e-5,10,10) # SV half cone ang, measured up from nadir
thetas = np.linspace(0,2*np.pi,361)# SV azimuth, 0 coincides with the vel vector
X,Y = np.meshgrid(thetas,phis)
Z = np.sin(X)**10 + np.cos(10 + Y*X) * np.cos(X)
fig, ax = plt.subplots(figsize=(4,4),subplot_kw=dict(projection='polar'))
im = ax.pcolormesh(X,Y,Z, cmap=mpl.cm.jet_r,shading='auto')
ax.set_theta_direction(-1)
ax.set_theta_offset(np.pi / 2.0)
ax.grid(True)
Part 2 The required code and output.
#
# Part 2
#
flatMap = ccrs.PlateCarree()
resolution = '110m'
fig = plt.figure(figsize=(12,6), dpi=96)
ax = fig.add_subplot(111, projection=flatMap)
ax.add_feature(cfeature.NaturalEarthFeature('physical', 'land',
resolution, edgecolor='black', alpha=0.7,
facecolor=cfeature.COLORS['land']))
ax.set_extent([-180, 180, -90, 90], crs=ccrs.PlateCarree())
def scale_position(lat_deg, lon_deg, rad_deg):
# Two operations:
# 1. manipulates X,Y data and get (XX,YY)
# 2. create proper projection of (XX,YY), `rotpole_proj`
# Returns: XX,YY,rotpole_proj
# For X data
XX = X/np.pi*180 #always wrap around EW direction
# For Y data
# The cone data: min=0, max=10 --> (90-rad),90
# rad_deg = radius of the display area
top = 90
btm = top-rad_deg
YY = btm + (Y/Y.max())*rad_deg
# The proper coordinate system
rotpole_proj = ccrs.RotatedPole(pole_latitude=lat_deg, pole_longitude=lon_deg)
# Finally,
return XX,YY,rotpole_proj
# Location 1 (Asia)
XX1, YY1, rotpole_proj1 = scale_position(20, 100, 20)
ax.pcolormesh(XX1, YY1, Z, cmap=mpl.cm.jet_r,
transform=rotpole_proj1)
# Location 2 (Europe)
XX2, YY2, rotpole_proj2 = scale_position(62, -6, 8)
ax.pcolormesh(XX2, YY2, Z, cmap=mpl.cm.jet_r,
transform=rotpole_proj2)
# Location 3 (N America)
XX3, YY3, rotpole_proj3 = scale_position(29, -75, 30)
ax.pcolormesh(XX3, YY3, Z, cmap=mpl.cm.jet_r,shading='auto',
transform=rotpole_proj3)
#gc.collect()
plt.show()
This solution does NOT account for the projection point being at some altitude above the globe... I can do that part, so I really have trouble mapping the meshgrid to lon/lat so the work with the PREVIOUSLY GENERATES values of Z.
Here's a simple mapping directly from polar to cart:
X_cart = np.array([[p*np.sin(t) for p in phis] for t in thetas]).T
Y_cart = np.array([[p*np.cos(t) for p in phis] for t in thetas]).T
# Need to map cartesian XY to Z that is compatbile with above...
Z_cart = np.sin(X)**10 + np.cos(10 + Y*X) * np.cos(X) # This Z does NOT map to cartesian X,Y
print(X_cart.shape,Y_cart.shape,Z_cart.shape)
flatMap = ccrs.PlateCarree()
resolution = '110m'
fig = plt.figure(figsize=(12,6), dpi=96)
ax = fig.add_subplot(111, projection=flatMap)
ax.imshow(np.tile(np.array([[cfeature.COLORS['water'] * 255]], dtype=np.uint8), [2, 2, 1]), origin='upper', transform=ccrs.PlateCarree(), extent=[-180, 180, -180, 180])
ax.add_feature(cfeature.NaturalEarthFeature('physical', 'land', resolution, edgecolor='black', facecolor=cfeature.COLORS['land']))
im = ax.pcolormesh(X_cart*2,Y_cart*2, Z_cart, cmap=mpl.cm.jet_r, shading='auto') # c=mapper.to_rgba(Z_cart), cmap=mpl.cm.jet_r)
gc.collect()
Which maps the polar plot center to lon/lat (0,0):
I'm close... I somehow need to move my cartesian coords to the proper lon/lat (the satellite sub-point) and then scale it appropriately. Have the set of lon/lat but I'm screwing up the meshgrid somehow... ???
The sphere_intersect() routine returns lon/lat for projection of theta/phi on the globe (that works)... The bit that doesn't work is building the meshgrid that replaces X,Y:
lons = np.array([orbits.sphere_intersect(SV_pos_vec, SV_vel_vec, az << u.deg, el << u.deg,
lonlat=True)[0] for az in thetas for el in phis], dtype='object')
lats = np.array([orbits.sphere_intersect(SV_pos_vec, SV_vel_vec, az << u.deg, el << u.deg,
lonlat=True)[1] for az in thetas for el in phis], dtype='object')
long, latg = np.meshgrid(lons,lats) # THIS IS A PROBLEM I BELIEVE...
and the pcolormesh makes a mess...

Contour/Scatter Plot - Interpolated data not covering entire scatter plot

I am trying to create a map showing an interpolated values over a scatter plot, here my code so far
# define map extent
lllon = dd
lllat = bb
urlon = cc
urlat = aa
# Set up Basemap instance
m = Basemap(
projection = 'merc',
llcrnrlon = lllon, llcrnrlat = lllat, urcrnrlon = urlon, urcrnrlat = urlat,
resolution='h')
# transform lon / lat coordinates to map projection
newdf['LONGITUDE'], newdf['LATITUDE'] = m(*(newdf['LONGITUDE'].values, newdf['LATITUDE'].values))
# grid data
#numcols, numrows = count_col, count_row
#xi = np.linspace(dd, cc, numcols)
#yi = np.linspace(bb, aa, numrows)
#xi, yi = np.meshgrid(xi, yi)
count_row = newdf.shape[0] # gives number of row count
count_col = newdf.shape[1] # gives number of col count
xi = np.linspace(newdf['LONGITUDE'].min(), newdf['LONGITUDE'].max(), count_col)
yi = np.linspace(newdf['LATITUDE'].min(), newdf['LATITUDE'].max(), count_row)
xi, yi = np.meshgrid(xi, yi)
x, y, z = newdf['LONGITUDE'].values, newdf['LATITUDE'].values, newdf['MUD_WGHT'].values
#zi = griddata(x, y, z, xi, yi)
zi = griddata((x,y),z,(xi,yi),method='linear')
# interpolate
#x, y, z = newdf['LONGITUDE'].values, newdf['LATITUDE'].values, newdf['MUD_WGHT'].values
#zi = griddata((x,y),z,(xi,yi),method='linear')
# draw map details
m.drawmapboundary(fill_color = 'white')
m.fillcontinents(color='#C0C0C0', lake_color='#7093DB')
m.drawcountries(
linewidth=.75, linestyle='solid', color='#000073',
antialiased=True,
ax=ax, zorder=3)
m.drawparallels(
np.arange(lllat, urlat, 2.),
color = 'black', linewidth = 0.5,
labels=[True, False, False, False])
m.drawmeridians(
np.arange(lllon, urlon, 2.),
color = '0.25', linewidth = 0.5,
labels=[False, False, False, True])
# contour plot
con = m.contourf(xi, yi, zi, zorder=4, alpha=0.6, cmap='RdPu')
# scatter plot
m.scatter(
newdf['LONGITUDE'],
newdf['LATITUDE'],
color='#545454',
edgecolor='#ffffff',
alpha=.75,
s=50 * norm(newdf['MUD_WGHT'].values),
cmap='RdPu',
ax=ax,
vmin=zi.min(), vmax=zi.max(), zorder=4)
# add colour bar and title
# add colour bar, title, and scale
cbar = plt.colorbar(orientation='horizontal', fraction=.057, pad=0.05)
cbar.set_label("Mud Weight - PPG")
#m.drawmapscale(
# 24., -9., 28., -13,
# 100,
# units='km', fontsize=10,
#yoffset=None,
#barstyle='fancy', labelstyle='simple',
#fillcolor1='w', fillcolor2='#000000',
#fontcolor='#000000',
#zorder=5)
plt.title("Regional Mud Weights in The Lateral")
plt.show()
The result is the following:
How can I get the interpolated contour region to extend to the full scatter plot? I have been focusing on if this is an issue with the meshgrid, so I am not sure if the meshgrid isn't interpolating all of the data or if it is an issue with the plotting.
You need to do triangulation and use tricontour and/or tricontourf. Here is a demonstration code and sample plot.
from mpl_toolkits.basemap import Basemap
from matplotlib.tri import Triangulation
import matplotlib.pyplot as plt
import numpy as np
from matplotlib import cm
# data coordinates must conform to the projection
x = np.random.random((30))
y = np.random.random((30))
z = x * y
yn = 30*x
xn = 80 + 30*y
tri = Triangulation(xn,yn) #create tri mesh
fig = plt.figure(figsize=(7, 7))
m = Basemap(projection = 'cyl',
llcrnrlat = 0,
urcrnrlat = 30,
llcrnrlon = 80,
urcrnrlon = 110,
resolution = 'l')
ctf = plt.tricontourf(tri, z, cmap=cm.coolwarm, zorder=10, alpha=0.75)
#plt.tricontour(tri, z, )
plt.scatter(xn, yn, c='g', zorder=13)
m.drawparallels(np.arange(-90, 90,10), labels=[1,0,0,0])
m.drawmeridians(np.arange(-180, 180, 10), labels = [0,0,0,1])
m.drawcoastlines(linewidth=0.8, color='blue', zorder=12)
m.fillcontinents(color='#C0C0C0', lake_color='#7093DB')
cbar = plt.colorbar(ctf , orientation='horizontal', fraction=.045, pad=0.08)
plt.show()

Limiting latitudinal extend of a cartopy orthographic projection

I am trying to plot a map of a sphere with an orthographic projection of the Northern (0-40N) and Southern (0-40S) hemispheres, and a Mollweide projection of the central latitudes (60N-60S). I get the following plot:
which shows a problem: there is a square bounding box with cut corners around the hemispherical plots. Note that the extent of the colours is the same for all three plots (-90 to 90).
When I plot a hemisphere without limiting its extent, however, I get a round bounding box, as expected from an orthographic projection:
Using plt.xlim(-90,-50) results in a vertical stripe, and plt.ylim(-90,-50) in a horizontal stripe, so that is no solution either.
How can I limit the latitudinal extent of my orthographic projection, whilst maintaining the circular bounding box?
The code to produce above graphs:
import numpy as np
from matplotlib import pyplot as plt
import cartopy.crs as ccrs
# Create dummy data, latitude from -90(S) to 90 (N), lon from -180 to 180
theta, phi = np.meshgrid(np.arange(0,180),np.arange(0,360));
theta = -1*(theta.ravel()-90)
phi = phi.ravel()-180
radii = theta
# Make masks for hemispheres and central
mask_central = np.abs(theta) < 60
mask_north = theta > 40
mask_south = theta < -40
data_crs= ccrs.PlateCarree() # Data CRS
# Grab map projections for various plots
map_proj = ccrs.Mollweide(central_longitude=0)
map_proj_N = ccrs.Orthographic(central_longitude=0, central_latitude=90)
map_proj_S = ccrs.Orthographic(central_longitude=0, central_latitude=-90)
fig = plt.figure()
ax1 = fig.add_subplot(2, 1, 2,projection=map_proj)
im1 = ax1.scatter(phi[mask_central],
theta[mask_central],
c = radii[mask_central],
transform=data_crs,
vmin = -90,
vmax = 90,
)
ax1.set_title('Central latitudes')
ax_N = fig.add_subplot(2, 2, 1, projection=map_proj_N)
ax_N.scatter(phi[mask_north],
theta[mask_north],
c = radii[mask_north],
transform=data_crs,
vmin = -90,
vmax = 90,
)
ax_N.set_title('Northern hemisphere')
ax_S = fig.add_subplot(2, 2, 2, projection=map_proj_S)
ax_S.scatter(phi[mask_south],
theta[mask_south],
c = radii[mask_south],
transform=data_crs,
vmin = -90,
vmax = 90,
)
ax_S.set_title('Southern hemisphere')
fig = plt.figure()
ax = fig.add_subplot(111,projection = map_proj_N)
ax.scatter(phi,
theta,
c = radii,
transform=data_crs,
vmin = -90,
vmax = 90,
)
ax.set_title('Northern hemisphere')
plt.show()
(1). In all of your plots, when you use scatter(), the size of the scatter points should be defined with proper s=value, otherwise the default value is used. I use s=0.2 and the resulting plots look better.
(2). For 'Central latitudes' case, you need to specify correct y-limits with set_ylim(). This involves the computation of them. The use of transform_point() is applied here.
(3). For the remaining plots that require elimination of unneeded features, proper circular clip paths can be used. Their perimeters are also used to plot as map boundaries in both cases. Their existence may cause trouble plotting other map features (such as coastlines) as I demonstrate with the code and its output.
# original is modified and extended
import numpy as np
from matplotlib import pyplot as plt
import cartopy.crs as ccrs
import matplotlib.patches as mpatches # need it to create clip-path
# Create dummy data, latitude from -90(S) to 90 (N), lon from -180 to 180
theta, phi = np.meshgrid(np.arange(0,180),np.arange(0,360));
theta = -1*(theta.ravel()-90)
phi = phi.ravel()-180
radii = theta
# Make masks for hemispheres and central
mask_central = np.abs(theta) < 60
mask_north = theta > 40
mask_south = theta < -40
data_crs= ccrs.PlateCarree() # Data CRS
# Grab map projections for various plots
map_proj = ccrs.Mollweide(central_longitude=0)
map_proj_N = ccrs.Orthographic(central_longitude=0, central_latitude=90)
map_proj_S = ccrs.Orthographic(central_longitude=0, central_latitude=-90)
# 'Central latitudes' plot
fig = plt.figure()
ax1 = fig.add_subplot(2, 1, 2, projection=map_proj)
# Note: Limits of plot depends on plotting data, but not exact!
im1 = ax1.scatter(phi[mask_central],
theta[mask_central],
s = 0.2,
c = radii[mask_central],
transform=data_crs,
vmin = -90,
vmax = 90,
)
# compute y limits
_, y_btm = map_proj.transform_point(0, -60, ccrs.Geodetic())
_, y_top = map_proj.transform_point(0, 60, ccrs.Geodetic())
# apply y limits
ax1.set_ylim(y_btm, y_top)
ax1.coastlines(color='k', lw=0.35)
ax1.set_title('Central latitudes')
ax_N = fig.add_subplot(2, 2, 1, projection=map_proj_N)
ax_N.scatter(phi[mask_north],
theta[mask_north],
s = 0.1, # not mandatory
c = radii[mask_north],
transform=data_crs,
vmin = -90,
vmax = 90,
)
# use a circular path as map boundary
clip_circle = mpatches.Circle(xy=[0,0], radius=4950000, facecolor='none', edgecolor='k')
ax_N.add_patch(clip_circle)
ax_N.set_boundary(clip_circle.get_path(), transform=None, use_as_clip_path=True)
# with `use_as_clip_path=True` the coastlines do not appear
ax_N.coastlines(color='k', lw=0.75, zorder=13) # not plotted!
ax_N.set_title('Northern hemisphere1')
# 'Southern hemisphere' plot
ax_S = fig.add_subplot(2, 2, 2, projection=map_proj_S)
ax_S.scatter(phi[mask_south],
theta[mask_south],
s = 0.02,
c = radii[mask_south],
transform=data_crs,
vmin = -90,
vmax = 90,
)
clip_circle = mpatches.Circle(xy=[0,0], radius=4950000, facecolor='none', edgecolor='k')
ax_S.add_patch(clip_circle)
# applying the clip-circle as boundary, but not use as clip-path
ax_S.set_boundary(clip_circle.get_path(), transform=None, use_as_clip_path=False)
# with `use_as_clip_path=False` the coastlines is plotted, but goes beyond clip-path
ax_S.coastlines(color='k', lw=0.75, zorder=13)
ax_S.set_title('Southern hemisphere')
# 'Northern hemisphere2' plot, has nice circular limit
fig = plt.figure()
ax = fig.add_subplot(111,projection = map_proj_N)
ax.scatter(phi,
theta,
s = 0.2,
c = radii,
transform=data_crs,
vmin = -90,
vmax = 90,
)
ax.coastlines(color='k', lw=0.5, zorder=13)
ax.set_title('Northern hemisphere2')
ax.set_global()
plt.show()
The output plot:
The usual axes in matplotlib are rectangular. For some projections in cartopy however, it does not make sense to show a rectangle where part of it isn't even defined. Those regions are encircled. This way it is ensured that the axes content always stays within the border.
If you do not want this, but instead use a circular border, even if part of the plot would potentially lie outside the circle, you would define that circle manually:
import numpy as np
from matplotlib import pyplot as plt
import cartopy.crs as ccrs
# Create dummy data, latitude from -90(S) to 90 (N), lon from -180 to 180
theta, phi = np.meshgrid(np.arange(0,180),np.arange(0,360));
theta = -1*(theta.ravel()-90)
phi = phi.ravel()-180
# Make mask for hemisphere
mask_north = theta > 40
data_crs= ccrs.PlateCarree() # Data CRS
# Grab map projections for various plots
map_proj_N = ccrs.Orthographic(central_longitude=0, central_latitude=90)
fig = plt.figure()
ax_N = fig.add_subplot(121, projection=map_proj_N)
ax_N.scatter(phi[mask_north], theta[mask_north],
c = theta[mask_north], transform=data_crs,
vmin = -90, vmax = 90)
ax_N.set_title('Northern hemisphere')
### Remove undesired patch
ax_N.patches[0].remove()
### Create new circle around the axes:
circ = plt.Circle((.5,.5), .5, edgecolor="k", facecolor="none",
transform=ax_N.transAxes, clip_on=False)
ax_N.add_patch(circ)
#### For comparisson, plot the full data in the right subplot:
ax = fig.add_subplot(122,projection = map_proj_N)
ax.scatter(phi, theta, c = theta,
transform=data_crs, vmin = -90, vmax = 90)
ax.set_title('Northern hemisphere')
plt.show()

Plot square Cartopy map

I need to plot a square map using Cartopy. I currently use the following code for my map:
plt.figure(figsize = (15, 15))
img = cimgt.GoogleTiles()
ax = plt.axes(projection = img.crs)
ax.set_extent((d['longitude'].min() - 0.05, d['longitude'].max() + 0.05,
d['latitude'].min() - 0.05, d['latitude'].max() + 0.05))
ax.add_image(img, 10, interpolation = 'bicubic')
plt.scatter(d['longitude'], d['latitude'], transform = ccrs.PlateCarree(),
c = '#E8175D', s = 14)
This works fine, except for the fact that the map isn't square. Instead, it's just fitted into the (15, 15) square of the plot.
I would like to add a bit more map to the left and to the right to make the plot perfectly square without distorting it. Simply setting the extent to the same difference on latitude and longitude doesn't do the job, because latitude and longitude cover different distances in Google's (and most other) map projections. I also found this post, but from what I get, the intent here is to distort the map.
I hope someone has an idea how to do this. It seems that Cartopy is not very intuitive in this regard.
To get square extent you need to specify it in map projection coordinates. That involves some coordinate transformation. Here is the code snippet that you need.
# crs of your choice
crg = cimgt.StamenTerrain().crs # or cimgt.GoogleTiles().crs
# set map limits, in degrees
lonmin, lonmax = -22, -15
latmin, latmax = 63, 65
# do coordinate transformation
LL = crg.transform_point(lonmin, latmin, ccrs.Geodetic())
UR = crg.transform_point(lonmax, latmax, ccrs.Geodetic())
EW = UR[0] - LL[0]
SN = UR[1] - LL[1]
# get side of the square extent (in map units, usually meters)
side = max(EW, SN) # larger value is in effect
mid_x, mid_y = LL[0]+EW/2.0, LL[1]+SN/2.0 # center location
# the extent preserves the center location
extent = [mid_x-side/2.0, mid_x+side/2.0, mid_y-side/2.0, mid_y+side/2.0]
# this sets square extent
# crs=crg signifies that projection coordinates is used in extent
ax.set_extent(extent, crs=crg)
Hope it helps.
Edit
Here is a complete working code and its resulting map.
import matplotlib.pyplot as plt
import cartopy.crs as ccrs
from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER
import cartopy.io.img_tiles as cimgt
def make_map(projection=ccrs.PlateCarree()):
fig, ax = plt.subplots(figsize=(10, 10),
subplot_kw=dict(projection=projection))
gl = ax.gridlines(draw_labels=True)
gl.xlabels_top = gl.ylabels_right = False
gl.xformatter = LONGITUDE_FORMATTER
gl.yformatter = LATITUDE_FORMATTER
return fig, ax
request = cimgt.StamenTerrain() # very responsive
crg = request.crs #crs of the projection
fig, ax = make_map(projection = crg)
# specify map extent here
lonmin, lonmax = -22, -15
latmin, latmax = 63, 65
LL = crg.transform_point(lonmin, latmin, ccrs.Geodetic())
UR = crg.transform_point(lonmax, latmax, ccrs.Geodetic())
EW = UR[0] - LL[0]
SN = UR[1] - LL[1]
side = max(EW,SN)
mid_x, mid_y = LL[0]+EW/2.0, LL[1]+SN/2.0 #center location
extent = [mid_x-side/2.0, mid_x+side/2.0, mid_y-side/2.0, mid_y+side/2.0] # map coordinates, meters
ax.set_extent(extent, crs=crg)
ax.add_image(request, 8)
# add a marker at center of the map
plt.plot(mid_x, mid_y, marker='o', \
color='red', markersize=10, \
alpha=0.7, transform = crg)
plt.show()

Python - Animate basemap scatterplot

I have a DataFrame with shape (14403, 438) that consists of longitudes and latitudes as well as values. The DataFrame is as:
I am plotting the coordinates as:
# define map colors
land_color = '#f5f5f3'
water_color = '#cdd2d4'
coastline_color = '#f5f5f3'
border_color = '#bbbbbb'
meridian_color = '#f5f5f3'
marker_fill_color = '#0000ff'
marker_edge_color = 'None'
# create the plot
fig = plt.figure(figsize = (15, 10))
ax = fig.add_subplot(111, facecolor = '#ffffff', frame_on = False)
ax.set_title('Transportable Array', fontsize = 24, color = '#333333')
#lon_0 center of desired map domain (in degrees).
#lat_0 center of desired map domain (in degrees).
#width width of desired map domain in projection coordinates (meters).
#height height of desired map domain in projection coordinates (meters).
# draw the basemap and its features
m = Basemap(width = 5500000,height = 3300000,
resolution = 'l', area_thresh = 1000., projection = 'lcc',\
lat_1 = 45., lat_2 = 55, lat_0 = 37, lon_0 = -98.)
m.drawmapboundary(color = border_color, fill_color = water_color)
m.drawcoastlines(color = coastline_color)
m.drawcountries(color = border_color)
m.fillcontinents(color = land_color, lake_color = water_color)
m.drawparallels(np.arange(-90., 120., 30.), color = meridian_color)
m.drawmeridians(np.arange(0., 420., 60.), color = meridian_color)
# project the location history points then scatter plot them
x, y = m(stations.loc['longitude'].values, stations.loc['latitude'].values)
m.scatter(x, y, s = 8, color = marker_fill_color, edgecolor = marker_edge_color, alpha = 1, zorder = 3)
# show & save the map
plt.savefig('Transportable_Array.png', dpi = 96, bbox_inches = 'tight', pad_inches = 0.2)
plt.show()
I am trying to create an animation that will plot the coordinates for each column and then iterate over the values in the index. In the end I am trying to have it iterate over the 14,403 rows and change the markings color based on the value. I am currently having trouble even animating the plot for the coordinates alone.
I would love to be able to implement bqplot, but the scatter animations I've followed on GitHub have not worked yet.
The map currently looks like below. It'd be wicked cool if each dot can fluctuate in color based on the current iterations value.
Thank you for reading.
You can use the animation module for this. These are the general steps:
Convert the values into a colour
Update the color at each step
Save the animation
Here is some code:
import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap
import matplotlib.animation as animation
import numpy as np
land_color = '#f5f5f3'
water_color = '#cdd2d4'
coastline_color = '#f5f5f3'
border_color = '#bbbbbb'
meridian_color = '#f5f5f3'
marker_fill_color = '#0000ff'
marker_edge_color = 'None'
# Some dummy data
longVals = np.random.uniform(-120,-80, 1000)
latVals = np.random.uniform(35, 45, 1000)
vals = np.random.uniform(size=(200,1000))
# Be careful - the values that go into the colormap function
# must be integers between 0 and 254
normalisedVals = 254*(vals-vals.min())/(vals.max()-vals.min())
normalisedVals = normalisedVals.astype(np.int)
cm = plt.cm.spectral_r
fig = plt.figure(figsize = (15, 10))
ax = fig.add_subplot(111, facecolor = '#ffffff', frame_on = False)
ax.set_title('Transportable Array', fontsize = 24, color = '#333333')
# draw the basemap and its features
m = Basemap(width = 5500000,height = 3300000,
resolution = 'l', area_thresh = 1000., projection = 'lcc',
lat_1 = 45., lat_2 = 55, lat_0 = 37, lon_0 = -98.)
m.drawmapboundary(color = border_color, fill_color = water_color)
m.drawcoastlines(color = coastline_color)
m.drawcountries(color = border_color)
m.fillcontinents(color = land_color, lake_color = water_color)
m.drawparallels(np.arange(-90., 120., 30.), color = meridian_color)
m.drawmeridians(np.arange(0., 420., 60.), color = meridian_color)
x, y = m(longVals, latVals)
scat = m.scatter(x, y, s = 8, c = normalisedVals[0], edgecolor = marker_edge_color, alpha = 1, zorder = 3)
def init():
return scat,
def animate(i):
col = cm(normalisedVals[i])
scat.set_color(col)
return scat,
anim = animation.FuncAnimation(fig, animate, init_func=init, frames=100, interval=20, blit=False, repeat=False)
anim.save('animation.gif', writer='imagemagick', fps=60)
I should warn you that for 14k rows this will take a while.
Also I would recommend saving as an mp4 rather than a gif due to better compression.
If you have any questions let me know!

Categories