This question already has answers here:
Where to use the return statement with a loop?
(2 answers)
Closed 26 days ago.
I have to find the sum of a range between the values a and b, although either can be a negative number. If they are the same number I should just return that number. A complete beginner here. Stuck on a Code-Wars kata.
Apparently, my code returns None. I don't necessarily want the solution to the problem. I more want to know why my code is wrong. (The first line of the code is given)
def get_sum(a,b):
if a == b:
return a
num = 0
if a > b:
for i in range(a, b):
num += i
return num
elif a < b:
for i in range(b, a):
num += i
return num
I think there is an indentation issue located on the return instruction and also a problem on the sign greater than.
def get_sum(a,b):
if a == b:
return a
num = 0
if a < b:
for i in range(a, b):
num += i
return num
elif a > b:
for i in range(b, a):
num += i
return num
You could also use built-in functions to make it faster and more concise
sum(range(a, b))
Thinking about the problem itself, rather than your particular function, you could use Gauss's method: reverse the sequence, add it to itself, and the total will be twice the sum sought.
However, each term is now equal, so you have reduced the question to a multiplication.
1 + 2 + 3 + 4
4 + 3 + 2 + 1
-------------
5 + 5 + 5 + 5 = 20
20/2 = 10
In Python this would be:
def get_sum(small, large):
return int((large - small + 1) * (small + large) / 2)
You can use the gauss formula:
n(n+1)/2
https://letstalkscience.ca/educational-resources/backgrounders/gauss-summation
def gauss(n):
return (abs(n)*(abs(n)+1)/2)* (-1 if n < 0 else 1)
def sum_between(a, b):
a,b = min(a, b), max(a, b)
return gauss(b) - gauss(abs(a))
You can actually transform sum_between in a single formula with a bit of algebra.
For the same number then just add an if
There's always
def get_sum(a, b):
return sum(range(min(a, b), max(a, b)))
add 1 to the lower-bound if you want numbers strictly between, or add 1 to the upper bound if you want it included in the sum.
It might not be as pedagogical as writing it out yourself and it doesn't rely on math(s).
Related
I'm studing recursive function and i faced question of
"Print sum of 1 to n with no 'for' or 'while' "
ex ) n = 10
answer =
55
n = 100
answer = 5050
so i coded
import sys
sys.setrecursionlimit(1000000)
sum = 0
def count(n):
global sum
sum += n
if n!=0:
count(n-1)
count(n = int(input()))
print(sum)
I know it's not good way to get right answer, but there was a solution
n=int(input())
def f(x) :
if x==1 :
return 1
else :
return ((x+1)//2)*((x+1)//2)+f(x//2)*2
print(f(n))
and it works super well , but i really don't know how can human think that logic and i have no idea how it works.
Can you guys explain how does it works?
Even if i'm looking that formula but i don't know why he(or she) used like that
And i wonder there is another solution too (I think it's reall important to me)
I'm really noob of python and code so i need you guys help, thank you for watching this
Here is a recursive solution.
def rsum(n):
if n == 1: # BASE CASE
return 1
else: # RECURSIVE CASE
return n + rsum(n-1)
You can also use range and sum to do so.
n = 100
sum_1_to_n = sum(range(n+1))
you can try this:
def f(n):
if n == 1:
return 1
return n + f(n - 1)
print(f(10))
this function basically goes from n to 1 and each time it adds the current n, in the end, it returns the sum of n + n - 1 + ... + 1
In order to get at a recursive solution, you have to (re)define your problems in terms of finding the answer based on the result of a smaller version of the same problem.
In this case you can think of the result sumUpTo(n) as adding n to the result of sumUpTo(n-1). In other words: sumUpTo(n) = n + sumUpTo(n-1).
This only leaves the problem of finding a value of n for which you know the answer without relying on your sumUpTo function. For example sumUpTo(0) = 0. That is called your base condition.
Translating this to Python code, you get:
def sumUpTo(n): return 0 if n==0 else n + sumUpTo(n-1)
Recursive solutions are often very elegant but require a different way of approaching problems. All recursive solutions can be converted to non-recursive (aka iterative) and are generally slower than their iterative counterpart.
The second solution is based on the formula ∑1..n = n*(n+1)/2. To understand this formula, take a number (let's say 7) and pair up the sequence up to that number in increasing order with the same sequence in decreasing order, then add up each pair:
1 2 3 4 5 6 7 = 28
7 6 5 4 3 2 1 = 28
-- -- -- -- -- -- -- --
8 8 8 8 8 8 8 = 56
Every pair will add up to n+1 (8 in this case) and you have n (7) of those pairs. If you add them all up you get n*(n+1) = 56 which correspond to adding the sequence twice. So the sum of the sequence is half of that total n*(n+1)/2 = 28.
The recursion in the second solution reduces the number of iterations but is a bit artificial as it serves only to compensate for the error introduced by propagating the integer division by 2 to each term instead of doing it on the result of n*(n+1). Obviously n//2 * (n+1)//2 isn't the same as n*(n+1)//2 since one of the terms will lose its remainder before the multiplication takes place. But given that the formula to obtain the result mathematically is part of the solution doing more than 1 iteration is pointless.
There are 2 ways to find the answer
1. Recursion
def sum(n):
if n == 1:
return 1
if n <= 0:
return 0
else:
return n + sum(n-1)
print(sum(100))
This is a simple recursion code snippet when you try to apply the recurrent function
F_n = n + F_(n-1) to find the answer
2. Formula
Let S = 1 + 2 + 3 + ... + n
Then let's do something like this
S = 1 + 2 + 3 + ... + n
S = n + (n - 1) + (n - 2) + ... + 1
Let's combine them and we get
2S = (n + 1) + (n + 1) + ... + (n + 1) - n times
From that you get
S = ((n + 1) * n) / 2
So for n = 100, you get
S = 101 * 100 / 2 = 5050
So in python, you will get something like
sum = lambda n: ( (n + 1) * n) / 2
print(sum(100))
def sum_it(n,y):
if n ==0:
return y
else:
return sum_it(n-1,n+y)
required output for sum_it(3,4)i.e. (3+2+1)+4 must be 10
but obtained output is 5
Please how the return really works ?
Altough unclear, it seems like what you need when calling sum_it(n,y) is the sum of natural numbers from 1 to n plus y.
This initial sum is also known as "nth" triangular number.
If that's the case, you actually don't need recursion:
def sum_it(n,y):
return (n*(n+1))//2 + y
If recursion is a must:
def sum_it(n,y):
if (n > 1):
return n + sum_it(n-1,y)
return n + y
Feel free to ask if any doubt remains.
If you intended to sum like (3+2+1) + 4, this code will works.
def sum_it(n,y):
if( n == 1):
return y + 1
else:
return(n + sum_it(n-1,y))
For example, sum_it(3,4) works like below
sum_it(3,4) returns 3 + sum_it(2,4)
sum_it(2,4) returns 2 + sum_it(1,4)
sum_it(1,4) returns 1 + 4
It means
sum_it(3,4) returns 3 + 2 + 1 + 4
This question already has answers here:
How do I get a result (output) from a function? How can I use the result later?
(4 answers)
Closed 3 years ago.
I am trying to create a method which returns the value of three variables added together, with a further condition that that if one of the variables is 13, 14, or between the range 17 -19 inclusive, this particular variable should then count as 0 in the final sum.
I am trying to define a further method to check each number individually so have to write out the same code three times in one method.
My code so far is as follows:
def no_teen_sum(a, b, c):
fix_teen(a)
fix_teen(b)
fix_teen(c)
return a + b + c
def fix_teen(n):
if (n == 13 or n == 14) or (n >= 17 and n <= 19):
n = 0
return n
print(no_teen_sum(1, 2, 13))
The code is failing to get back the required results and is just adding together a, b and c with no regard for the conditions I have mentioned above.
I had thought that calling the checking method 'fix_teen' within the overall method 'no_teen_sum' would combat this but clearly it is being ignored by Python.
How do I achieve what I need to here?
here is my idea for fixing this function
def no_teen_sum(a, b, c):
new_a = fix_teen(a)
new_b = fix_teen(b)
new_c = fix_teen(c)
return new_a + new_b + new_c
but better solution would be this:
def no_teen_sum(values_list):
return sum(fix_teen(v) for v in values_list)
advantage of this approach is that you can pass as many values you would like
also for second function you can do this(but only if n is always int):
def fix_teen(n):
if n in (13, 14, 17, 18, 19):
n = 0
return n
How about:
def no_teen_sum(a, b, c):
return fix_teen(a) + fix_teen(b) + fix_teen(c)
def fix_teen(n):
return 0 if (n == 13 or n == 14) or (17 <= n <= 19) else n
print(no_teen_sum(1, 2, 13))
Define a function that takes three numbers as arguments and returns the sum of the squares of the two larger numbers.
For example, given 6,7,8, the function that I defined should return 113
When I gave my code, it solves most of the problems but apparently there is some possibility that I haven't tried?? I think my code is flawed but not sure what other possibilities are there. Would really appreciate some help thank you so much!
def bigger_sum(a,b,c):
if(a+b>b+c):
return(a*a+b*b)
if(a+c>b+c):
return(a*a+c*c)
if(b+c>a+c):
return(b*b+c*c)
You can use min for this problem:
def big2_sqrsum(a,b,c):
x = min(a,b,c)
return (a*a + b*b + c*c) - (x*x)
print(big2_sqrsum(6,7,8))
Output:
113
Alternate solution with if-else
def big2_sqrsum2(a,b,c):
if a < b and a <c:
return b*b + c*c
elif b < a and b < c:
return a*a + c*c
elif c < a and c < b:
return a*a + b*b
Just check for the smallest number. That known, assign the values to two new variables that will hold the largest and second largest value and sum their squares.
Something like this :
big1 = 0
big2 = 0
if ([a is smallest]):
big1 = b
big2 = c
elif ([b is smallest]):
big1 = a
big2 = c
elif ([c is smallest]):
big1 = a
big2 = b
allows you to have only one place to calculate your formula :
return big1 * big1 + big2 * big2
Let's take a look at why your code is flawed. Given a comparison like if a + b > b + c:, the implication that both a and b are both greater than c is false. b can be the smallest number. All you know is that a > c, since you can subtract b from both sides of the inequality.
You need to find and discard the smallest number. The simplest way is to compute the minimum with min and subtract it off, as #Sociopath's answer suggests.
If you want to keep your if-elsestructure, you have to compare numbers individually:
if a > b:
n1= a
n2 = b if b > c else c
elif a > c:
n1, n2 = a, b
else:
n1, n2 = b, c
You can Simply Define Function With Using min()
def two_bigger_sum(num1,num2,num3):
min_num = min(num1,num2,num3) # it returns minimum number
return ((num1**2 + num2**2 + num3**2)-(min_num**2)) # num**2 = square of num
print(two_bigger_sum(6,7,8))
Output = 113
Sociopath's answer works, but is inefficient since it requires two extra floating point multiplies. If you're doing this for a large number of items, it will take twice as long! Instead, you can find the two largest numbers directly. Basically, we're sorting the list and taking the two largest, this can be directly as follows:
def sumsquare(a,b,c):
# Strategy: swap, and make sure c is the smallest by the end
if c > b:
b, c = c, b
if c > a:
a, c = c, a
return a**2 + b**2
# Test:
print(sumsquare(3,1,2))
print(sumsquare(3,2,1))
print(sumsquare(1,2,3))
print(sumsquare(1,3,2))
print(sumsquare(2,1,3))
print(sumsquare(2,3,2))
I have tried to use list comprehension & list slicing with sorting method.
def b2(l):
return sum([x**2 for x in sorted(l)[1:]])
print(b2([1,2,3]))
OP:-
13
This is my code:
def sum_even(a, b):
count = 0
for i in range(a, b, 1):
if(i % 2 == 0):
count += [i]
return count
An example I put was print(sum_even(3,7)) and the output is 0. I cannot figure out what is wrong.
Your indentation is off, it should be:
def sum_even(a, b):
count = 0
for i in range(a, b, 1):
if(i % 2 == 0):
count += i
return count
so that return count doesn't get scoped to your for loop (in which case it would return on the 1st iteration, causing it to return 0)
(And change [i] to i)
NOTE: another problem - you should be careful about using range:
>>> range(3,7)
[3, 4, 5, 6]
so if you were to do calls to:
sum_even(3,7)
sum_even(3,8)
right now, they would both output 10, which is incorrect for sum of even integers between 3 and 8, inclusive.
What you really want is probably this instead:
def sum_even(a, b):
return sum(i for i in range(a, b + 1) if i % 2 == 0)
Move the return statement out of the scope of the for loop (otherwise you will return on the first loop iteration).
Change count += [i] to count += i.
Also (not sure if you knew this), range(a, b, 1) will contain all the numbers from a to b - 1 (not b). Moreover, you don't need the 1 argument: range(a,b) will have the same effect. So to contain all the numbers from a to b you should use range(a, b+1).
Probably the quickest way to add all the even numbers from a to b is
sum(i for i in xrange(a, b + 1) if not i % 2)
You can make it far simpler than that, by properly using the step argument to the range function.
def sum_even(a, b):
return sum(range(a + a%2, b + 1, 2))
You don't need the loop; you can use simple algebra:
def sum_even(a, b):
if (a % 2 == 1):
a += 1
if (b % 2 == 1):
b -= 1
return a * (0.5 - 0.25 * a) + b * (0.25 * b + 0.5)
Edit:
As NPE pointed out, my original solution above uses floating-point maths. I wasn't too concerned, since the overhead of floating-point maths is negligible compared with the removal of the looping (e.g. if calling sum_even(10, 10000)). Furthermore, the calculations use (negative) powers of two, so shouldn't be subject by rounding errors.
Anyhow, with the simple trick of multiplying everything by 4 and then dividing again at the end we can use integers throughout, which is preferable.
def sum_even(a, b):
if (a % 2 == 1):
a += 1
if (b % 2 == 1):
b -= 1
return (a * (2 - a) + b * (2 + b)) // 4
I'd like you see how your loops work if b is close to 2^32 ;-)
As Matthew said there is no loop needed but he does not explain why.
The problem is just simple arithmetic sequence wiki. Sum of all items in such sequence is:
(a+b)
Sn = ------- * n
2
where 'a' is a first item, 'b' is last and 'n' is number if items.
If we make 'a' and b' even numbers we can easily solve given problem.
So making 'a' and 'b' even is just:
if ((a & 1)==1):
a = a + 1
if ((b & 1)==1):
b = b - 1
Now think how many items do we have between two even numbers - it is:
b-a
n = --- + 1
2
Put it into equation and you get:
a+b b-a
Sn = ----- * ( ------ + 1)
2 2
so your code looks like:
def sum_even(a,b):
if ((a & 1)==1):
a = a + 1
if ((b & 1)==1):
b = b - 1
return ((a+b)/2) * (1+((b-a)/2))
Of course you may add some code to prevent a be equal or bigger than b etc.
Indentation matters in Python. The code you write returns after the first item processed.
This might be a simple way of doing it using the range function.
the third number in range is a step number, i.e, 0, 2, 4, 6...100
sum = 0
for even_number in range(0,102,2):
sum += even_number
print (sum)
def sum_even(a,b):
count = 0
for i in range(a, b):
if(i % 2 == 0):
count += i
return count
Two mistakes here :
add i instead of [i]
you return the value directly at the first iteration. Move the return count out of the for loop
The sum of all the even numbers between the start and end number (inclusive).
def addEvenNumbers(start,end):
total = 0
if end%2==0:
for x in range(start,end):
if x%2==0:
total+=x
return total+end
else:
for x in range(start,end):
if x%2==0:
total+=x
return total
print addEvenNumbers(4,12)
little bit more fancy with advanced python feature.
def sum(a,b):
return a + b
def evensum(a,b):
a = reduce(sum,[x for x in range(a,b) if x %2 ==0])
return a
SUM of even numbers including min and max numbers:
def sum_evens(minimum, maximum):
sum=0
for i in range(minimum, maximum+1):
if i%2==0:
sum = sum +i
i= i+1
return sum
print(sum_evens(2, 6))
OUTPUT is : 12
sum_evens(2, 6) -> 12 (2 + 4 + 6 = 12)
List based approach,
Use b+1 if you want to include last value.
def sum_even(a, b):
even = [x for x in range (a, b) if x%2 ==0 ]
return sum(even)
print(sum_even(3,6))
4
[Program finished]
This will add up all your even values between 1 and 10 and output the answer which is stored in the variable x
x = 0
for i in range (1,10):
if i %2 == 0:
x = x+1
print(x)