Creating Integer Range from multiple string math expressions in python - python

I have a problem in a project and I've searched the internet high and low with no clear answer.
How can i convert math expressions
As 3x + 5y >= 100
And x,y < 500
Into a range of x and range of y to be used as ristriction in a math problem,
Ex: f = x^2+4y
The end result is to find the largest answer using genetic algorithms where x and y are ristricted in value.
Tried sympy and eval with no luck
Searched every and found only a few helpful but not enough resources
I need just to translate the user input to the code for the genetic algorithm to use.

Your set of linear inequations define a polygon in the plane.
The edges of this polygon are the lines defined by each equality that you get by replacing the inequal sign by an equal sign in an inequality.
The vertices of this polygon are the intersections of two adjacent edges; equivalently, they are the intersections of two edges that satisfy the system of (large) inequalities.
So, one way to find all the vertices of the polygon is to find every intersection point by solving every subsystem of two equalities, then filtering out the points that are outside of the polygon.
import numpy as np
from numpy.linalg import solve, LinAlgError
from itertools import combinations
import matplotlib.pyplot as plt
A = np.array([[-3, -5],[1,0],[0,1]])
b = np.array([-100,500,500])
# find polygon for system of linear inequations
# expects input in "less than" form:
# A X <= b
def get_polygon(A, b, tol = 1e-5):
polygon = []
for subsystem in map(list, combinations(range(len(A)), 2)):
try:
polygon.append(solve(A[subsystem], b[subsystem])) # solve subsystem of 2 equalities
except LinAlgError:
pass
polygon = np.array(polygon)
polygon = polygon[(polygon # A.T <= b + tol).all(axis=1)] # filter out points outside of polygon
return polygon
polygon = get_polygon(A, b)
polygon = np.vstack((polygon, polygon[0])) # duplicate first point of polygon to "close the loop" before plotting
plt.plot(polygon[:,0], polygon[:,1])
plt.show()
Note that get_polygon will find all vertices of the polygon, but if there are more than 3, they might not be ordered in clockwise order.
If you want to sort the vertices in clockwise order before plotting the polygon, I refer you to this question:
How to sort a list of points in clockwise/anticlockwise in python?

Using #Stef's approach in SymPy would give the triangular region of interest like this:
>>> from sympy.abc import x, y
>>> from sympy import intersection, Triangle, Line
>>> eqs = Eq(3*x+5*y,100), Eq(x,500), Eq(y,500)
>>> Triangle(*intersection(*[Line(eq) for eq in eqs], pairwise=True))
Triangle(Point2D(-800, 500), Point2D(500, -280), Point2D(500, 500))
So x is in range [-800, 500] and y is in range [m, 500] where m is the y value calculated from the equation of the diagonal:
m = solve(eqs[0], y)[0] # m(x)
def yval(xi):
if xi <-800 or xi > 500:
return
return m.subs(x,xi)
yval(300) # -> -160

Related

Integration of a curve generated using matplotlib

I have generated a graph using basic function -
plt.plot(tm, o1)
tm is list of all x coordinates and o1 is a list of all y coordinates
NOTE
there is no specific function such as y=f(x), rather a certain y value remains constant for a given range of x.. see figure for clarity
My question is how to integrate this function, either using the matplotlib figure or using the lists (tm and o1)
The integral corresponds to computing the area under the curve.
The most easy way to compute (or approximate) the integral "numerically" is using the rectangle rule which is basically approximating the area under the curve by summing area of rectangles (see https://en.wikipedia.org/wiki/Numerical_integration#Quadrature_rules_based_on_interpolating_functions).
Practically in your case, it quite straightforward since it is a step function.
First, I recomment to use numpy arrays instead of list (more handy for numerical computing):
import matplotlib.pyplot as plt
import numpy as np
x = np.array([0,1,3,4,6,7,8,11,13,15])
y = np.array([8,5,2,2,2,5,6,5,9,9])
plt.plot(x,y)
Then, we compute the width of rectangles using np.diff():
w = np.diff(x)
Then, the height of the same rectangles (multiple possibilities exist):
h = y[:-1]
Here I chose the 2nd value of each two successive y values. the top right angle of rectangle is on the curve. You can choose the mean value of each two successive y values h = (y[1:]+y[:-1])/2 in which the middle of the top of the rectangle coincide with the curve.
Then , you will need to multiply and sum:
area = (w*h).sum()

Find new position for overlapping circles

I am trying to write a code that, for a given list of circles (list1), it is able to find the positions for new circles (list2). list1 and list2 have the same length, because for each circle in list1 there must be a circle from list2.
Each pair of circles (let's say circle1 from list1 and circle2 from list2), must be as close together as possible,
circles from list2 must not overlap with circles from list1, while circles of the single lists can overlap each other.
list1 is fixed, so now I have to find the right position for circles from list2.
I wrote this simple function to recognize if 2 circles overlap:
def overlap(x1, y1, x2, y2, r1, r2):
distSq = (x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2)
radSumSq = (r1 + r2) * (r1 + r2)
if (distSq >= radSumSq):
return False # no overlap
else:
return True #overlap
and this is the list1:
with:
x=[14.11450195 14.14184093 14.15435028 14.16206741 14.16951752 14.17171097
14.18569565 14.19700241 14.23129082 14.24083233 14.24290752 14.24968338
14.2518959 14.26536751 14.27209759 14.27612877 14.2904377 14.29187012
14.29409599 14.29618549 14.30615044 14.31624985 14.3206892 14.3228569
14.36143875 14.36351967 14.36470699 14.36697292 14.37235737 14.41422081
14.42583466 14.43226814 14.43319225 14.4437027 14.4557848 14.46592999
14.47036076 14.47452068 14.47815609 14.52229309 14.53059006 14.53404236
14.5411644 ]
y=[-0.35319126 -0.44222349 -0.44763246 -0.35669261 -0.24366629 -0.3998799
-0.38940558 -0.57744932 -0.45223859 -0.21021004 -0.44250247 -0.45866323
-0.47203487 -0.51684451 -0.44884869 -0.2018993 -0.40296811 -0.23641759
-0.18019417 -0.33391538 -0.53565156 -0.45215255 -0.40939832 -0.26936951
-0.30894437 -0.55504167 -0.47177047 -0.45573688 -0.43100587 -0.5805912
-0.21770373 -0.199422 -0.17372169 -0.38522363 -0.56950212 -0.56947368
-0.48770753 -0.24940367 -0.31492445 -0.54263926 -0.53460872 -0.4053807
-0.43733299]
radius = 0.014
Copy and pasteable...
x = [14.11450195,14.14184093,14.15435028,14.16206741,14.16951752,
14.17171097,14.18569565,14.19700241,14.23129082,14.24083233,
14.24290752,14.24968338,14.2518959,14.26536751,14.27209759,
14.27612877,14.2904377,14.29187012,14.29409599,14.29618549,
14.30615044,14.31624985,14.3206892,14.3228569,14.36143875,
14.36351967,14.36470699,14.36697292,14.37235737,14.41422081,
14.42583466,14.43226814,14.43319225,14.4437027,14.4557848,
14.46592999,14.47036076,14.47452068,14.47815609,14.52229309,
14.53059006,14.53404236,14.5411644]
y = [-0.35319126,-0.44222349,-0.44763246,-0.35669261,-0.24366629,
-0.3998799,-0.38940558,-0.57744932,-0.45223859,-0.21021004,
-0.44250247,-0.45866323,-0.47203487,-0.51684451,-0.44884869,
-0.2018993,-0.40296811,-0.23641759,-0.18019417,-0.33391538,
-0.53565156,-0.45215255,-0.40939832,-0.26936951,-0.30894437,
-0.55504167,-0.47177047,-0.45573688,-0.43100587,-0.5805912,
-0.21770373,-0.199422,-0.17372169,-0.38522363,-0.56950212,
-0.56947368,-0.48770753,-0.24940367,-0.31492445,-0.54263926,
-0.53460872,-0.4053807,-0.43733299]
Now I am not sure about what I have to do, my first idea is to draw circles of list2 taking x and y from list one and do something like x+c and y+c, where c is a fixed value. Then I can call my overlapping function and, if there is overlap I can increase the c value.
In this way I have 2 for loops. Now, my questions are:
There is a way to avoid for loops?
Is there a smart solution to find a neighbor (circle from list2) for each circle from list1 (without overlaps with other circles from list2)?
Using numpy arrays, you can avoid for loops.
Setup from your example.
import numpy as np
#Using your x and y
c1 = np.array([x,y]).T
# random set of other centers within the same range as c1
c2 = np.random.random((10,2))
np.multiply(c2, c1.max(0)-c1.min(0),out = c2)
np.add(c2, c1.min(0), out=c2)
radius = 0.014
r = radius
min_d = (2*r)*(2*r)
plot_circles(c1,c2) # see function at end
An array of distances from each center in c1 to each center in c2
def dist(c1,c2):
dx = c1[:,0,None] - c2[:,0]
dy = c1[:,1,None] - c2[:,1]
return dx*dx + dy*dy
d = dist(c1,c2)
Or you could use scipy.spatial
from scipy.spatial import distance
d = distance.cdist(c1,c2,'sqeuclidean')
Create a 2d Boolean array for circles that intersect.
intersect = d <= min_d
Find the indices of overlapping circles from the two sets.
a,b = np.where(intersect)
plot_circles(c1[a],c2[b])
Using intersect or a and b to index c1,c2, and d you should be able to get groups of intersecting circles then figure out how to move the c2 centers - but I'll leave that for another question/answer. If a list2 circle intersects one list1 circle - find the line between the two and move along that line. If a list2 circle intersects more than one list1 circle - find the line between the two closestlist1circles and move thelitst2` circle along a line perpendicular to that. You didn't mention any constraints on moving the circles so maybe random movement then find the intersects again but that might be problematic. In the following image, it may be trivial to figure out how to move most of the red circles but the group circled in blue might require a different strategy.
Here are some examples for getting groups:
>>> for f,g,h in zip(c1[a],c2[b],d[a,b]):
print(f,g,h)
>>> c1[intersect.any(1)],c2[intersect.any(0)]
>>> for (f,g) in zip(c2,intersect.T):
if g.any():
print(f.tolist(),c1[g].tolist())
import matplotlib as mpl
from matplotlib import pyplot as plt
def plot_circles(c1,c2):
bounds = np.array([c1.min(0),c2.min(0),c1.max(0),c2.max(0)])
xmin, ymin = bounds.min(0)
xmax, ymax = bounds.max(0)
circles1 = [mpl.patches.Circle(xy,radius=r,fill=False,edgecolor='g') for xy in c1]
circles2 = [mpl.patches.Circle(xy,radius=r,fill=False,edgecolor='r') for xy in c2]
fig = plt.figure()
ax = fig.add_subplot(111)
for c in circles2:
ax.add_artist(c)
for c in circles1:
ax.add_artist(c)
ax.set_xlim(xmin-r,xmax+r)
ax.set_ylim(ymin-r,ymax+r)
plt.show()
plt.close()
This problem can very well be seen as an optimization problem. To be more precise, a nonlinear optimization problem with constraints.
Since optimization strategies are not always so easy to understand, I will define the problem as simply as possible and also choose an approach that is as general as possible (but less efficient) and does not involve a lot of mathematics. As a spoiler: We are going to formulate the problem and the minimization process in less than 10 lines of code using the scipy library.
However, I will still provide hints on where you can get your hands even dirtier.
Formulating the problem
As a guide for a formulation of an NLP-class problem (Nonlinear Programming), you can go directly to the two requirements in the original post.
Each pair of circles must be as close together as possible -> Hint for a cost-function
Circles must not overlap with other (moved) circles -> Hint for a constraint
Cost function
Let's start with the formulation of the cost function to be minimized.
Since the circles should be moved as little as possible (resulting in the closest possible neighborhood), a quadratic penalty term for the distances between the circles of the two lists can be chosen for the cost function:
import scipy.spatial.distance as sd
def cost_function(new_positions, old_positions):
new_positions = np.reshape(new_positions, (-1, 2))
return np.trace(sd.cdist(new_positions, old_positions, metric='sqeuclidean'))
Why quadratic? Partly because of differentiability and for stochastic reasons (think of the circles as normally distributed measurement errors -> least squares is then a maximum likelihood estimator). By exploiting the structure of the cost function, the efficiency of the optimization can be increased (elimination of sqrt). By the way, this problem is related to nonlinear regression, where (nonlinear) least squares are also used.
Now that we have a cost function at hand, we also have a good way to evaluate our optimization. To be able to compare solutions of different optimization strategies, we simply pass the newly calculated positions to the cost function.
Let's give it a try: For example, let us use the calculated positions from the Voronoi approach (by Paul Brodersen).
print(cost_function(new_positions, old_positions))
# prints 0.007999244511697411
That's a pretty good value if you ask me. Considering that the cost function spits out zero when there is no displacement at all, this cost is pretty close. We can now try to outperform this value by using classical optimization!
Non-linear constraint
We know that circles must not overlap with other circles in the new set. If we translate this into a constraint, we find that the lower bound for the distance is 2 times the radius and the upper bound is simply infinity.
import scipy.spatial.distance as sd
from scipy.optimize import NonlinearConstraint
def cons_f(x):
x = np.reshape(x, (-1, 2))
return sd.pdist(x)
nonlinear_constraint = NonlinearConstraint(cons_f, 2*radius, np.inf, jac='2-point')
Here we make life easy by approximating the Jacobi matrix via finite differences (see parameter jac='2-point'). At this point it should be said that we can increase the efficiency here, by formulating the derivatives of the first and second order ourselves instead of using approximations. But this is left to the interested reader. (It is not that hard, because we use quite simple mathematical expressions for distance calculation here.)
One additional note: You can also set a boundary constraint for the positions themselves not to exceed a specified region. This can then be used as another parameter. (See scipy.optimize.Bounds)
Minimizing the cost function under constraints
Now we have both ingredients, the cost function and the constraint, in place. Now let's minimize the whole thing!
from scipy.optimize import minimize
res = minimize(lambda x: cost_function(x, positions), positions.flatten(), method='SLSQP',
jac="2-point", constraints=[nonlinear_constraint])
As you can see, we approximate the first derivatives here as well. You can also go deeper here and set up the derivatives yourself (analytically).
Also note that we must always pass the parameters (an nx2 vector specifying the positions of the new layout for n circles) as a flat vector. For this reason, reshaping can be found several times in the code.
Evaluation, summary and visualization
Let's see how the optimization result performs in our cost function:
new_positions = np.reshape(res.x, (-1,2))
print(cost_function(new_positions, old_positions))
# prints 0.0010314079483565686
Starting from the Voronoi approach, we actually reduced the cost by another 87%! Thanks to the power of modern optimization strategies, we can solve a lot of problems in no time.
Of course, it would be interesting to see how the shifted circles look now:
Circles after Optimization
Performance: 77.1 ms ± 1.17 ms
The entire code:
from scipy.optimize import minimize
import scipy.spatial.distance as sd
from scipy.optimize import NonlinearConstraint
# Given by original post
positions = np.array([x, y]).T
def cost_function(new_positions, old_positions):
new_positions = np.reshape(new_positions, (-1, 2))
return np.trace(sd.cdist(new_positions, old_positions, metric='sqeuclidean'))
def cons_f(x):
x = np.reshape(x, (-1, 2))
return sd.pdist(x)
nonlinear_constraint = NonlinearConstraint(cons_f, 2*radius, np.inf, jac='2-point')
res = minimize(lambda x: cost_function(x, positions), positions.flatten(), method='SLSQP',
jac="2-point", constraints=[nonlinear_constraint])
One solution could be to follow the gradient of the unwanted spacing between each circle, though maybe there is a better way. This approach has a few parameters to tune and takes some time to run.
import matplotlib.pyplot as plt
from scipy.optimize import minimize as mini
import numpy as np
from scipy.optimize import approx_fprime
x = np.array([14.11450195,14.14184093,14.15435028,14.16206741,14.16951752,
14.17171097,14.18569565,14.19700241,14.23129082,14.24083233,
14.24290752,14.24968338,14.2518959,14.26536751,14.27209759,
14.27612877,14.2904377,14.29187012,14.29409599,14.29618549,
14.30615044,14.31624985,14.3206892,14.3228569,14.36143875,
14.36351967,14.36470699,14.36697292,14.37235737,14.41422081,
14.42583466,14.43226814,14.43319225,14.4437027,14.4557848,
14.46592999,14.47036076,14.47452068,14.47815609,14.52229309,
14.53059006,14.53404236,14.5411644])
y = np.array([-0.35319126,-0.44222349,-0.44763246,-0.35669261,-0.24366629,
-0.3998799,-0.38940558,-0.57744932,-0.45223859,-0.21021004,
-0.44250247,-0.45866323,-0.47203487,-0.51684451,-0.44884869,
-0.2018993,-0.40296811,-0.23641759,-0.18019417,-0.33391538,
-0.53565156,-0.45215255,-0.40939832,-0.26936951,-0.30894437,
-0.55504167,-0.47177047,-0.45573688,-0.43100587,-0.5805912,
-0.21770373,-0.199422,-0.17372169,-0.38522363,-0.56950212,
-0.56947368,-0.48770753,-0.24940367,-0.31492445,-0.54263926,
-0.53460872,-0.4053807,-0.43733299])
radius = 0.014
x0, y0 = (x, y)
def plot_circles(x, y, name='initial'):
fig, ax = plt.subplots()
for ii in range(x.size):
ax.add_patch(plt.Circle((x[ii], y[ii]), radius, color='b', fill=False))
ax.set_xlim(x.min() - radius, x.max() + radius)
ax.set_ylim(y.min() - radius, y.max() + radius)
fig.savefig(name)
plt.clf()
def spacing(s):
x, y = np.split(s, 2)
dX, dY = [np.subtract(*np.meshgrid(xy, xy, indexing='ij')).T
for xy in [x, y]]
dXY2 = dX**2 + dY**2
return np.minimum(dXY2[np.triu_indices(x.size, 1)] - (2 * radius) ** 2, 0).sum()
plot_circles(x, y)
def spacingJ(s):
return approx_fprime(s, spacing, 1e-8)
s = np.append(x, y)
for ii in range(50):
j = spacingJ(s)
if j.sum() == 0: break
s += .01 * j
x_new, y_new = np.split(s, 2)
plot_circles(x_new, y_new, 'new%i' % ii)
plot_circles(x_new, y_new, 'new%i' % ii)
https://giphy.com/gifs/x0lWDLZBz5O3gWTbLa
This answer implements a variation of the Lloyds algorithm. The basic idea is to compute the Voronoi diagram for your points / circles. This assigns each point a cell, which is a region that includes the point and which has a center that is maximally far away from all other points.
In the original algorithm, we would move each point towards the center of its Voronoi cell. Over time, this results in an even spread of points, as illustrated here.
In this variant, we only move points that overlap another point.
import numpy as np
import matplotlib.pyplot as plt
from scipy.spatial import Voronoi
from scipy.spatial.distance import cdist
def remove_overlaps(positions, radii, tolerance=1e-6):
"""Use a variation of Lloyds algorithm to move circles apart from each other until none overlap.
Parameters
----------
positions : array
The (x, y) coordinates of the circle origins.
radii : array
The radii for each circle.
tolerance : float
If all circles overlap less than this threshold, the computation stops.
Higher values leads to faster convergence.
Returns
-------
new_positions : array
The (x, y) coordinates of the circle origins.
See also
--------
https://en.wikipedia.org/wiki/Lloyd%27s_algorithm
"""
positions = np.array(positions)
radii = np.array(radii)
minimum_distances = radii[np.newaxis, :] + radii[:, np.newaxis]
minimum_distances[np.diag_indices_from(minimum_distances)] = 0 # ignore distances to self
# Initialize the first loop.
distances = cdist(positions, positions)
displacements = np.max(np.clip(minimum_distances - distances, 0, None), axis=-1)
while np.any(displacements > tolerance):
centroids = _get_voronoi_centroids(positions)
# Compute the direction from each point towards its corresponding Voronoi centroid.
deltas = centroids - positions
magnitudes = np.linalg.norm(deltas, axis=-1)
directions = deltas / magnitudes[:, np.newaxis]
# Mask NaNs that arise if the magnitude is zero, i.e. the point is already center of the Voronoi cell.
directions[np.isnan(directions)] = 0
# Step into the direction of the centroid.
# Clipping prevents overshooting of the centroid when stepping into the direction of the centroid.
# We step by half the displacement as the other overlapping point will be moved in approximately the opposite direction.
positions = positions + np.clip(0.5 * displacements, None, magnitudes)[:, np.newaxis] * directions
# Initialize next loop.
distances = cdist(positions, positions)
displacements = np.max(np.clip(minimum_distances - distances, 0, None), axis=-1)
return positions
def _get_voronoi_centroids(positions):
"""Construct a Voronoi diagram from the given positions and determine the center of each cell."""
voronoi = Voronoi(positions)
centroids = np.zeros_like(positions)
for ii, idx in enumerate(voronoi.point_region):
region = [jj for jj in voronoi.regions[idx] if jj != -1] # i.e. ignore points at infinity; TODO: compute correctly clipped regions
centroids[ii] = np.mean(voronoi.vertices[region], axis=0)
return centroids
if __name__ == '__main__':
x = np.array([14.11450195,14.14184093,14.15435028,14.16206741,14.16951752,
14.17171097,14.18569565,14.19700241,14.23129082,14.24083233,
14.24290752,14.24968338,14.2518959,14.26536751,14.27209759,
14.27612877,14.2904377,14.29187012,14.29409599,14.29618549,
14.30615044,14.31624985,14.3206892,14.3228569,14.36143875,
14.36351967,14.36470699,14.36697292,14.37235737,14.41422081,
14.42583466,14.43226814,14.43319225,14.4437027,14.4557848,
14.46592999,14.47036076,14.47452068,14.47815609,14.52229309,
14.53059006,14.53404236,14.5411644])
y = np.array([-0.35319126,-0.44222349,-0.44763246,-0.35669261,-0.24366629,
-0.3998799,-0.38940558,-0.57744932,-0.45223859,-0.21021004,
-0.44250247,-0.45866323,-0.47203487,-0.51684451,-0.44884869,
-0.2018993,-0.40296811,-0.23641759,-0.18019417,-0.33391538,
-0.53565156,-0.45215255,-0.40939832,-0.26936951,-0.30894437,
-0.55504167,-0.47177047,-0.45573688,-0.43100587,-0.5805912,
-0.21770373,-0.199422,-0.17372169,-0.38522363,-0.56950212,
-0.56947368,-0.48770753,-0.24940367,-0.31492445,-0.54263926,
-0.53460872,-0.4053807,-0.43733299])
radius = 0.014
positions = np.c_[x, y]
radii = np.full(len(positions), radius)
fig, axes = plt.subplots(1, 2, sharex=True, sharey=True, figsize=(14, 7))
for position, radius in zip(positions, radii):
axes[0].add_patch(plt.Circle(position, radius, fill=False))
axes[0].set_xlim(x.min() - radius, x.max() + radius)
axes[0].set_ylim(y.min() - radius, y.max() + radius)
axes[0].set_aspect('equal')
new_positions = remove_overlaps(positions, radii)
for position, radius in zip(new_positions, radii):
axes[1].add_patch(plt.Circle(position, radius, fill=False))
for ax in axes.ravel():
ax.set_aspect('equal')
plt.show()

Check whether coordinates are in a certain region on a coordinate system

I have a coordinate system with a certain amount of regions, similar to this one:
The difference in my case is however, that all regions are uniquely numbered, are all of the same size and there are 16 of them (so each quadrant would have 4 slices of exactly the same size).
I also have a set of tuples (two dimensional coordinates), which are all between (-1,-1) and (1,1). I'd now like to check into which region (i.e. 1 to 16) they'd land if mapped onto the coordinate system.
As a total beginner, I have no idea on how to tackle this, but here is my approach so far:
Make all the dividing lines functions and check for each point whether they're above and below them. Ignore those on the decision boundary
For example: Quadrant 1 has four regions. From the x-axis to the y-axis (counter-clockwise) let's call them a, b, c and d.
a would be the region between the x-axis and f1(x) = 0.3333x (red)
b between f1 and f2, f2(x) = x (yellow)
c between f2 and f3, f3(x) = 3x (blue)
d between f3 and the y-axis
As code:
def a(p):
if(y > 0 and y < 0.3333x):
return "a"
else:
b(p)
def b(p):
if(y > 0.3333x and y < x)
return "b"
else:
c(p)
def c(p):
if(y > x and y < 3x):
return "c"
else:
d(p)
def d(p):
if(y > 3x and x > 0):
return "d"
Note: for readability's sake I just wrote "x" and "y" for the tuple's respective coordinates, instead p[0] or p[1] every time. Also, as stated above, I'm assuming that there are not items directly on the functions, so those are ignored.
Now, that is a possible solution, but I feel like there's almost certainly a more efficient one.
Since you're working between (-1,-1) and (1,1) coordinates and divinding equaly the cartesian plane, it becomes naturally to use trigonometry functions. Thinking in the unitary circle, which has 2*pi deegres, you are dividing it in n equal parts (in this case n = 16). So each slice has (2*pi)/16 = pi/8 deegres. Now you can imagine an arbitray point (x, y) connected to the origin point (0, 0), it formes an angle with the x-axis. To find this angle you just need to calculate the arc-tangent of y/x. Then you just need to verify in which angle section it is.
Here is a sketch:
And to directly map to the interval you can use the bisect module:
import bisect
from math import atan2
from math import pi
def find_section(x, y):
# create intervals
sections = [2 * pi * i / 16 for i in range(1, 17)]
# find the angle
angle = atan2(y, x)
# adjusts the angle to the other half circle
if y < 0:
angle += 2*pi
# map into sections
return bisect.bisect_left(sections, angle)
Usage:
In [1]: find_section(0.4, 0.2)
Out[1]: 1
In [2]: find_section(0.8, 0.2)
Out[2]: 0
Shapely is a python library that can help you with typical cartesian geometry, but as far as I know it doesn't have an easy way of extending its Line objects indefinitely based on a function.
If you're ok with that, then you can check if any Point is in any Polygon using the Polygon.contains(Point) pattern, as shown here: https://shapely.readthedocs.io/en/stable/manual.html#object.contains

fastest way to find euclidean distance in python

I have 2 sets of 2D points (A and B), each set have about 540 points. I need to find the points in set B that are farther than a defined distance alpha from all the points in A.
I have a solution, but is not fast enough
# find the closest point of each of the new point to the target set
def find_closest_point( self, A, B):
outliers = []
for i in range(len(B)):
# find all the euclidean distances
temp = distance.cdist([B[i]],A)
minimum = numpy.min(temp)
# if point is too far away from the rest is consider outlier
if minimum > self.alpha :
outliers.append([i, B[i]])
else:
continue
return outliers
I am using python 2.7 with numpy and scipy. Is there another way to do this that I may gain a considerable increase in speed?
Thanks in advance for the answers
>>> from scipy.spatial.distance import cdist
>>> A = np.random.randn(540, 2)
>>> B = np.random.randn(540, 2)
>>> alpha = 1.
>>> ind = np.all(cdist(A, B) > alpha, axis=0)
>>> outliers = B[ind]
gives you the points you want.
If you have a very large set of points you could calculate x & y bounds of a add & subtract aplha then eliminate all the points in b from specific consideration that lay outside of that boundary.

Generate random points on a surface of the cylinder

I want to generate random points on the surface of cylinder such that distance between the points fall in a range of 230 and 250. I used the following code to generate random points on surface of cylinder:
import random,math
H=300
R=20
s=random.random()
#theta = random.random()*2*math.pi
for i in range(0,300):
theta = random.random()*2*math.pi
z = random.random()*H
r=math.sqrt(s)*R
x=r*math.cos(theta)
y=r*math.sin(theta)
z=z
print 'C' , x,y,z
How can I generate random points such that they fall with in the range(on the surfaceof cylinder)?
This is not a complete solution, but an insight that should help. If you "unroll" the surface of the cylinder into a rectangle of width w=2*pi*r and height h, the task of finding distance between points is simplified. You have not explained how to measure "distance along the surface" between points on the top of the cylinder and the side- this is a slightly tricky bit of geometry.
As for computing the distance along the surface when we created an artificial "seam", just use both (x1-x2) and (w -x1+x2) - whichever gives the shorter distance is the one you want.
I do think that #VincentNivoliers' suggestion to use Poisson disk sampling is very good, but with the constraints of h=300 and r=20 you will get terrible results no matter what.
The basic way of creating a set of random points with constraints in the positions between them, is to have a function that modulates the probability of points being placed at a certain location. this function starts out being a constant, and whenever a point is placed, forbidden areas surrounding the point are set to zero. That is difficult to do with continuous variables, but reasonably easy if you discretize your problem.
The other thing to be careful about is the being on a cylinder part. It may be easier to think of it as random points on a rectangular area that repeats periodically. This can be handled in two different ways:
the simplest is to take into consideration not only the rectangular tile where you are placing the points, but also its neighbouring ones. Whenever you place a point in your main tile, you also place one in the neighboring ones and compute their effect on the probability function inside your tile.
A more sophisticated approach considers the probability function then convolution of a kernel that encodes forbidden areas, with a sum of delta functions, corresponding to the points already placed. If this is computed using FFTs, the periodicity is anatural by product.
The first approach can be coded as follows:
from __future__ import division
import numpy as np
r, h = 20, 300
w = 2*np.pi*r
int_w = int(np.rint(w))
mult = 10
pdf = np.ones((h*mult, int_w*mult), np.bool)
points = []
min_d, max_d = 230, 250
available_locs = pdf.sum()
while available_locs:
new_idx = np.random.randint(available_locs)
new_idx = np.nonzero(pdf.ravel())[0][new_idx]
new_point = np.array(np.unravel_index(new_idx, pdf.shape))
points += [new_point]
min_mask = np.ones_like(pdf)
if max_d is not None:
max_mask = np.zeros_like(pdf)
else:
max_mask = True
for p in [new_point - [0, int_w*mult], new_point +[0, int_w*mult],
new_point]:
rows = ((np.arange(pdf.shape[0]) - p[0]) / mult)**2
cols = ((np.arange(pdf.shape[1]) - p[1]) * 2*np.pi*r/int_w/mult)**2
dist2 = rows[:, None] + cols[None, :]
min_mask &= dist2 > min_d*min_d
if max_d is not None:
max_mask |= dist2 < max_d*max_d
pdf &= min_mask & max_mask
available_locs = pdf.sum()
points = np.array(points) / [mult, mult*int_w/(2*np.pi*r)]
If you run it with your values, the output is usually just one or two points, as the large minimum distance forbids all others. but if you run it with more reasonable values, e.g.
min_d, max_d = 50, 200
Here's how the probability function looks after placing each of the first 5 points:
Note that the points are returned as pairs of coordinates, the first being the height, the second the distance along the cylinder's circumference.

Categories