What are problems here on Tenser flow with keras cnn problem - python

i ask what’s I doing to edait code in order preventing errors
I use keras model conv1d for raw dataset X_train= (142315, 23)
Y_train = (142315,)
my code
My code is
n_timesteps = X_train.shape[1] #23
input_layer = tensorflow.keras.layers.Input(shape=(n_timesteps,1))
conv_layer1 = tensorflow.keras.layers.Conv1D(filters=5,
kernel_size=7,
activation=”relu”)(input_layer)
max_pool1 = tensorflow.keras.layers.MaxPooling1D(pool_size=2, strides=5)(conv_layer1)
conv_layer2 = tensorflow.keras.layers.Conv1D(filters=3,
kernel_size=3,
activation=”relu”)(max_pool1)
flatten_layer = tensorflow.keras.layers.Flatten()(conv_layer2)
dense_layer = tensorflow.keras.layers.Dense(15, activation=”relu”)(flatten_layer)
output_layer = tensorflow.keras.layers.Dense(6, activation=”softmax”)(dense_layer)
model = tensorflow.keras.Model(inputs=input_layer, outputs=output_layer)
# Prints a string summary of the network.
model.summary()
and after that i use optimization technological for hyperprameters and when # Returning the details of the best solution. print this error can helpe me?????
error
5121 # Use logits whenever they are available. softmax and sigmoid
ValueError: Shapes (142315,) Hi and (142315, 2) are incompatible

Related

How to insert dropout layers after activation layers in a pre-trained non-sequential model using functional keras API?

I am working on a modified resnet, and want to insert dropout after activation layers.
I have tried the following but due to the model not being sequential, it did not work:
def add_dropouts(model, probability = 0.5):
print("Adding Dropouts")
updated_model = tf.keras.models.Sequential()
for layer in model.layers:
print("layer = ", layer)
updated_model.add(layer)
if isinstance(layer, tf.keras.layers.Activation):
updated_model.add(tf.keras.layers.Dropout(probability))
print("updated model Summary = ", updated_model.summary)
print("model Summary = ", model.summary)
model = updated_model
return model
base_model = tf.keras.applications.ResNet50V2(include_top=False, input_shape=input_img_shape, pooling='avg')
base_model = add_dropouts(base_model, probability = 0.5)
Then i tried my own version using the functional API, but this method doesn't work and returns a value error say Tensor doesn't have output.
prev_layer = base_model.layers[0]
for layer in base_model.layers:
next_layer = layer(prev_layer.output)
if isinstance(layer, tf.keras.layers.Activation):
next_layer = Dropout(0.5)(next_layer.output)
prev_layer = next_layer
Does anyone know how someone would add dropout layers into resnet or any other pretrained network?
So eventually i figured out how to do it; but its very hacky. Go to:
C:\ProgramData\Anaconda3\envs*your env name*\Lib\site-packages\tensorflow\python\keras\applications
Go to resnet.py. This will also change resnetv2 instances because it is based on the original resnet. Just Cntrl+F for activation,and where you see an activation layer(which is usually in the format x = Layer(x) building the model a layer at a time) then just add:
x = Dropout(prob)(x)
Here is an example:
if not preact:
x = layers.BatchNormalization(
axis=bn_axis, epsilon=1.001e-5, name='conv1_bn')(x)
x = layers.Activation('relu', name='conv1_relu')(x)#insert layer after each of these
x = layers.Dropout(prob)(x) # added dropout
Do this for all similar search results for 'activation'.
Then you will see the dropout added in your model summary.

Tensorflow: Use model inside another model as layer

I want to use a classification model inside another model as layer, since I thought that keras models can be used as layers also. This is the code of the first model:
cencoder_inputs = keras.layers.Input(shape=[pad_len], dtype=np.int32)
ccondi_input = keras.layers.Input(shape=[1], dtype=np.int32)
ccondi_layer = tf.keras.layers.concatenate([cencoder_inputs, ccondi_input], axis=1)
cembeddings = keras.layers.Embedding(vocab_size, 4)
cencoder_embeddings = cembeddings(ccondi_layer)
clstm = keras.layers.LSTM(128)(cencoder_embeddings)
cout_layer = keras.layers.Dense(16, activation="softmax")(clstm)
classification_model = keras.Model(inputs=[cencoder_inputs, ccondi_input], outputs=[cout_layer])
classification_model.compile(optimizer="Nadam", loss="sparse_categorical_crossentropy", metrics=["accuracy"], experimental_run_tf_function=False)
I train this model, save and reload it as class_model and set trainable=False
This is the code of my model, which should use the model above as layer:
encoder_inputs = keras.layers.Input(shape=[pad_len], dtype=np.int32)
decoder_inputs = keras.layers.Input(shape=[pad_len], dtype=np.int32)
condi_input = keras.layers.Input(shape=[1], dtype=np.int32)
class_layer = class_model((encoder_inputs, condi_input))
#Thats how I use the class model. Compilation goes fine so far
class_pred_layer = keras.layers.Lambda(lambda x: tf.reshape(tf.cast(tf.keras.backend.argmax(x, axis=1), dtype=tf.int32),shape=(tf.shape(encoder_inputs)[0],1)))(class_layer)
# Lambda and reshape layer, so I get 1 prediction per batch as integer
condi_layer = tf.keras.layers.concatenate([encoder_inputs, condi_input, class_pred_layer], axis=1)
embeddings = keras.layers.Embedding(vocab_size, 2)
encoder_embeddings = embeddings(condi_layer)
decoder_embeddings = embeddings(decoder_inputs)
encoder_1 = keras.layers.LSTM(64, return_sequences=True, return_state=True)
encoder_lstm_bidirectional_1 = keras.layers.Bidirectional(encoder_1)
encoder_output, state_h1, state_c1, state_h2, state_c2 = encoder_lstm_bidirectional_1(encoder_embeddings)
encoder_state = [Concatenate()([state_h1, state_h2]), Concatenate()([state_c1, state_c2])]
decoder_lstm = keras.layers.LSTM(64*2, return_sequences=True, return_state=True, name="decoder_lstm")
print(encoder_output.shape)
decoder_outputs,decoder_fwd_state, decoder_back_state = decoder_lstm(decoder_embeddings,initial_state=encoder_state)
print(decoder_outputs.shape)
attn_layer = AttentionLayer(name="attention_layer")
attn_out, attn_states = attn_layer([encoder_output, decoder_outputs])
decoder_concat_input = Concatenate(axis=-1, name="decoder_concat_layer")([decoder_outputs, attn_out])
decoder_dense_out = keras.layers.TimeDistributed(keras.layers.Dense(vocab_size, activation="softmax"))
decoder_outputs = decoder_dense_out(decoder_concat_input)
model = keras.Model(inputs=[encoder_inputs, decoder_inputs, condi_input], outputs=[decoder_outputs])
When I execute model.fit(), I receive the following error:
Inputs to eager execution function cannot be Keras symbolic tensors, but found [<tf.Tensor 'input_21:0' shape=(None, 35) dtype=int32>]
I thought trained models could be used easily as layers, what am I doing wrong?
I also already looked into this Post but it didnt help me either.
Thanks for your help!
Ok, i will do 2 things: (1) I will give you an example that works where i had to do call a model inside an other model, and (2) try to give you a hint on what could be your problem here ( i cant really undertand the code but i had in the past the same error )
1.
This is an example of a model that use an other model as an hidden layer:
def model_test(input_shape, sub_model):
inputs = Input(input_shape)
eblock_1_1 = dense_convolve(inputs, n_filters=growth_rate)
eblock_1_2 = dense_convolve(eblock_1_1, n_filters=growth_rate);
dblock_1_1 = dense_convolve(eblock_1_2, n_filters=growth_rate);
dblock_1_2 = dense_convolve(dblock_1_1, n_filters=growth_rate);
final_convolution = Conv3D(2, (1, 1, 1), padding='same', activation='relu')(dblock_1_2)
intermedio = sub_model(final_convolution)
layer = LeakyReLU(alpha=0.3)(intermedio)
model = Model(inputs=inputs, outputs=layer)
return model
I call it like this:
with strategy.scope():
sub_model = tf.keras.models.load_model('link_to_the_model')
sub_model.trainable = False
model = model_test(INPUT_SIZE, sub_model)
model.compile(optimizer=Adam(lr=0.1),
loss=tf.keras.losses.MeanSquaredError(),
metrics=None)
I just tested this on google colab with keras.
I had the same error some time ago when i tried to call a function with eager execution inside a model, the problem here is that the training is executed in graph mode ( you can find online some info about https://towardsdatascience.com/eager-execution-vs-graph-execution-which-is-better-38162ea4dbf6).
If the problem is the call of the model maybe try to do what i did, pass the model as a parameter and call it inside with a layer as argument and use it as a simple layer

Using fit_generator with multiple inputs gives error at output dense layer

In my case I am using a set of sequential features and also non sequential features to train the model. Following is the architecture of my model
Sequential features -> LSTM -> Dense(1) --->>
\
\
-- Dense -> Dense -> Dense(1) ->output
/
Non-sequential features---/
I am using data generator to generate batches for sequential data. Here the batch size is varying for each batch. For one batch I am keeping the non-sequential feature fixed. Following is my data generator.
def training_data_generator(raw_data):
while True:
for index, row in raw_data.iterrows():
x_train, y_train = list(), list()
feature1 = row['xxx']
x_current_batch = []
y_current_batch = []
for j in range(yyy):
x_current_batch.append(row['zz1'])
y_current_batch.append(row['zz2'])
x_train.append(x_current_batch)
y_train.append(y_current_batch)
x_train = array(x_train)
y_train = array(y_train)
yield [x_train, np.reshape(feature1,1)], y_train
Note: x_train y_train sizes are varying.
Following is my model implementation.
seq_input = Input(shape=(None, 3))
lstm_layer = LSTM(50)(seq_input)
dense_layer1 = Dense(1)(lstm_layer)
non_seq_input = Input(shape=(1,))
hybrid_model = concatenate([dense_layer1, non_seq_input])
hidden1 = Dense(10, activation = 'relu')(hybrid_model)
hidden2 = Dense(10, activation='relu')(hidden1)
final_output = Dense(1, activation='sigmoid')(hidden2)
model = Model(inputs = [seq_input, non_seq_input], outputs = final_output)
model.compile(loss='mse',optimizer='adam')
model.fit_generator(training_data_generator(flatten), steps_per_epoch= 5017,
epochs = const.NUMBER_OF_EPOCHS, verbose=1)
I am getting error at the output dense layer
ValueError: Error when checking target:
expected dense_4 to have shape (1,) but got array with shape (4,)
I think the last layer is getting whole output of the generator but not as one by one.
What is the reason for this issue. Appreciate your insights on this issue.
The output gives a Dense layer with a size of 4. Since you've declared your output as a Dense layer with a size of 1, it crashes.
What you can do is change your output dense Layer to 4. And then manually convert this to one value.
Hopefully this answers your question.

Can anyone help me with keras Merge layer

I saw this code from https://github.com/raducrs/Applications-of-Deep-Learning/blob/master/Image%20captioning%20Flickr8k.ipynb and tried it to run in google colab, however when I run the code below it gave me error. It says
Merge is deprecated
I wonder how I can run this code with keras latest version.
LSTM_CELLS_CAPTION = 256
LSTM_CELLS_MERGED = 1000
image_pre = Sequential()
image_pre.add(Dense(100, input_shape=(IMG_FEATURES_SIZE,), activation='relu', name='fc_image'))
image_pre.add(RepeatVector(MAX_SENTENCE,name='repeat_image'))
caption_model = Sequential()
caption_model.add(Embedding(VOCABULARY_SIZE, EMB_SIZE,
weights=[embedding_matrix],
input_length=MAX_SENTENCE,
trainable=False, name="embedding"))
caption_model.add(LSTM(EMB_SIZE, return_sequences=True, name="lstm_caption"))
caption_model.add(TimeDistributed(Dense(100, name="td_caption")))
combined = Sequential()
combined.add(Merge([image_pre, caption_model], mode='concat', concat_axis=1,name="merge_models"))
combined.add(Bidirectional(LSTM(256,return_sequences=False, name="lstm_merged"),name="bidirectional_lstm"))
combined.add(Dense(VOCABULARY_SIZE,name="fc_merged"))
combined.add(Activation('softmax',name="softmax_combined"))
predictive = Model([image_pre.input, caption_model.input],combined.output)
Merge(mode='concat') is now Concatenate(axis=1).
The following generates a graph correctly on colab.
from tensorflow.python import keras
from keras.layers import *
from keras.models import Model, Sequential
IMG_FEATURES_SIZE = 10
MAX_SENTENCE = 80
VOCABULARY_SIZE = 1000
EMB_SIZE = 100
embedding_matrix = np.zeros((VOCABULARY_SIZE, EMB_SIZE))
LSTM_CELLS_CAPTION = 256
LSTM_CELLS_MERGED = 1000
image_pre = Sequential()
image_pre.add(Dense(100, input_shape=(IMG_FEATURES_SIZE,), activation='relu', name='fc_image'))
image_pre.add(RepeatVector(MAX_SENTENCE,name='repeat_image'))
caption_model = Sequential()
caption_model.add(Embedding(VOCABULARY_SIZE, EMB_SIZE,
weights=[embedding_matrix],
input_length=MAX_SENTENCE,
trainable=False, name="embedding"))
caption_model.add(LSTM(EMB_SIZE, return_sequences=True, name="lstm_caption"))
caption_model.add(TimeDistributed(Dense(100, name="td_caption")))
merge = Concatenate(axis=1,name="merge_models")([image_pre.output, caption_model.output])
lstm = Bidirectional(LSTM(256,return_sequences=False, name="lstm_merged"),name="bidirectional_lstm")(merge)
output = Dense(VOCABULARY_SIZE, name="fc_merged", activation='softmax')(lstm)
predictive = Model([image_pre.input, caption_model.input], output)
predictive.compile('sgd', 'binary_crossentropy')
predictive.summary()
Description:
This is a model with 2 inputs per sample: an image and a caption ( a sequence of words ).
The input graphs merge at the concatenation point (name='merge_models')
The image is processed simply by a Dense layer (you may want to add convolutions to the image branch ); the output of this dense layer is then copied MAX_SENTENCE times in preparation for the merge.
The captions are processed by an LSTM and a Dense layer.
The merge results in MAX_SENTENCE time-steps each with features from both branches.
The combined branch then ends up predicting one class out of VOCABULARY_SIZE.
The model.summary() is a good way to understand the graph.

Setup Keras options for LSTM modelling

I am trying to figure out to setup process of forecasting some value. Currently, I can't understand what is issue in below code:
in_neurons = 1
out_neurons = 1
hidden_neurons = 20
nb_features = 9
# retrieve data
y_train = train.pop(target).values
X_train = pd.concat([train[['QTR_HR_START', 'QTR_HR_END', 'HOLIDAY_RANK_', 'SPECIAL_EVENT_RANK_',
'IS_AM', 'IS_TOP_RANKED', 'AWARDS_WINS_ANY', 'YEARS_SINCE_RELEASE']],
pd.DataFrame({'DATETIME': pd.DatetimeIndex(train['DATETIME']).astype(np.int64)})])
X_train = X_train.values
y_test = test.pop(target).values
X_test = pd.concat([test[['QTR_HR_START', 'QTR_HR_END', 'HOLIDAY_RANK_', 'SPECIAL_EVENT_RANK_',
'IS_AM', 'IS_TOP_RANKED', 'AWARDS_WINS_ANY', 'YEARS_SINCE_RELEASE']],
pd.DataFrame({'DATETIME': pd.DatetimeIndex(test['DATETIME']).astype(np.int64)})])
X_test = X_test.values
model = Sequential()
model.add(TimeDistributed(Dense(8, input_shape=(X_train.shape[0], 100, nb_features), activation='softmax')))
model.add(LSTM(4, dropout_W=0.2, dropout_U=0.2))
model.add(Dense(1))
model.add(Activation("sigmoid"))
model.compile(loss="mean_squared_error", optimizer="rmsprop", metrics=['accuracy'])
After running the code, I got an exception:
raise Exception('The first layer in a Sequential model must '
Exception: The first layer in a Sequential model must get an input_shape or batch_input_shape argument.
Please advice where I am wrong
EDIT1: I just configured the model as was mentioned in official documentation - http://keras.io/layers/recurrent/
model.add(LSTM(32, input_dim=nb_features, input_length=100))
model.compile(loss="mean_squared_error", optimizer="rmsprop", metrics=['accuracy'])
Exception: Error when checking model input: expected lstm_input_1 to have 3 dimensions, but got array with shape (48614, 9)
It's old, but I'm posting for future use. Keras as input requiers 3D data, as stated in error. It is samples, time steps, features. Despite the fact that you have (48614, 9) Keras takes it as 2D - [samples, features]. In order to fix it, do something like this
def reshape_dataset(train):
trainX = numpy.reshape(train, (train.shape[0], 1, train.shape[1]))
return numpy.array(trainX)
x = reshape_dataset(your_dataset_48614, 9)
now X should be 48614,1, 9 which is [samples, time steps, features] - 3D

Categories