I created API on Python and i want to start some long function, but I want to tell user that my endpoint worked successfully and i some task started in execution
I want to do it because i want so that the user does not wait for the function to be executed
If it were represented in pseudocode, it would probably look like this:
async my_endpoint(context):
func_name = context.func_name
<something_validation_block>
return 204 if all right
So, how created in one function ?
I tried something as:
async def handle(context):
<validate_block>
threading.Thread(
target=logn_func, args=(context,),
).start()
return 204
But unfortunately it does not work : (
First, asyncio has a method named asyncio.to_thread docs
It's provide a friendly method to work with async and threading.
(Or you can run task in threading pool docs)
then, you can use asyncio.create_task(coro) to run async function in background
it will return a Task object which is awaitable, or use task.add_done_callback to handle result.
import asyncio
import time
def block() -> str:
print("block function start")
time.sleep(1)
print("block function done")
return "result"
async def main() -> int:
task = asyncio.get_running_loop().run_in_executor(None, block)
task.add_done_callback(lambda task: print("task with result:", task.result()))
print("return 204")
return 204
asyncio.run(main())
block function start
return 204
block function done
task with result: result
NOTE: Save a reference to tasks, to avoid a task disappearing mid-execution. The event loop only keeps weak references to tasks. A task that isn’t referenced elsewhere may get garbage collected at any time, even before it’s done.
Related
Use case
The client micro service, which calls /do_something, has a timeout of 60 seconds in the request/post() call. This timeout is fixed and can't be changed. So if /do_something takes 10 mins, /do_something is wasting CPU resources since the client micro service is NOT waiting after 60 seconds for the response from /do_something, which wastes CPU for 10 mins and this increases the cost. We have limited budget.
The current code looks like this:
import time
from uvicorn import Server, Config
from random import randrange
from fastapi import FastAPI
app = FastAPI()
def some_func(text):
"""
Some computationally heavy function
whose execution time depends on input text size
"""
randinteger = randrange(1,120)
time.sleep(randinteger)# simulate processing of text
return text
#app.get("/do_something")
async def do_something():
response = some_func(text="hello world")
return {"response": response}
# Running
if __name__ == '__main__':
server = Server(Config(app=app, host='0.0.0.0', port=3001))
server.run()
Desired Solution
Here /do_something should stop the processing of the current request to endpoint after 60 seconds and wait for next request to process.
If execution of the end point is force stopped after 60 seconds we should be able to log it with custom message.
This should not kill the service and work with multithreading/multiprocessing.
I tried this. But when timeout happends the server is getting killed.
Any solution to fix this?
import logging
import time
import timeout_decorator
from uvicorn import Server, Config
from random import randrange
from fastapi import FastAPI
app = FastAPI()
#timeout_decorator.timeout(seconds=2, timeout_exception=StopIteration, use_signals=False)
def some_func(text):
"""
Some computationally heavy function
whose execution time depends on input text size
"""
randinteger = randrange(1,30)
time.sleep(randinteger)# simulate processing of text
return text
#app.get("/do_something")
async def do_something():
try:
response = some_func(text="hello world")
except StopIteration:
logging.warning(f'Stopped /do_something > endpoint due to timeout!')
else:
logging.info(f'( Completed < /do_something > endpoint')
return {"response": response}
# Running
if __name__ == '__main__':
server = Server(Config(app=app, host='0.0.0.0', port=3001))
server.run()
This answer is not about improving CPU time—as you mentioned in the comments section—but rather explains what would happen, if you defined an endpoint with normal def or async def, as well as provides solutions when you run blocking operations inside an endpoint.
You are asking how to stop the processing of a request after a while, in order to process further requests. It does not really make that sense to start processing a request, and then (60 seconds later) stop it as if it never happened (wasting server resources all that time and having other requests waiting). You should instead let the handling of requests to FastAPI framework itself. When you define an endpoint with async def, it is run on the main thread (in the event loop), i.e., the server processes the requests sequentially, as long as there is no await call inside the endpoint (just like in your case). The keyword await passes function control back to the event loop. In other words, it suspends the execution of the surrounding coroutine, and tells the event loop to let something else run, until the awaited task completes (and has returned the result data). The await keyword only works within an async function.
Since you perform a heavy CPU-bound operation inside your async def endpoint (by calling your some_func() function), and you never give up control for other requests to run in the event loop (e.g., by awaiting for some coroutine), the server will be blocked and wait for that request to be fully processed and complete, before moving on to the next one(s)—have a look at this answer for more details.
Solutions
One solution would be to define your endpoint with normal def instead of async def. In brief, when you declare an endpoint with normal def instead of async def in FastAPI, it is run in an external threadpool that is then awaited, instead of being called directly (as it would block the server); hence, FastAPI would still work asynchronously.
Another solution, as described in this answer, is to keep the async def definition and run the CPU-bound operation in a separate thread and await it, using Starlette's run_in_threadpool(), thus ensuring that the main thread (event loop), where coroutines are run, does not get blocked. As described by #tiangolo here, "run_in_threadpool is an awaitable function, the first parameter is a normal function, the next parameters are passed to that function directly. It supports sequence arguments and keyword arguments". Example:
from fastapi.concurrency import run_in_threadpool
res = await run_in_threadpool(cpu_bound_task, text='Hello world')
Since this is about a CPU-bound operation, it would be preferable to run it in a separate process, using ProcessPoolExecutor, as described in the link provided above. In this case, this could be integrated with asyncio, in order to await the process to finish its work and return the result(s). Note that, as described in the link above, it is important to protect the main loop of code to avoid recursive spawning of subprocesses, etc—essentially, your code must be under if __name__ == '__main__'. Example:
import concurrent.futures
from functools import partial
import asyncio
loop = asyncio.get_running_loop()
with concurrent.futures.ProcessPoolExecutor() as pool:
res = await loop.run_in_executor(pool, partial(cpu_bound_task, text='Hello world'))
About Request Timeout
With regards to the recent update on your question about the client having a fixed 60s request timeout; if you are not behind a proxy such as Nginx that would allow you to set the request timeout, and/or you are not using gunicorn, which would also allow you to adjust the request timeout, you could use a middleware, as suggested here, to set a timeout for all incoming requests. The suggested middleware (example is given below) uses asyncio's .wait_for() function, which waits for an awaitable function/coroutine to complete with a timeout. If a timeout occurs, it cancels the task and raises asyncio.TimeoutError.
Regarding your comment below:
My requirement is not unblocking next request...
Again, please read carefully the first part of this answer to understand that if you define your endpoint with async def and not await for some coroutine inside, but instead perform some CPU-bound task (as you already do), it will block the server until is completed (and even the approach below wont' work as expected). That's like saying that you would like FastAPI to process one request at a time; in that case, there is no reason to use an ASGI framework such as FastAPI, which takes advantage of the async/await syntax (i.e., processing requests asynchronously), in order to provide fast performance. Hence, you either need to drop the async definition from your endpoint (as mentioned earlier above), or, preferably, run your synchronous CPU-bound task using ProcessPoolExecutor, as described earlier.
Also, your comment in some_func():
Some computationally heavy function whose execution time depends on
input text size
indicates that instead of (or along with) setting a request timeout, you could check the length of input text (using a dependency fucntion, for instance) and raise an HTTPException in case the text's length exceeds some pre-defined value, which is known beforehand to require more than 60s to complete the processing. In that way, your system won't waste resources trying to perform a task, which you already know will not be completed.
Working Example
import time
import uvicorn
import asyncio
import concurrent.futures
from functools import partial
from fastapi import FastAPI, Request
from fastapi.responses import JSONResponse
from starlette.status import HTTP_504_GATEWAY_TIMEOUT
from fastapi.concurrency import run_in_threadpool
REQUEST_TIMEOUT = 2 # adjust timeout as desired
app = FastAPI()
#app.middleware('http')
async def timeout_middleware(request: Request, call_next):
try:
return await asyncio.wait_for(call_next(request), timeout=REQUEST_TIMEOUT)
except asyncio.TimeoutError:
return JSONResponse({'detail': f'Request exceeded the time limit for processing'},
status_code=HTTP_504_GATEWAY_TIMEOUT)
def cpu_bound_task(text):
time.sleep(5)
return text
#app.get('/')
async def main():
loop = asyncio.get_running_loop()
with concurrent.futures.ProcessPoolExecutor() as pool:
res = await loop.run_in_executor(pool, partial(cpu_bound_task, text='Hello world'))
return {'response': res}
if __name__ == '__main__':
uvicorn.run(app)
I'm trying to convert a low-level library that is currently targeted to be used via asyncio to anyio.
However, I'm having a hard time figuring out the best way to do so, since the library uses
asyncio.Future futures to represent asynchronous interaction with two worker threads.
Since the logic in the threads is much more complicated than what I'm showing here, converting them to async code is not an option for me at this point. It's also not standard network communication, so I cannot just use an existing anyio based library instead.
The only solution I can come up with is using a thread safe result return Queue.queue that gets created with every sent message. SendMsgAsync would create the return queue, and store a copy of the queue and the message in pending_msgs and send the message via the send_queue to the send_thread. Then it would try to get the result from the result queue, async sleeping in between.
Once a reply is received, the recv_thread would put the reply into the result queue belonging to the original message (fetched from pending_msgs), causing SendMsgAsync to finish.
But polling the queue in SendMsgAsync doesn't seem like the right thing to do.
anyio does have anyio.create_memory_object_stream() that seems to be a form of async queue, but the documentation doesn't state whether these streams are thread safe, so I'm doubtful that I can use them between the event loop and my thread.
With futures this would be much more elegant.
I was also wondering whether I could use concurrent.futures, but I could not find any examples where those can be used with anyio after manually creating them. It seems anyio can return and check them, but apparently only when they are bound to a started task. But since I do not need a new task running in the event loop (just a pseudo-task, the result of which is monitored) I don't know how to elegantly solve this. In a nutshell, a way to make anyio async await a concurrent.futures object I created myself would solve my issue, but I have the feeling this is not compatible with the anyio paradigm of doing async.
Any ideas how to interface this code with anyio are highly appreciated.
Here is a simplification of the code I have:
import asyncio
import queue
from functools import partial
import threading
send_queue:queue.Queue = queue.Queue(10) ## used to send messages to send_thread_fun
pending_msgs:dict = dict() ## stored messages waiting for replies
## message classes
class msg_class:
def __init__(self, uuid) -> None:
self.uuid:str = uuid
class reply_class(msg_class):
def __init__(self, uuid, success:bool) -> None:
super().__init__(uuid)
self.success = success
## container class for stored messages
class stored_msg_class:
def __init__(self, a_msg:msg_class, future:asyncio.Future) -> None:
self.msg = a_msg
self.future = future
## async send function as interface to outside async world
async def SendMsgAsyncAndGetReply(themsg:msg_class, loop:asyncio.AbstractEventLoop):
afuture:asyncio.Future = SendMsg(themsg, loop)
return await afuture
## this send function is only called internally
def SendMsg(themsg:msg_class, loop:asyncio.AbstractEventLoop):
msg_future = loop.create_future()
msg_future.add_done_callback(lambda fut: partial(RemoveMsg_WhenFutureDone, uuid=themsg.uuid) ) ## add a callback, so that the command is removed from the pending list if the future is cancelled externally. This is also called when the future completes, so it must not have negative effects then either
pending_asyncmsg = stored_msg_class(themsg, msg_future)
pending_msgs[themsg.uuid] = pending_asyncmsg
return pending_asyncmsg.future
## Message status updates
def CompleteMsg(pendingmsg:stored_msg_class, result:any) -> bool:
future = pendingmsg.future
hdl:asyncio.Handle = future.get_loop().call_soon_threadsafe(future.set_result, result)
def FailMsg(pendingmsg:stored_msg_class, exception:Exception):
future = pendingmsg.future
hdl:asyncio.Handle = future.get_loop().call_soon_threadsafe(future.set_exception, exception)
def CancelMsg(pendingmsg:stored_msg_class):
future = pendingmsg.future
hdl:asyncio.Handle = future.get_loop().call_soon_threadsafe(future.cancel)
def RemoveMsg_WhenFutureDone(future:asyncio.Future, uuid):
## called by future callback once a future representing a pending msg is cancelled and if a result or an exception is set
s_msg:stored_msg_class = pending_msgs.pop(uuid, None)
## the thread functions:
def send_thread_fun():
while (True):
a_msg:msg_class = send_queue.get()
send(a_msg)
## ...
def recv_thread_fun():
while(True):
a_reply:reply_class = receive()
pending_msg:stored_msg_class = pending_msgs.pop(a_reply.uuid, None)
if (pending_msg is not None):
if a_reply.success:
CompleteMsg(pending_msg, a_reply)
else:
FailMsg(pending_msg, Exception(a_reply))
## ...
## low level functions
def send(a_msg:msg_class):
hardware_send(msg_class)
def receive() -> msg_class:
return hardware_recv()
## using the async message interface:
def main():
tx_thread = threading.Thread(target=send_thread_fun, name="send_thread", daemon=True)
rx_thread = threading.Thread(target=recv_thread_fun, name="recv_thread", daemon=True)
rx_thread.start()
tx_thread.start()
try:
loop = asyncio.get_running_loop()
except RuntimeError as ex:
loop = asyncio.new_event_loop()
msg1 = msg_class("123")
msg2 = msg_class("456")
m1 = SendMsgAsyncAndGetReply(msg1, loop)
m2 = SendMsgAsyncAndGetReply(msg2, loop)
r12 = asyncio.get_event_loop().run_until_complete(asyncio.gather(m1, m2))
Objective:
I am trying to scrape multiple URLs simultaneously. I don't want to make too many requests at the same time so I am using this solution to limit it.
Problem:
Requests are being made for ALL tasks instead of for a limited number at a time.
Stripped-down Code:
async def download_all_product_information():
# TO LIMIT THE NUMBER OF CONCURRENT REQUESTS
async def gather_with_concurrency(n, *tasks):
semaphore = asyncio.Semaphore(n)
async def sem_task(task):
async with semaphore:
return await task
return await asyncio.gather(*(sem_task(task) for task in tasks))
# FUNCTION TO ACTUALLY DOWNLOAD INFO
async def get_product_information(url_to_append):
url = 'https://www.amazon.com.br' + url_to_append
print('Product Information - Page ' + str(current_page_number) + ' for category ' + str(
category_index) + '/' + str(len(all_categories)) + ' in ' + gender)
source = await get_source_code_or_content(url, should_render_javascript=True)
time.sleep(random.uniform(2, 5))
return source
# LOOP WHERE STUFF GETS DONE
for current_page_number in range(1, 401):
for gender in os.listdir(base_folder):
all_tasks = []
# check all products in the current page
all_products_in_current_page = open_list(os.path.join(base_folder, gender, category, current_page))
for product_specific_url in all_products_in_current_page:
current_task = asyncio.create_task(get_product_information(product_specific_url))
all_tasks.append(current_task)
await gather_with_concurrency(random.randrange(8, 15), *all_tasks)
async def main():
await download_all_product_information()
# just to make sure there are not any problems caused by two event loops
if asyncio.get_event_loop().is_running(): # only patch if needed (i.e. running in Notebook, Spyder, etc)
import nest_asyncio
nest_asyncio.apply()
# for asynchronous functionality
if __name__ == '__main__':
asyncio.run(main())
What am I doing wrong? Thanks!
What is wrong is this line:
current_task = asyncio.create_task(get_product_information(product_specific_url))
When you create a "task" it is imediatelly scheduled for execution. As soons
as your code yield execution to the asyncio loop (at any "await" expression), asyncio will loop executing all your tasks.
The semaphore, in the original snippet you pointed too, guarded the creation of the tasks itself, ensuring only "n" tasks would be active at a time. What is passed in to gather_with_concurrency in that snippet are co-routines.
Co-routines, unlike tasks, are objects that are ready to be awaited, but are not yet scheduled. They canbe passed around for free, just like any other object - they will only be executed when they are either awaited, or wrapped by a task (and then when the code passes control to the asyncio loop).
In your code, you are creating the co-routine, with the get_product_information call, and immediately wrapping it in a task. In the await instruction in the line that calls gather_with_concurrency itself, they are all run at once.
The fix is simple: do not create a task at this point, just inside the code guarded by your semaphore. Add just the raw co-routines to your list:
...
all_coroutines = []
# check all products in the current page
all_products_in_current_page = open_list(os.path.join(base_folder, gender, category, current_page))
for product_specific_url in all_products_in_current_page:
current_coroutine = get_product_information(product_specific_url)
all_coroutines.append(current_coroutine)
await gather_with_concurrency(random.randrange(8, 15), *all_coroutines)
There is still an unrelated incorrectness in this code that will make concurrency fail: you are making a synchronous call to time.sleepinside gather_product_information. This will stall the asyncio loop at this point
until the sleep is over. The correct thing to do is to use await asyncio.sleep(...) .
This may be a dummy question but I cannot seem to be able to run python google-clood-bigquery asynchronously.
My goal is to run multiple queries concurrently and wait for all to finish in an asyncio.wait() query gatherer. I'm using asyncio.create_tast() to launch the queries.
The problem is that each query waits for the precedent one to complete before starting.
Here is my query function (quite simple):
async def exec_query(self, query, **kwargs) -> bigquery.table.RowIterator:
job = self.api.query(query, **kwargs)
return job.result()
Since I cannot await job.result() should I await something else?
If you are working inside of a coroutine and want to run different queries without blocking the event_loop then you can use the run_in_executor function which basically runs your queries in background threads without blocking the loop. Here's a good example of how to use that.
Make sure though that that's exactly what you need; jobs created to run queries in the Python API are already asynchronous and they only block when you call job.result(). This means that you don't need to use asyncio unless you are inside of a coroutine.
Here's a quick possible example of retrieving results as soon as the jobs are finished:
from concurrent.futures import ThreadPoolExecutor, as_completed
import google.cloud.bigquery as bq
client = bq.Client.from_service_account_json('path/to/key.json')
query1 = 'SELECT 1'
query2 = 'SELECT 2'
threads = []
results = []
executor = ThreadPoolExecutor(5)
for job in [client.query(query1), client.query(query2)]:
threads.append(executor.submit(job.result))
# Here you can run any code you like. The interpreter is free
for future in as_completed(threads):
results.append(list(future.result()))
results will be:
[[Row((2,), {'f0_': 0})], [Row((1,), {'f0_': 0})]]
just to share a different solution:
import numpy as np
from time import sleep
query1 = """
SELECT
language.name,
average(language.bytes)
FROM `bigquery-public-data.github_repos.languages`
, UNNEST(language) AS language
GROUP BY language.name"""
query2 = 'SELECT 2'
def dummy_callback(future):
global jobs_done
jobs_done[future.job_id] = True
jobs = [bq.query(query1), bq.query(query2)]
jobs_done = {job.job_id: False for job in jobs}
[job.add_done_callback(dummy_callback) for job in jobs]
# blocking loop to wait for jobs to finish
while not (np.all(list(jobs_done.values()))):
print('waiting for jobs to finish ... sleeping for 1s')
sleep(1)
print('all jobs done, do your stuff')
Rather than using as_completed I prefer to use the built-in async functionality from the bigquery jobs themselves. This also makes it possible for me to decompose the datapipeline into separate Cloud Functions, without having to keep the main ThreadPoolExecutor live for the duration of the whole pipeline. Incidentally, this was the reason why I was looking into this: my pipelines are longer than the max timeout of 9 minutes for Cloud Functions (or even 15 minutes for Cloud Run).
Downside is I need to keep track of all the job_ids across the various functions, but that is relatively easy to solve when configuring the pipeline by specifying inputs and outputs such that they form a directed acyclic graph.
In fact I found a way to wrap my query in an asyinc call quite easily thanks to the asyncio.create_task() function.
I just needed to wrap the job.result() in a coroutine; here is the implementation. It does run asynchronously now.
class BQApi(object):
def __init__(self):
self.api = bigquery.Client.from_service_account_json(BQ_CONFIG["credentials"])
async def exec_query(self, query, **kwargs) -> bigquery.table.RowIterator:
job = self.api.query(query, **kwargs)
task = asyncio.create_task(self.coroutine_job(job))
return await task
#staticmethod
async def coroutine_job(job):
return job.result()
I used #dkapitan 's answer to provide an async wrapper:
async def async_bigquery(client, query):
done = False
def callback(future):
nonlocal done
done = True
job = client.query(query)
job.add_done_callback(callback)
while not done:
await asyncio.sleep(.1)
return job
I'm trying to create a Python-based CLI that communicates with a web service via websockets. One issue that I'm encountering is that requests made by the CLI to the web service intermittently fail to get processed. Looking at the logs from the web service, I can see that the problem is caused by the fact that frequently these requests are being made at the same time (or even after) the socket has closed:
2016-09-13 13:28:10,930 [22 ] INFO DeviceBridge - Device bridge has opened
2016-09-13 13:28:11,936 [21 ] DEBUG DeviceBridge - Device bridge has received message
2016-09-13 13:28:11,937 [21 ] DEBUG DeviceBridge - Device bridge has received valid message
2016-09-13 13:28:11,937 [21 ] WARN DeviceBridge - Unable to process request: {"value": false, "path": "testcube.pwms[0].enabled", "op": "replace"}
2016-09-13 13:28:11,936 [5 ] DEBUG DeviceBridge - Device bridge has closed
In my CLI I define a class CommunicationService that is responsible for handling all direct communication with the web service. Internally, it uses the websockets package to handle communication, which itself is built on top of asyncio.
CommunicationService contains the following method for sending requests:
def send_request(self, request: str) -> None:
logger.debug('Sending request: {}'.format(request))
asyncio.ensure_future(self._ws.send(request))
...where ws is a websocket opened earlier in another method:
self._ws = await websockets.connect(websocket_address)
What I want is to be able to await the future returned by asyncio.ensure_future and, if necessary, sleep for a short while after in order to give the web service time to process the request before the websocket is closed.
However, since send_request is a synchronous method, it can't simply await these futures. Making it asynchronous would be pointless as there would be nothing to await the coroutine object it returned. I also can't use loop.run_until_complete as the loop is already running by the time it is invoked.
I found someone describing a problem very similar to the one I have at mail.python.org. The solution that was posted in that thread was to make the function return the coroutine object in the case the loop was already running:
def aio_map(coro, iterable, loop=None):
if loop is None:
loop = asyncio.get_event_loop()
coroutines = map(coro, iterable)
coros = asyncio.gather(*coroutines, return_exceptions=True, loop=loop)
if loop.is_running():
return coros
else:
return loop.run_until_complete(coros)
This is not possible for me, as I'm working with PyRx (Python implementation of the reactive framework) and send_request is only called as a subscriber of an Rx observable, which means the return value gets discarded and is not available to my code:
class AnonymousObserver(ObserverBase):
...
def _on_next_core(self, value):
self._next(value)
On a side note, I'm not sure if this is some sort of problem with asyncio that's commonly come across or whether I'm just not getting it, but I'm finding it pretty frustrating to use. In C# (for instance), all I would need to do is probably something like the following:
void SendRequest(string request)
{
this.ws.Send(request).Wait();
// Task.Delay(500).Wait(); // Uncomment If necessary
}
Meanwhile, asyncio's version of "wait" unhelpfully just returns another coroutine that I'm forced to discard.
Update
I've found a way around this issue that seems to work. I have an asynchronous callback that gets executed after the command has executed and before the CLI terminates, so I just changed it from this...
async def after_command():
await comms.stop()
...to this:
async def after_command():
await asyncio.sleep(0.25) # Allow time for communication
await comms.stop()
I'd still be happy to receive any answers to this problem for future reference, though. I might not be able to rely on workarounds like this in other situations, and I still think it would be better practice to have the delay executed inside send_request so that clients of CommunicationService do not have to concern themselves with timing issues.
In regards to Vincent's question:
Does your loop run in a different thread, or is send_request called by some callback?
Everything runs in the same thread - it's called by a callback. What happens is that I define all my commands to use asynchronous callbacks, and when executed some of them will try to send a request to the web service. Since they're asynchronous, they don't do this until they're executed via a call to loop.run_until_complete at the top level of the CLI - which means the loop is running by the time they're mid-way through execution and making this request (via an indirect call to send_request).
Update 2
Here's a solution based on Vincent's proposal of adding a "done" callback.
A new boolean field _busy is added to CommunicationService to represent if comms activity is occurring or not.
CommunicationService.send_request is modified to set _busy true before sending the request, and then provides a callback to _ws.send to reset _busy once done:
def send_request(self, request: str) -> None:
logger.debug('Sending request: {}'.format(request))
def callback(_):
self._busy = False
self._busy = True
asyncio.ensure_future(self._ws.send(request)).add_done_callback(callback)
CommunicationService.stop is now implemented to wait for this flag to be set false before progressing:
async def stop(self) -> None:
"""
Terminate communications with TestCube Web Service.
"""
if self._listen_task is None or self._ws is None:
return
# Wait for comms activity to stop.
while self._busy:
await asyncio.sleep(0.1)
# Allow short delay after final request is processed.
await asyncio.sleep(0.1)
self._listen_task.cancel()
await asyncio.wait([self._listen_task, self._ws.close()])
self._listen_task = None
self._ws = None
logger.info('Terminated connection to TestCube Web Service')
This seems to work too, and at least this way all communication timing logic is encapsulated within the CommunicationService class as it should be.
Update 3
Nicer solution based on Vincent's proposal.
Instead of self._busy we have self._send_request_tasks = [].
New send_request implementation:
def send_request(self, request: str) -> None:
logger.debug('Sending request: {}'.format(request))
task = asyncio.ensure_future(self._ws.send(request))
self._send_request_tasks.append(task)
New stop implementation:
async def stop(self) -> None:
if self._listen_task is None or self._ws is None:
return
# Wait for comms activity to stop.
if self._send_request_tasks:
await asyncio.wait(self._send_request_tasks)
...
You could use a set of tasks:
self._send_request_tasks = set()
Schedule the tasks using ensure_future and clean up using add_done_callback:
def send_request(self, request: str) -> None:
task = asyncio.ensure_future(self._ws.send(request))
self._send_request_tasks.add(task)
task.add_done_callback(self._send_request_tasks.remove)
And wait for the set of tasks to complete:
async def stop(self):
if self._send_request_tasks:
await asyncio.wait(self._send_request_tasks)
Given that you're not inside an asynchronous function you can use the yield from keyword to effectively implement await yourself. The following code will block until the future returns:
def send_request(self, request: str) -> None:
logger.debug('Sending request: {}'.format(request))
future = asyncio.ensure_future(self._ws.send(request))
yield from future.__await__()