I am attempting code a neural network from scratch. I am using performance by tensorflow (keras) as a ceiling (for now). Comparing an implementation of 'Forward Propagation' using the same dataset, weights, and biases (and other hyperparameters), I am noticing a very small difference in loss where ideally they should be the same.
I believe this difference aggregates as multiple passes are made. I would appreciate an insight on this matter.
The programming language I am using is Python 3.5 and data structures are implemented through the package numpy with much of data being of type numpy.float64.
Related
I am training a U-Net architecture to for a segmentation task. This is in Python using Keras. I have now run into an issue, that I am trying to understand:
I have two very similar images from a microscopy image series (these are consecutive images), where my current U-Net model performs very good on one, but performs extremely poor on the immediately following one. However, there is little difference between the two to the eye and the histograms also look very much alike. Also on other measurements the model performs great across the whole frame-range, but then this issue appears for other measurements.
I am using data-augmentation during training (histogram stretching, affine transformation, noise-addition) and I am surprised that still the model is so brittle.
Since the U-Net is still mostly a black-box to me, I want to find out steps I can take to better understand the issue and then adjust the training/model accordingly.
I know there are ways to visualize what individual layers learn (e.g. as discussed F. Chollets book see here) and I should be able to apply these to U-Nets, which is fully convolutional.
However, these kinds of methods are practically always discussed in the realm of classifying networks - not semantic segmentation.
So my question is:
Is this the best/most direct approach to reach an understanding of how U-Net models attain a segmentation result? If not, what are better ways to understand/debug U-Nets?
I suggest you use the U-Net container on NGC https://ngc.nvidia.com/catalog/resources/nvidia:unet_industrial_for_tensorflow
I also suggest you read this: Mixed Precision Training: https://arxiv.org/abs/1710.03740
https://developer.nvidia.com/blog/mixed-precision-training-deep-neural-networks/
Let me know how you are progressing and if any public repo, happy to have a look
I would like to determine the causes of an unexpected outcome (or anamoly) in a thermodynamic process. I have continuous data of the associated variables and trying to make use of 'Bayesian Network (BN)' for the determination of causality relationships. For this purpose, I used a library called 'Causalnex' in Python.
I have followed the tutorial section of this library to build the DAG,BN model and everything works fine upto the step of predictions. The prediction results of minority/less majority classes have an accuracy of around 60-70% (80-90% with SMOTE/SMOTETomek and a particular random state) whereas a stable accuracy of more than 90% is expected. I have implemented following data-preprocessing steps.
Ensuring no missing/NaN values
Discretization (only it is supported by the library)
SMOTE/SMOTETomek for data balancing
Various train/test size combinations
I am struggling to figure out the ways to optimize the model. I could not find any supportive material in Internet for the same.
Are there any Guidelines or 'Best practices' of data pre-processing techniques and dataset requirements that particulary work for this library/ BN model? Could you please suggest any troubleshooting methods to identify the causes of low accuracy/metrics? Perhaps a misunderstood node-node causal relationship in DAG causes mediocre accuracy?
Any ideas/literature/other suitable library regarding this would be of great help!
A few tips that can help:
Changing/Tuning the Structure learning.
Trying different thresholds. When doing from_pandas, you can experiment with different w-threshold values (and the beta term (if you are using from_pandas_lasso)).
This will change the density of the network. A more dense structure implies a BN with more parameters. If the structure is more dense, you have more parameters and your model may perform better. If it is too dense, though, you may not have enough data to train it and may overfit.
Center the Data. Empirically, it seems that NOTEARS (the algorithm behind from_pandas) works best if the data is centered. So, subtracting the mean of the see this may be a good idea.
Ensure causality. NOTEARS does not ensure causality. So we need "experts" to judge the output and make the necessary modifications. If you see edges that don't make causal sense, you can either remove them or add them as tabu_edges and train your network again.
Experiment with discretisation. The performance can be very sensitive to how you discretise the data. Experimenting with various types of discretisation can help. You can use:
Methods available in Causalnex (uniform, for example)
fixed discretisations based on what thresholds make sense for your data
MDLP is a supervised way to discretise data. You can apply MDLP for each node having as "target" one of its children. There are 2 main packages for MDLP in pypy: mdlp and mdlp-discretization
I am currently using Tensorflow Object Detection API for my human detection app.
I tried filtering in the API itself which worked but I am still not contended by it because it's slow. So I'm wondering if I could remove other categories in the model itself to also make it faster.
If it is not possible, can you please give me other suggestions to make the API faster since I will be using two cameras. Thanks in advance and also pardon my english :)
Your questions addresses several topics for using neural network pretrained models.
Theoretical methods
In general, you can always neutralize categories by removing the corresponding neurons in the softmax layer and compute a new softmax layer only with the relevant rows of the matrix.
This method will surely work (maybe that is what you meant by filtering) but will not accelerate the network computation time by much, since most of the flops (multiplications and additions) will remain.
Similar to decision trees, pruning is possible but may reduce performance. I will explain what pruning means, but note that the accuracy over your categories may remain since you are not just trimming, you are predicting less categories as well.
Transfer the learning to your problem. See stanford's course in computer vision here. Most of the times I've seen that works good is by keeping the convolution layers as-is, and preparing a medium-size dataset of the objects you'd like to detect.
I will add more theoretical methods if you request, but the above are the most common and accurate I know.
Practical methods
Make sure you are serving your tensorflow model, and not just using an inference python code. This could significantly accelerate performance.
You can export the parameters of the network and load them in a faster framework such as CNTK or Caffe. These frameworks work in C++/CSharp and can inference much faster. Make sure you load the weights correctly, some frameworks use different order in tensor dimensions when saving/loading (little/big endian-like issues).
If your application perform inference on several images, you can distribute the computation via several GPUs. **This can also be done in tensorflow, see Using GPUs.
Pruning a neural network
Maybe this is the most interesting method of adapting big networks for simple tasks. You can see a beginner's guide here.
Pruning means that you remove parameters from your network, specifically the whole nodes/neurons in a decision tree/neural network (resp). To do that in object detection, you can do as follows (simplest way):
Randomly prune neurons from the fully connected layers.
Train one more epoch (or more) with low learning rate, only on objects you'd like to detect.
(optional) Perform the above several times for validation and choose best network.
The above procedure is the most basic one, but you can find plenty of papers that suggest algorithms to do so. For example
Automated Pruning for Deep Neural Network Compression and An iterative pruning algorithm for feedforward neural networks.
Scikit-learn allows sample weights to be provided to linear, logistic, and ridge regressions (among others), but not to elastic net or lasso regressions. By sample weights, I mean each element of the input to fit on (and the corresponding output) is of varying importance, and should have an effect on the estimated coefficients proportional to its weight.
Is there a way I can manipulate my data before passing it to ElasticNet.fit() to incorporate my sample weights?
If not, is there a fundamental reason it is not possible?
Thanks!
You can read some discussion about this in sklearn's issue-tracker.
It basically reads like:
not that hard to do (theory-wise)
pain keeping all the basic sklearn'APIs and supporting all possible cases (dense vs. sparse)
As you can see in this thread and the linked one about adaptive lasso, there is not much activity there (probably because not many people care and the related paper is not popular enough; but that's only a guess).
Depending on your exact task (size? sparseness?), you could build your own optimizer quite easily based on scipy.optimize, supporting this kind of sample-weights (which will be a bit slower, but robust and precise)!
I would like to ask if anyone has an idea or example of how to do support vector regression in python with high dimensional output( more than one) using a python binding of libsvm? I checked the examples and they are all assuming the output to be one dimensional.
libsvm might not be the best tool for this task.
The problem you describe is called multivariate regression, and usually for regression problems, SVM's are not necessarily the best choice.
You could try something like group lasso (http://www.di.ens.fr/~fbach/grouplasso/index.htm - matlab) or sparse group lasso (http://spams-devel.gforge.inria.fr/ - seems to have a python interface), which solve the multivariate regression problem with different types of regularization.
Support Vector Machines as a mathematical framework is formulated in terms of a single prediction variable. Hence most libraries implementing them will reflect this as using one single target variable in their API.
What you could do is train a single SVM model for each target dimension in your data.
on the plus side, you can train them in // on a cluster as each model is independent of one another
on the minus side, sub-models will share nothing and won't benefit from what they individually discovered in the structure of the input data and potentially need a lot of memory to store the model as they will have no shared intermediate representation
Variant of SVMs can probably be devised in a multi-task learning setting to learn some common kernel-based intermediate representation suitable for reuse to predict multi-dimensional targets however this is not implemented in libsvm AFAIK. Google for multi task learning SVM if you want to learn more.
Alternatively, multi-layer perceptrons (a kind of feed forward neural networks) can naturally deal with multi-dimensional outcomes and hence should be better at sharing intermediate representations of the data reused across targets, especially if they are deep enough with the first layers pre-trained in an unsupervised manner using an autoencoder objective function.
You might want to have a look at http://deeplearning.net/tutorial/ for a nice introduction to various neural network architectures and practical tools and examples to implement them efficiently.