I have a dataframe with stores and its invoices numbers and I need to find the missing consecutive invoices numbers per Store, for example:
df1 = pd.DataFrame()
df1['Store'] = ['A','A','A','A','A','B','B','B','B','C','C','C','D','D']
df1['Invoice'] = ['1','2','5','6','8','20','23','24','30','200','202','203','204','206']
Store Invoice
0 A 1
1 A 2
2 A 5
3 A 6
4 A 8
5 B 20
6 B 23
7 B 24
8 B 30
9 C 200
10 C 202
11 C 203
12 D 204
13 D 206
And I want a dataframe like this:
Store MissInvoice
0 A 3
1 A 4
2 A 7
3 B 21
4 B 22
5 B 25
6 B 26
7 B 27
8 B 28
9 B 29
10 C 201
11 D 205
Thanks in advance!
You can use groupby.apply to compute a set difference with the range from the min to max value. Then explode:
(df1.astype({'Invoice': int})
.groupby('Store')['Invoice']
.apply(lambda s: set(range(s.min(), s.max())).difference(s))
.explode().reset_index()
)
NB. if you want to ensure having sorted values, use lambda s: sorted(set(range(s.min(), s.max())).difference(s)).
Output:
Store Invoice
0 A 3
1 A 4
2 A 7
3 B 21
4 B 22
5 B 25
6 B 26
7 B 27
8 B 28
9 B 29
10 C 201
11 D 205
Here's an approach:
import pandas as pd
import numpy as np
df1 = pd.DataFrame()
df1['Store'] = ['A','A','A','A','A','B','B','B','B','C','C','C']
df1['Invoice'] = ['1','2','5','6','8','20','23','24','30','200','202','203']
df1['Invoice'] = df1['Invoice'].astype(int)
df2 = df1.groupby('Store')['Invoice'].agg(['min','max'])
df2['MissInvoice'] = [[]]*len(df2)
for store,row in df2.iterrows():
df2.at[store,'MissInvoice'] = np.setdiff1d(np.arange(row['min'],row['max']+1),
df1.loc[df1['Store'] == store, 'Invoice'])
df2 = df2.explode('MissInvoice').drop(columns = ['min','max']).reset_index()
The resulting dataframe df2:
Store MissInvoice
0 A 3
1 A 4
2 A 7
3 B 21
4 B 22
5 B 25
6 B 26
7 B 27
8 B 28
9 B 29
10 C 201
Note: Store D is absent from the dataframe in my code because it is omitted from the lines in the question defining df1.
Related
I'm trying to create a new column in a df. I want the new column to equal the count of the number rows of each unique 'mother_ID, which is a different column in the df.
This is what I'm currently doing. It makes the new column but the new column is filled with 'NaN's.
df.columns = ['mother_ID', 'date_born', 'mother_mass_g', 'hatchling_masses_g']
df.to_numpy()
This is how the original df appears when I print it:
count = df.groupby('mother_ID').hatchling_masses_g.count()
df['count']= count
Pic below shows what I get when I print new df, although if I simply print(count) I get the correct counts for each mother_ID . Does anyone know what I'm doing wrong?
Use groupby transform('count'):
df['count'] = df.groupby('mother_ID')['hatchling_masses_g'].transform('count')
Notice the difference between groupby count and groupby tranform with 'count'.
Sample Data:
import numpy as np
import pandas as pd
np.random.seed(5)
df = pd.DataFrame({
'mother_ID': np.random.choice(['a', 'b'], 10),
'hatchling_masses_g': np.random.randint(1, 100, 10)
})
mother_ID hatchling_masses_g
0 b 63
1 a 28
2 b 31
3 b 81
4 a 8
5 a 77
6 a 16
7 b 54
8 a 81
9 a 28
groupby.count
counts = df.groupby('mother_ID')['hatchling_masses_g'].count()
mother_ID
a 6
b 4
Name: hatchling_masses_g, dtype: int64
Notice how there are only 2 rows. When assigning back to the DataFrame there are 10 rows which means that pandas doesn't know how to align the data back. Which results in NaNs indicating missing data:
df['count'] = counts
mother_ID hatchling_masses_g count
0 b 63 NaN
1 a 28 NaN
2 b 31 NaN
3 b 81 NaN
4 a 8 NaN
5 a 77 NaN
6 a 16 NaN
7 b 54 NaN
8 a 81 NaN
9 a 28 NaN
It's trying to find 'a' and 'b' in the index and since it cannot it fills with only NaN values.
groupby.tranform('count')
transform, on the other hand, will populate the entire group with the count:
counts = df.groupby('mother_ID')['hatchling_masses_g'].transform('count')
counts:
0 4
1 6
2 4
3 4
4 6
5 6
6 6
7 4
8 6
9 6
Name: hatchling_masses_g, dtype: int64
Notice 10 rows were created (one for every row in the DataFrame):
This assigns back to the dataframe nicely (since the indexes align):
df['count'] = counts
mother_ID hatchling_masses_g count
0 b 63 4
1 a 28 6
2 b 31 4
3 b 81 4
4 a 8 6
5 a 77 6
6 a 16 6
7 b 54 4
8 a 81 6
9 a 28 6
If needed counts can be done via groupby count, then join back to the DataFrame on the group key:
counts = df.groupby('mother_ID')['hatchling_masses_g'].count().rename('count')
df = df.join(counts, on='mother_ID')
counts:
mother_ID
a 6
b 4
Name: count, dtype: int64
df:
mother_ID hatchling_masses_g count
0 b 63 4
1 a 28 6
2 b 31 4
3 b 81 4
4 a 8 6
5 a 77 6
6 a 16 6
7 b 54 4
8 a 81 6
9 a 28 6
When I have a below df, I want to get a column 'C' which has max value between specific value '15' and column 'A' within the condition "B == 't'"
testdf = pd.DataFrame({"A":[20, 16, 7, 3, 8],"B":['t','t','t','t','f']})
testdf
A B
0 20 t
1 16 t
2 7 t
3 3 t
4 8 f
I tried this:
testdf.loc[testdf['B']=='t', 'C'] = max(15,(testdf.loc[testdf['B']=='t','A']))
And desired output is:
A B C
0 20 t 20
1 16 t 16
2 7 t 15
3 3 t 15
4 8 f 8
Could you help me to get the output? Thank you!
Use np.where with clip:
testdf['C'] = np.where(testdf['B'].eq('t'),
testdf['A'].clip(15), df['A'])
Or similarly with series.where:
testdf['C'] = (testdf['A'].clip(15)
.where(testdf['B'].eq('t'), testdf['A'])
)
output:
A B C
0 20 t 20
1 16 t 16
2 7 t 15
3 3 t 15
4 8 f 8
You could also use the update method:
testdf['C'] = testdf['A']
A B C
0 20 t 20
1 16 t 16
2 7 t 7
3 3 t 3
4 8 f 8
values = testdf.A[testdf.B.eq('t')].clip(15)
values
Out[16]:
0 20
1 16
2 15
3 15
Name: A, dtype: int64
testdf.update(values.rename('C'))
A B C
0 20 t 20.0
1 16 t 16.0
2 7 t 15.0
3 3 t 15.0
4 8 f 8.0
To apply any formula to individual values in a dataframe you can use
df['column'] =df['column'].apply(lambda x: anyFunc(x))
x here will catch individual values of column one by one and pass it to the function where you can manipulate it and return back.
I have the following dataset stored in CSV file:
Name Salary
John 50000
Eric 150000
Paul 100000
I want to get the median salary and output this value in the SAME csv file as follows:
Name Salary Median
John 50000 100000
Eric 150000 100000
Paul 100000 100000
Code:
import numpy as np
from numpy import genfromtxt
dataset = genfromtxt('C:\\Users\abc.csv',delimiter=',')
x=dataset[2:,0]
y=np.median(x)
Now that you have x and y, you can just dump them with np.savetxt.
np.savetxt('C:\\Users\abc.csv', np.hstack((x[2:], y.reshape(-1, 1))) , delimiter=',')
try pandas,In your case:
>>>files = 'example.csv'
>>>df = pd.read_csv(files)
>>>df = df.convert_objects(convert_numeric=True)
>>>df['Median'] = df['Salary'].median()
>>>df.to_csv(files)
more explanation
>>>files = 'example.csv'
>>>df = pd.read_csv(files)
>>>df = df.convert_objects(convert_numeric=True)
>>>df
A B C D
0 1 2 3 4
1 5 6 7 8
2 9 10 11 12
df['new']=13
>>>df
A B C D new
0 1 2 3 4 13
1 5 6 7 8 13
2 9 10 11 12 13
>>>df['new'] = df['new'] +1
>>>df
A B C D new
0 1 2 3 4 14
1 5 6 7 8 14
2 9 10 11 12 14
>>>df.insert(2,'win',22)
>>>df
A B win C D new
0 1 2 22 3 4 14
1 5 6 22 7 8 14
2 9 10 22 11 12 14
I have a pandas DataFrame say this:
user value
0 a 1
1 a 2
2 a 3
3 a 4
4 a 5
5 b 6
6 b 7
7 b 8
8 b 9
9 b 10
10 c 11
11 c 12
12 c 13
13 c 14
14 c 15
Now I want to group by user, and create two mutually exclusive random samples out of it e.g
Set1 with 1 samples per group:
user value
3 a 4
9 b 10
13 c 14
Set2 with 2 samples per group:
user value
0 a 1
1 a 2
5 b 6
6 b 7
10 c 11
11 c 12
So far i'v tried this:
u = np.array(['a','b','c'])
u = np.repeat(u,5)
df = pd.DataFrame({'user':u,'value':[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]})
set1 = df.groupby(['user']).tail(1)
set2 = df.groupby(['user']).head(2)
But these are not random samples, and i would like them to be mutually exclusive. Any ideas?
PS. Each group always has at least 3 elements
You can randomly select 3 records for each user:
a = df.groupby("user")["value"].apply(lambda x: x.sample(3))
a
Out[27]:
user
a 3 4
0 1
2 3
b 5 6
7 8
6 7
c 14 15
10 11
13 14
dtype: int64
And assign first one to the first set, the remaining two to the second set:
a.groupby(level=0).head(1)
Out[28]:
user
a 3 4
b 5 6
c 14 15
dtype: int64
a.groupby(level=0).tail(2)
Out[29]:
user
a 0 1
2 3
b 7 8
6 7
c 10 11
13 14
dtype: int64
This maybe a bit naive but all I did was reindex the DataFrame with a random permutation of the length of the DataFrame and reset the index. After that I take the head and tail as you did with your original code, seems to work. This could probably be made into a function:
a = np.arange(len(df))
np.random.shuffle(a)
df = df.reindex(a).reset_index()
set1 = df.groupby(['user']).tail(1)
>>>
index user value
12 9 b 10
13 10 c 11
14 1 a 2
set2 = df.groupby(['user']).head(2)
>>>
index user value
0 6 b 7
1 2 a 3
2 5 b 6
3 13 c 14
4 3 a 4
6 12 c 13
Hope this helps.
There is likely a better solution but what about just randomizing your data before grouping and then taking the tail and head per group? You could take a set of your indices, take a random permutation of it and use that to create a new scrambled dataframe, then do your current procedure.
I am currently trying to make use of Pandas MultiIndex attribute. I am trying to group an existing DataFrame-object df_original based on its columns in a smart way, and was therefore thinking of MultiIndex.
print df_original =
by_currency by_portfolio A B C
1 AUD a 1 2 3
2 AUD b 4 5 6
3 AUD c 7 8 9
4 AUD d 10 11 12
5 CHF a 13 14 15
6 CHF b 16 17 18
7 CHF c 19 20 21
8 CHF d 22 23 24
Now, what I would like to have is a MultiIndex DataFrame-object, with A, B and C, and by_portfolio as indices. Looking like
CHF AUD
A a 13 1
b 16 4
c 19 7
d 22 10
B a 14 2
b 17 5
c 20 8
d 23 11
C a 15 3
b 18 6
c 21 9
d 24 12
I have tried making all columns in df_original and the sought after indices into list-objects, and from there create a new DataFrame. This seems a bit cumbersome, and I can't figure out how to add the actual values after.
Perhaps some sort of groupby is better for this purpose? Thing is I will need to be able to add this data to another, similar, DataFrame, so I will need the resulting DataFrame to be able to be added to another one later on.
Thanks
You can use a combination of stack and unstack:
In [50]: df.set_index(['by_currency', 'by_portfolio']).stack().unstack(0)
Out[50]:
by_currency AUD CHF
by_portfolio
a A 1 13
B 2 14
C 3 15
b A 4 16
B 5 17
C 6 18
c A 7 19
B 8 20
C 9 21
d A 10 22
B 11 23
C 12 24
To obtain your desired result, we only need to swap the levels of the index:
In [51]: df2 = df.set_index(['by_currency', 'by_portfolio']).stack().unstack(0)
In [52]: df2.columns.name = None
In [53]: df2.index = df2.index.swaplevel(0,1)
In [55]: df2 = df2.sort_index()
In [56]: df2
Out[56]:
AUD CHF
by_portfolio
A a 1 13
b 4 16
c 7 19
d 10 22
B a 2 14
b 5 17
c 8 20
d 11 23
C a 3 15
b 6 18
c 9 21
d 12 24