How can I generate N random, XYZ points within a 3d trapezoid? - python

I'd like to add N objects to my Blender scene. The objects must be at varying distances from the camera, and they must all be within the view frustum of the camera. If overlapping can be avoided, even better. By 'non-overlapping', I mean: when rendered, I do not want any of the objects to occlude one another.
The image below gives an idea.
I'm using python. I know how to load the objects, set their positions, etc.
How can I generate N random, non-overlapping, 3D positions, all within the view frustum of the camera?

Related

Python - Segmenting an ROI with many smaller objects inside

I am working with an image containing a lot of small objects formed of hexagons, which are roughly inside a rectangular figure.
See image here:
There are also areas of noise outside this rectangle with the same pixel intensity, which I want to disregard with future functions. I have 2 questions regarding this:
How can I create a segmentation/ROI to only consider the objects/shapes inside that rectangular figure? I tried using Canny and contouring, as well as methods to try and create bounding boxes, but in each of them I always segment the individual objects directly in the entire image, and I can't eliminate the outside noise as a preliminary step.
How can I identify the number of white hexagons inside the larger rectangle? My original idea was to find the area of each of the individual objects I would obtain inside the rectangle (using contouring), sort from smallest to lowest (so the smallest area would correspond to a single hexagon), and then divide all the areas by the hexagonal area to get the number, which I could sum together. Is there an easier way to do this?

How to create heat map from set of tracks?

At the moment I have a set of tracks (in separate files) in 3 dimensions. My goal is to create at least 2 2D heat maps (XY/XZ relations) from these tracks based off of how many distinct tracks cross a region of some arbitrary size.
However, it would be ideal to have a 3D heatmap!
Lets say the region is 10x10 and the tracks span a 100x100 region (it's actually 480 x 640 in reality but 100x100 is simpler to discuss)
I have a notion of how to do this, but it involves an additional 2-3 matrices per track, and does not seem like an efficient/the easiest way to code this.
Essentially my idea revolves around processing each track individually. You start off with an appropriately sized int matrix that keeps track of how many tracks appeared in your region of interest (ROI) starting at 0 for every entry. You then have another equivalently appropriately sized matrix, but this one takes booleans, you iterate over the track list, and change the entry of the bool matrix to true if the track is in the corresponding area. Then you increment the original int matrix +1 if the bool is true in the corresponding region. You then reset everything but the int matrix and start over with a new track file. Then you can just create a graph of boxes with the intensity/color corresponding to the int matrix.
But I was wondering if there is a cleaner or more efficient way to do this.

How to flatten 3D object surface into 2D array?

I've got 3D objects which are represented as numpy arrays.
How can I unfold the "surface" of such objects to get a 2D map of values (I don't care about inner values)?
It's similar to unwrapping globe surface, but the shape is varied from case to case.
This is a vertices problem. Each triangle on the model is a flat surface that can be mapped to a 2D plane. So the most naive solution without any assumed structure would be to:
for triangle in mesh:
// project to plane defined by normal to avoid stretching
This solution is not ideal as it places all of the uv's on top of each other. The next step would be to spread out the triangles to fill a certain space. This is the layout stage that defines how the vertices are layed out in the 2D space.
Usually it is ideal to fit the UV's within a unit square. This allows for easy UV mapping from a single image.
Option: 2
You surround the object with a known 2D mapped shape and project each triangle onto the shape based on its normal. This provides a mechanism for unwrapping the uv's in a structured manor. An example object would be to project onto a cube.
Option: 3
consult academic papers and opensource libraries/tools like blender:
https://wiki.blender.org/index.php/Doc:2.4/Manual/Textures/Mapping/UV/Unwrapping
blender uses methods as described above to unwrap arbitrary geometry. There are other methods to accomplish this as described on the blender unwrap page. The nice thing about blender is that you can consult the source code for the implementation of the uv unwrap methods.
Hope this is helpful.

Converting an AutoCAD model to a matrix of points/volumes with the mass density specified at each location

I am an experimental physicist (grad student) that is trying to take an AutoCAD model of the experiment I've built and find the gravitational potential from the whole instrument over a specified volume. Before I find the potential, I'm trying to make a map of the mass density at each point in the model.
What's important is that I already have a model and in the end I'll have a something that says "At (x,y,z) the value is d". If that's an crazy csv file, a numpy array, an excel sheet, or... whatever, I'll be happy.
Here's what I've come up with so far:
Step 1: I color code the AutoCAD file so that color associates with material.
Step 2: I send the new drawing/model to a slicer (made for 3D printing). This takes my 3D object and turns it into equally spaced (in z-direction) 2d objects... but then that's all output as g-code. But hey! G-code is a way of telling a motor how to move.
Step 3: This is the 'hard part' and the meat of this question. I'm thinking that I take that g-code, which is in essence just a set of instructions on how to move a nozzle and use it to populate a numpy array. Basically I have 3D array, each level corresponds to one position in z, and the grid left is my x-y plane. It reads what color is being put where, and follows the nozzle and puts that mass into those spots. It knows the mass because of the color. It follows the path by parsing the g-code.
When it is done with that level, it moves to the next grid and repeats.
Does this sound insane? Better yet, does it sound plausible? Or maybe someone has a smarter way of thinking about this.
Even if you just read all that, thank you. Seriously.
Does this sound insane? Better yet, does it sound plausible?
It's very reasonable and plausible. Using the g-code could do that, but it would require a g-code interpreter that could map the instructions to a 2D path. (Not 3D, since you mentioned that you're taking fixed z-slices.) That could be problematic, but, if you found one, it could work, but may require some parser manipulation. There are several of these in a variety of languages, that could be useful.
SUGGESTION
From what you describe, it's akin to doing a MRI scan of the object, and trying to determine its constituent mass profile along a given axis. In this case, and unlike MRI, you have multiple colors, so that can be used to your advantage in region selection / identification.
Even if you used a g-code interpreter, it would reproduce an image whose area you'll still have to calculate, so noting that and given that you seek to determine and classify material composition by path (in that the path defines the boundary of a particular material, which has a unique color), there may be a couple ways to approach this without resorting to g-code:
1) If the colors of your material are easily (or reasonably) distinguishable, you can create a color mask which will quantify the occupied area, from which you can then determine the mass.
That is, if you take a photograph of the slice, load the image into a numpy array, and then search for a specific value (say red), you can identify the area of the region. Then, you apply a mask on your array. Once done, you count the occupied elements within your array, and then you divide it by the array size (i.e. rows by columns), which would give you the relative area occupied. Since you know the mass of the material, and there is a constant z-thickness, this will give you the relative mass. An example of color masking using numpy alone is shown here: http://scikit-image.org/docs/dev/user_guide/numpy_images.html
As such, let's define an example that's analogous to your problem - let's say we have a picture of a red cabbage, and we want to know which how much of the picture contains red / purple-like pixels.
To simplify our life, we'll set any pixel above a certain threshold to white (RGB: 255,255,255), and then count how many non-white pixels there are:
from copy import deepcopy
import numpy as np
import matplotlib.pyplot as plt
def plot_image(fname, color=128, replacement=(255, 255, 255), plot=False):
# 128 is a reasonable guess since most of the pixels in the image that have the
# purplish hue, have RGB's above this value.
data = imread(fname)
image_data = deepcopy(data) # copy the original data (for later use if need be)
mask = image_data[:, :, 0] < color # apply the color mask over the image data
image_data[mask] = np.array(replacement) # replace the match
if plot:
plt.imshow(image_data)
plt.show()
return data, image_data
data, image_data = plot_image('cabbage.jpg') # load the image, and apply the mask
# Find the locations of all the pixels that are non-white (i.e. 255)
# This returns 3 arrays of the same size)
indices = np.where(image_data != 255)
# Now, calculate the area: in this case, ~ 62.04 %
effective_area = indices[0].size / float(data.size)
The selected region in question is shown here below:
Note that image_data contains the pixel information that has been masked, and would provide the coordinates (albeit in pixel space) of where each occupied (i.e. non-white) pixel occurs. The issue with this of course is that these are pixel coordinates and not a physical one. But, since you know the physical dimensions, extrapolating those quantities are easily done.
Furthermore, with the effective area known, and knowledge of the physical dimension, you have a good estimate of the real area occupied. To obtain better results, tweak the value of the color threshold (i.e. color). In your real-life example, since you know the color, search within a pixel range around that value (to offset noise and lighting issues).
The above method is a bit crude - but effective - and, it may be worth exploring using it in tandem with edge-detection, as that could help improve the region identification, and area selection. (Note that isn't always strictly true!) Also, color deconvolution may be useful: http://scikit-image.org/docs/dev/auto_examples/color_exposure/plot_ihc_color_separation.html#sphx-glr-auto-examples-color-exposure-plot-ihc-color-separation-py
The downside to this is that the analysis requires a high quality image, good lighting; and, most importantly, it's likely that you'll lose some of the more finer details of the edges, which would impact your masses.
2) Instead of resorting to camera work, and given that you have the AutoCAD model, you can use that and the software itself in addition to the above prescribed method.
Since you've colored each material in the model differently, you can use AutoCAD's slicing tool, and can do something similar to what the first method suggests doing physically: slicing the model, and taking pictures of the slice to expose the surface. Then, using a similar method described above of color masking / edge detection / region determination through color selection, you should obtain a much better and (arguably) very accurate result.
The downside to this, is that you're also limited by the image quality used. But, as it's software, that shouldn't be much of an issue, and you can get extremely high accuracy - close to its actual result.
The last suggestion to improve these results would be to script numerous random thin slicing of the AutoCAD model along a particular directional vector shared by every subsequent slice, exporting each exposed surface, analyzing each image in the manner described above, and then collecting those results to given you a Monte Carlo-like and statistically quantifiable determination of the mass (to correct for geometry effects due to slicing along one given axis).

Calculating the fraction of each cell in a grid overlapped by a 2D object

I have an arbitrary rectangular Cartesian grid divided into potentially 10^6 or so rectangular cells. (Arbitrary means that the $x$ grid is along points $x_1,...x_n$ and the same goes for the $y$ grid.) I would like to draw an arbitrary object on top of it (say a rotated rectangle, or a circle), and efficiently calculate what fraction of each cell is overlapped by the object: if the cell is entirely inside the bounds of the object, 1.0; if the cell is entirely outside, 0.0; if half of the cell is covered by the object, 0.5. If you displayed this as an image and scaled it where 1 is black and 0 is white, the result would look like an antialiased drawing of the black object.
My application for this question is in Python, and it seems like this capability might be provided by some existing graphics library. Is there a Python module that will test for the fractional intersection of a rectangle and an arbitrary object? Is there a Python library that can at least efficiently test if a point is inside an arbitrary object like a rotated rectangle?
You could use PyCairo, which has fast native routines to do its drawing. It's antialiased by default.
Implementing the drawing algorithms in Python would be very slow.
To find the area of a trapezoid resulting from a polygon-square intersection, you can follow the process described by Sean Barrett at https://nothings.org/gamedev/rasterize/
The shapely Python library can find the area of a trapezoid and perform point-in-object tests. However, for best performance this sounds like something that you'd want to write in C/C++ and provide numpy bindings.

Categories