Matrix animation - python

I have a matrix, that represents the evolution of the Temperature of a zone, depending on the position and the time. Each row refers to each instant, and each column refers to each position.
I want to create an animation that plots, gradually, all the rows of the matrix one by one, so I can visualise more graphycally the evolution of the temperature from every position at the same time, while time evolves.
I tried to create a for loop inside of the animation function, but it didin't work at all. It has to work through a loop, as the matrix's size is 100x1000.
This is the code I have:
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
N = 100
T = np.zeros((1000, N))
dz = 1/N
dt = 0.25*dz**2
T_0 = 43351/94400
for j in range(N):
T[0][j] = T_0
for i in range(999):
T[i+1][0] = T_0
T[i+1][N-1] = T_0
for i in range(999):
for j in range(1, 99):
T[i+1][j] = (dt/dz**2)*(T[i][j+1] - 2*T[i][j] + T[i][j-1]) + dt + T[i][j]
x = []
for i in range(100):
x.append(i*dz)
Every row of the matrix should be plotted as the y axis, and the x axis should be this 'x' list I made at the end.

Related

Why are all the values in my appended list the same?

When I plot y as a function of t, the values for a do not change. When I print the appended list I see they are all 0.0. Please help! I'm confused because y as a function of x plots fine. I can't include the actual code, but here is a minimum working example.
import numpy as np
from math import *
from astropy.table import Table
import matplotlib.pyplot as plt
from random import random
x = 0
y = 0
t = 0
h = 0.0100
tf = 40
N=ceil(tf/h)
tnew = t
x_list = [x]
y_list = [y]
t_list = [t]
for i in range(N):
#while y >= 0:
tnew = t + h*i
t = tnew
print(t)
#First and second derivatives
# stuff happens (can't share the code)
x_new = random()
y_new = random()
x = x_new
y = y_new
""" appends selected data for ability to plot"""
x_list.append(x)
y_list.append(y)
t_list.append(t)
#break
""" Plot1"""
plt.plot(t_list,y_list)
plt.show()
""" Plot2"""
plt.plot(x_list,y_list)
plt.show()
First plot I just get a vertical line
Second plot is the way it should be
First plot:
Second plot

Brownian motion in python 2D

I want to create a Brownian motion sim
My particle will start at the (0,0), the origin then I've created NumPy random arrays for the x and y direction for example, x = [-2,1,3] and y = [0,-2,1]. Since the particle starts at the origin (0th point) it will to the next point by -2 in the direction and 0 in the y (the 1st point), and then for the 2nd point, it will 1 unit to the right (+1 in the x) and -2 units to the left(-2 in the y).
My question is how would I make it so each point acts as the new origin kind of like adding vectors. I'm thinking I would need some sort of for loop, but not sure how I would set it up.
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import animation as am
np.random.seed(69420)
N=1000 #Number of steps
# Have the particle at the origin in 2D (x,y) plane
# Each step will have a lenght of 1 unit. Lets call it meters
# Each step is one second
# And this simulation will run for 100 seconds
## Now how to make a particle randomly walk???
t=100 # time interval
dt=t/N # delta time from each step
dx = np.random.randint(-5,5,N,dtype=int)# This would be our detla x for each step
dy = np.random.randint(-5,5,N,dtype=int)
dx_0 = np.zeros(N, dtype=int)
dy_0 = np.zeros(N,dtype=int)
X = dx_0+dx
Y = dy_0+dy
print(X)
xdis = np.cumsum(X) #Total distance travled after N steps
ydis = np.cumsum(Y)
plt.plot(dx_0,dy_0,'ko')
plt.plot(xdis,ydis,'b-')
plt.show()
This is what I have so far. Any help is appreciated.
You need to take N steps, starting from (0,0). Track your steps using a variable prev = [0,0], and make changes to it for each step. Simplified code:
prev = [0,0]
for i in range(N):
new_x = prev[0]+dx[i]
new_y = prev[1]+dy[i]
# do what you need with new_x and new_y
prev = [new_x, new_y]
Since it seems like you wish to graph the entire walk, just sum all these steps?
origin = np.array([0, 0])
x_series = np.cumsum(dx) + origin[0]
# (Similarly for y)
This is only for 1 random walker. If you have multiple random walkers - each of them will have a starting point and separate chain of dx-s.

Matplotlib FuncAnimation not displaying any frames until animation is complete

I'm trying to animate a plot using matplotlib's FuncAnimation, however no frames of the animation are visible until the animation reaches the final frame. If I set repeat = True nothing is ever displayed. When I first run the code a matplotlib icon appears but nothing displays when I click on it until it shows me the final frame:
If I save the animation I see the animation display correctly so this leads me to think that my code is mostly correct so I hope this is a simple fix that I'm just missing.
Apologies if I'm dumping too much code but I'm not sure if there's anything that's not needed for the minimum reproducible example.
Here's the main code
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from quantum_custom.constants import spin_down, spin_up, H00, H11, H
import quantum_custom.walk as walk
class QuantumState:
def __init__(self, state):
self.state = state
#"coin flips"
max_N = 100 #this will be the final number of coin flips
positions = 2*max_N + 1
#initial conditions
initial_spin = spin_down
initial_position = np.zeros(positions)
initial_position[max_N] = 1
initial_state = np.kron(np.matmul(H, initial_spin), initial_position) #initial state is Hadamard acting on intial state, tensor product with the initial position
quantum_state = QuantumState(initial_state)
#plot the graph
fig, ax = plt.subplots()
plt.title("N = 0")
x = np.arange(positions)
line, = ax.plot([],[])
loc = range(0, positions, positions // 10)
plt.xticks(loc)
plt.xlim(0, positions)
plt.ylim((0, 1))
ax.set_xticklabels(range(-max_N, max_N + 1, positions // 10))
ax.set_xlabel("x")
ax.set_ylabel("Probability")
def init():
line.set_data([],[])
return line,
def update(N):
next_state = walk.flip_once(quantum_state.state, max_N)
probs = walk.get_prob(next_state, max_N)
quantum_state.state = next_state
start_index = N % 2 + 1
cleaned_probs = probs[start_index::2]
cleaned_x = x[start_index::2]
line.set_data(cleaned_x, cleaned_probs)
if cleaned_probs.max() != 0:
plt.ylim((0, cleaned_probs.max()))
plt.title(f"N = {N}")
return line,
anim = animation.FuncAnimation(
fig,
update,
frames = max_N + 1,
init_func = init,
interval = 20,
repeat = False,
blit = True,
)
anim.save("animated.gif", writer = "ffmpeg", fps = 15)
plt.show()
Here's my quantum_custom.constants module.
#define spin up and spin down vectors as standard basis
spin_up = np.array([1,0])
spin_down = np.array([0,1])
#define our Hadamard operator, H, in terms of ith, jth entries, Hij
H00 = np.outer(spin_up, spin_up)
H01 = np.outer(spin_up, spin_down)
H10 = np.outer(spin_down, spin_up)
H11 = np.outer(spin_down, spin_down)
H = (H00 + H01 + H10 - H11)/np.sqrt(2.0) #matrix representation of Hadamard gate in standard basis
Here's my quantum_custom.walk module.
import numpy as np
from quantum_custom.constants import H00, H11, H
#define walk operators
def walk_operator(max_N):
position_count = 2 * max_N + 1
shift_plus = np.roll(np.eye(position_count), 1, axis = 0)
shift_minus = np.roll(np.eye(position_count), -1, axis = 0)
step_operator = np.kron(H00, shift_plus) + np.kron(H11, shift_minus)
return step_operator.dot(np.kron(H, np.eye(position_count)))
def flip_once(state, max_N):
"""
Flips the Hadamard coin once and acts on the given state appropriately.
Returns the state after the Hadamard coin flip.
"""
walk_op = walk_operator(max_N)
next_state = walk_op.dot(state)
return next_state
def get_prob(state, max_N):
"""
For the given state, calculates the probability of being in any possible position.
Returns an array of probabilities.
"""
position_count = 2 * max_N + 1
prob = np.empty(position_count)
for k in range(position_count):
posn = np.zeros(position_count)
posn[k] = 1
posn_outer = np.outer(posn, posn)
alt_measurement_k = eye_kron(2, posn_outer)
proj = alt_measurement_k.dot(state)
prob[k] = proj.dot(proj.conjugate()).real
return prob
def eye_kron(eye_dim, mat):
"""
Speeds up the calculation of the tensor product of an identity matrix of dimension eye_dim with a given matrix.
This exploits the fact that majority of values in the resulting matrix will be zeroes apart from on the leading diagonal where we simply have copies of the given matrix.
Returns a matrix.
"""
mat_dim = len(mat)
result_dim = eye_dim * mat_dim #dimension of the resulting matrix
result = np.zeros((result_dim, result_dim))
result[0:mat_dim, 0:mat_dim] = mat
result[mat_dim:result_dim, mat_dim:result_dim] = mat
return result
I know that saving the animation is a solution but I'd really like to have the plot display just from running the code as opposed to having to save it. Thanks!
As per Sameeresque's suggestion I tried using different backends for matplot lib. This was done by altering by import statements as follows.
import matplotlib
matplotlib.use("tkagg")
import matplotlib.pyplot as plt
Note that it's important to add the two additional lines before import matplotlib.pyplot as plt otherwise it won't do anything.

Programming of 4th order Runge-Kutta in advection equation in python

%matplotlib notebook
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from math import pi
# wave speed
c = 1
# spatial domain
xmin = 0
xmax = 1
#time domain
m=500; # num of time steps
tmin=0
T = tmin + np.arange(m+1);
tmax=500
n = 50 # num of grid points
# x grid of n points
X, dx = np.linspace(xmin, xmax, n+1, retstep=True);
X = X[:-1] # remove last point, as u(x=1,t)=u(x=0,t)
# for CFL of 0.1
CFL = 0.3
dt = CFL*dx/c
# initial conditions
def initial_u(x):
return np.sin(2*pi*x)
# each value of the U array contains the solution for all x values at each timestep
U = np.zeros((m+1,n),dtype=float)
U[0] = u = initial_u(X);
def derivatives(t,u,c,dx):
uvals = [] # u values for this time step
for j in range(len(X)):
if j == 0: # left boundary
uvals.append((-c/(2*dx))*(u[j+1]-u[n-1]))
elif j == n-1: # right boundary
uvals.append((-c/(2*dx))*(u[0]-u[j-1]))
else:
uvals.append((-c/(2*dx))*(u[j+1]-u[j-1]))
return np.asarray(uvals)
# solve for 500 time steps
for k in range(m):
t = T[k];
k1 = derivatives(t,u,c,dx)*dt;
k2 = derivatives(t+0.5*dt,u+0.5*k1,c,dx)*dt;
k3 = derivatives(t+0.5*dt,u+0.5*k2,c,dx)*dt;
k4 = derivatives(t+dt,u+k3,c,dx)*dt;
U[k+1] = u = u + (k1+2*k2+2*k3+k4)/6;
# plot solution
plt.style.use('dark_background')
fig = plt.figure()
ax1 = fig.add_subplot(1,1,1)
line, = ax1.plot(X,U[0],color='cyan')
ax1.grid(True)
ax1.set_ylim([-2,2])
ax1.set_xlim([0,1])
def animate(i):
line.set_ydata(U[i])
return line,
I want to program in Python an advection equation which is (∂u/∂t) +c (∂u/∂x) = 0. Time should be discretized with Runge-kutta 4th order. Spatial discretiziation is 2nd order finite difference. When I run my code, I get straight line which transforms into sine wave. But I gave as initial condition sine wave. Why does it start as straight line? And I want to have sine wave moving forward. Do you have any idea on how to get sine wave moving forward? I appreciate your help. Thanks in advance!
While superficially your computation steps are related to the RK4 method, they deviate from the RK4 method and the correct space discretization too much to mention it all.
The traditional way to apply ODE integration methods is to have a function derivatives(t, state, params) and then apply that to compute the Euler step or the RK4 step. In your case it would be
def derivatives(t,u,c,dx):
du = np.zeros(len(u));
p = c/(2*dx);
du[0] = p*(u[1]-u[-1]);
du[1:-1] = p*(u[2:]-u[:-2]);
du[-1] = p*(u[0]-u[-2]);
return du;
Then you can do
X, dx = np.linspace(xmin, xmax, n+1, retstep=True);
X = X[:-1] # remove last point, as u(x=1,t)=u(x=0,t)
m=500; # number of time steps
T = tmin + np.arange(m+1);
U = np.zeros((m+1,n),dtype=float)
U[0] = u = initial_u(X);
for k in range(m):
t = T[k];
k1 = derivatives(t,u,c,dx)*dt;
k2 = derivatives(t+0.5*dt,u+0.5*k1,c,dx)*dt;
k3 = derivatives(t+0.5*dt,u+0.5*k2,c,dx)*dt;
k4 = derivatives(t+dt,u+k3,c,dx)*dt;
U[k+1] = u = u + (k1+2*k2+2*k3+k4)/6;
This uses dt as computed as the primary variable in the time stepping, then constructs the arithmetic sequence from tmin with step dt. Other ways are possible, but one has to make tmax and the number of time steps compatible.
The computation up to this point should now be successful and can be used in the animation. In my understanding, you do not produce a new plot in each frame, you only draw the graph once and after that just change the line data
# animate the time data
line, = ax1.plot(X,U[0],color='cyan')
ax1.grid(True)
ax1.set_ylim([-2,2])
ax1.set_xlim([0,1])
def animate(i):
line.set_ydata(U[i])
return line,
etc.

projectile motion simple simulation using numpy matplotlib python

I am trying to graph a projectile through time at various angles. The angles range from 25 to 60 and each initial angle should have its own line on the graph. The formula for "the total time the projectile is in the air" is the formula for t. I am not sure how this total time comes into play, because I am supposed to graph the projectile at various times with various initial angles. I imagine that I would need x,x1,x2,x3,x4,x5 and the y equivalents in order to graph all six of the various angles. But I am confused on what to do about the time spent.
import numpy as np
import matplotlib.pylab as plot
#initialize variables
#velocity, gravity
v = 30
g = -9.8
#increment theta 25 to 60 then find t, x, y
#define x and y as arrays
theta = np.arange(25,65,5)
t = ((2 * v) * np.sin(theta)) / g #the total time projectile remains in the #air
t1 = np.array(t) #why are some negative
x = ((v * t1) * np.cos(theta))
y = ((v * t1) * np.sin(theta)) - ((0.5 * g) * (t ** 2))
plot.plot(x,y)
plot.show()
First of all g is positive! After fixing that, let's see some equations:
You know this already, but lets take a second and discuss something. What do you need to know in order to get the trajectory of a particle?
Initial velocity and angle, right? The question is: find the position of the particle after some time given that initial velocity is v=something and theta=something. Initial is important! That's the time when we start our experiment. So time is continuous parameter! You don't need the time of flight.
One more thing: Angles can't just be written as 60, 45, etc, python needs something else in order to work, so you need to write them in numerical terms, (0,90) = (0,pi/2).
Let's see the code:
import numpy as np
import matplotlib.pylab as plot
import math as m
#initialize variables
#velocity, gravity
v = 30
g = 9.8
#increment theta 25 to 60 then find t, x, y
#define x and y as arrays
theta = np.arange(m.pi/6, m.pi/3, m.pi/36)
t = np.linspace(0, 5, num=100) # Set time as 'continous' parameter.
for i in theta: # Calculate trajectory for every angle
x1 = []
y1 = []
for k in t:
x = ((v*k)*np.cos(i)) # get positions at every point in time
y = ((v*k)*np.sin(i))-((0.5*g)*(k**2))
x1.append(x)
y1.append(y)
p = [i for i, j in enumerate(y1) if j < 0] # Don't fall through the floor
for i in sorted(p, reverse = True):
del x1[i]
del y1[i]
plot.plot(x1, y1) # Plot for every angle
plot.show() # And show on one graphic
You are making a number of mistakes.
Firstly, less of a mistake, but matplotlib.pylab is supposedly used to access matplotlib.pyplot and numpy together (for a more matlab-like experience), I think it's more suggested to use matplotlib.pyplot as plt in scripts (see also this Q&A).
Secondly, your angles are in degrees, but math functions by default expect radians. You have to convert your angles to radians before passing them to the trigonometric functions.
Thirdly, your current code sets t1 to have a single time point for every angle. This is not what you need: you need to compute the maximum time t for every angle (which you did in t), then for each angle create a time vector from 0 to t for plotting!
Lastly, you need to use the same plotting time vector in both terms of y, since that's the solution to your mechanics problem:
y(t) = v_{0y}*t - g/2*t^2
This assumes that g is positive, which is again wrong in your code. Unless you set the y axis to point downwards, but the word "projectile" makes me think this is not the case.
So here's what I'd do:
import numpy as np
import matplotlib.pyplot as plt
#initialize variables
#velocity, gravity
v = 30
g = 9.81 #improved g to standard precision, set it to positive
#increment theta 25 to 60 then find t, x, y
#define x and y as arrays
theta = np.arange(25,65,5)[None,:]/180.0*np.pi #convert to radians, watch out for modulo division
plt.figure()
tmax = ((2 * v) * np.sin(theta)) / g
timemat = tmax*np.linspace(0,1,100)[:,None] #create time vectors for each angle
x = ((v * timemat) * np.cos(theta))
y = ((v * timemat) * np.sin(theta)) - ((0.5 * g) * (timemat ** 2))
plt.plot(x,y) #plot each dataset: columns of x and columns of y
plt.ylim([0,35])
plot.show()
I made use of the fact that plt.plot will plot the columns of two matrix inputs versus each other, so no loop over angles is necessary. I also used [None,:] and [:,None] to turn 1d numpy arrays to 2d row and column vectors, respectively. By multiplying a row vector and a column vector, array broadcasting ensures that the resulting matrix behaves the way we want it (i.e. each column of timemat goes from 0 to the corresponding tmax in 100 steps)
Result:

Categories