This is a part of my output. I want to find the average of the list within this dictionary:
{'Radial Velocity': {'number': [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 2.0, 2.0, 1.0, 1.0, 3.0, 3.0, 3.0, 1.0, 5.0, 5.0, 5.0, 5.0, 5.0, 3.0, 3.0, 3.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 2.0, 2.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 4.0, 4.0, 4.0, 4.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 2.0, 1.0, 1.0, 2.0, 2.0, 1.0, 1.0, 2.0, 1.0, 3.0, 3.0, 3.0, 1.0, 2.0, 2.0, 1.0, 1.0, 1.0, 4.0, 4.0, 4.0, 4.0, 1.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 1.0, 3.0, 3.0, 3.0, 1.0, 1.0, 4.0, 4.0, 4.0, 4.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]}}
Here's how to solve it using custom code:
sumOfNumbers = 0
for number in dictionary['Radial Velocity']['number']:
sumOfNumbers += number
avg = sumOfNumbers / len(dictionary['Radial Velocity']['number'])
print(avg)
You can use the function mean() from numpy:
import numpy as np
output = {'Radial Velocity': {'number': [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 2.0, 2.0, 1.0, 1.0, 3.0, 3.0, 3.0, 1.0, 5.0, 5.0, 5.0, 5.0, 5.0, 3.0, 3.0, 3.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 2.0, 2.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 4.0, 4.0, 4.0, 4.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 2.0, 1.0, 1.0, 2.0, 2.0, 1.0, 1.0, 2.0, 1.0, 3.0, 3.0, 3.0, 1.0, 2.0, 2.0, 1.0, 1.0, 1.0, 4.0, 4.0, 4.0, 4.0, 1.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 1.0, 3.0, 3.0, 3.0, 1.0, 1.0, 4.0, 4.0, 4.0, 4.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]}}
print(np.mean(output['Radial Velocity']['number']))
Output:
2.1607142857142856
Python has a statistics module in its standard library. It has, among other useful things, a mean() function to which you can pass a list and get the average:
from statistics import mean
mean(d['Radial Velocity']['number'])
I have to run soak tests for longer duration and capture 3 datasets (before the run, in-between the run, after the run), plot them and manually analyze the plots.
All the datasets span across the very large range (0-10^5). So, when I am plotting this data using matplotlib's bar function, the bar for smaller values is too small to be analyzed.
import matplotlib
matplotlib.use('Agg')
import sys,os,argparse,json,string,numpy
from datetime import datetime
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
bx = ('smmpg_b1024k', 'smmpg_b10k', 'smmpg_b11k', 'smmpg_b128', 'smmpg_b128k', 'smmpg_b12k', 'smmpg_b13k', 'smmpg_b14k', 'smmpg_b15k', 'smmpg_b160', 'smmpg_b16k', 'smmpg_b17k', 'smmpg_b18k', 'smmpg_b192', 'smmpg_b192k', 'smmpg_b19k', 'smmpg_b1k', 'smmpg_b20k', 'smmpg_b21k', 'smmpg_b224', 'smmpg_b22k', 'smmpg_b23k', 'smmpg_b24k', 'smmpg_b256', 'smmpg_b256k', 'smmpg_b25k', 'smmpg_b26k', 'smmpg_b27k', 'smmpg_b288', 'smmpg_b28k', 'smmpg_b29k', 'smmpg_b2k', 'smmpg_b30k', 'smmpg_b31k', 'smmpg_b32', 'smmpg_b320', 'smmpg_b320k', 'smmpg_b32k', 'smmpg_b33k', 'smmpg_b34k', 'smmpg_b352', 'smmpg_b35k', 'smmpg_b36k', 'smmpg_b37k', 'smmpg_b384', 'smmpg_b384k', 'smmpg_b38k', 'smmpg_b39k', 'smmpg_b3k', 'smmpg_b40k', 'smmpg_b416', 'smmpg_b41k', 'smmpg_b42k', 'smmpg_b43k', 'smmpg_b448', 'smmpg_b448k', 'smmpg_b44k', 'smmpg_b45k', 'smmpg_b46k', 'smmpg_b47k', 'smmpg_b480', 'smmpg_b48k', 'smmpg_b49k', 'smmpg_b4k', 'smmpg_b50k', 'smmpg_b512', 'smmpg_b512k', 'smmpg_b51k', 'smmpg_b52k', 'smmpg_b53k', 'smmpg_b544', 'smmpg_b54k', 'smmpg_b55k', 'smmpg_b56k', 'smmpg_b576', 'smmpg_b576k', 'smmpg_b57k', 'smmpg_b58k', 'smmpg_b59k', 'smmpg_b5k', 'smmpg_b608', 'smmpg_b60k', 'smmpg_b61k', 'smmpg_b62k', 'smmpg_b63k', 'smmpg_b64', 'smmpg_b640', 'smmpg_b640k', 'smmpg_b64k', 'smmpg_b672', 'smmpg_b6k', 'smmpg_b704', 'smmpg_b704k', 'smmpg_b736', 'smmpg_b768', 'smmpg_b768k', 'smmpg_b7k', 'smmpg_b800', 'smmpg_b832', 'smmpg_b832k', 'smmpg_b864', 'smmpg_b896', 'smmpg_b896k', 'smmpg_b8k', 'smmpg_b928', 'smmpg_b96', 'smmpg_b960', 'smmpg_b960k', 'smmpg_b992', 'smmpg_b9k', 'smmpg_ccb', 'smmpg_msb', 'smmpg_twomb', 'total-pages', 'total-size')
before = (0.0, 2.0, 2.0, 4.0, 8.0, 2.0, 2.0, 2.0, 2.0, 6.0, 2.0, 4.0, 44.0, 76.0, 6.0, 2.0, 2.0, 2.0, 18.0, 2.0, 18.0, 30.0, 32.0, 2.0, 12.0, 2.0, 170.0, 0.0, 4.0, 2.0, 0.0, 24.0, 0.0, 2.0, 10.0, 2.0, 12.0, 2.0, 36.0, 0.0, 2.0, 0.0, 0.0, 0.0, 12.0, 22.0, 2.0, 0.0, 272.0, 2.0, 4.0, 2.0, 0.0, 2.0, 4.0, 2.0, 0.0, 0.0, 0.0, 0.0, 10.0, 0.0, 0.0, 4.0, 0.0, 2.0, 2.0, 2.0, 0.0, 0.0, 8.0, 2.0, 0.0, 2.0, 2.0, 6.0, 0.0, 0.0, 0.0, 34.0, 2.0, 0.0, 2.0, 0.0, 2.0, 92.0, 2.0, 0.0, 2.0, 2.0, 40.0, 2.0, 0.0, 2.0, 2.0, 0.0, 14.0, 2.0, 4.0, 2.0, 2.0, 2.0, 0.0, 18.0, 2.0, 28.0, 4.0, 0.0, 2.0, 2.0, 6.0, 214.0, 26226.0, 13813.0, 27626.0)
intermediate = (0.0, 2.0, 2.0, 4.0, 8.0, 2.0, 2.0, 2.0, 2.0, 6.0, 2.0, 4.0, 44.0, 76.0, 6.0, 2.0, 2.0, 2.0, 18.0, 2.0, 18.0, 30.0, 32.0, 2.0, 12.0, 2.0, 170.0, 0.0, 4.0, 2.0, 0.0, 24.0, 0.0, 2.0, 10.0, 2.0, 12.0, 2.0, 36.0, 0.0, 2.0, 0.0, 0.0, 0.0, 12.0, 22.0, 2.0, 0.0, 272.0, 2.0, 4.0, 2.0, 0.0, 2.0, 4.0, 2.0, 0.0, 0.0, 0.0, 0.0, 10.0, 0.0, 0.0, 4.0, 0.0, 2.0, 2.0, 2.0, 0.0, 0.0, 8.0, 2.0, 0.0, 2.0, 2.0, 6.0, 0.0, 0.0, 0.0, 34.0, 2.0, 0.0, 2.0, 0.0, 2.0, 92.0, 2.0, 0.0, 2.0, 2.0, 40.0, 2.0, 0.0, 2.0, 2.0, 0.0, 14.0, 2.0, 4.0, 2.0, 2.0, 2.0, 0.0, 18.0, 2.0, 28.0, 4.0, 0.0, 2.0, 2.0, 6.0, 214.0, 26226.0, 13813.0, 27626.0)
after = (0.0, 2.0, 2.0, 4.0, 8.0, 2.0, 2.0, 2.0, 2.0, 6.0, 2.0, 4.0, 44.0, 76.0, 6.0, 2.0, 2.0, 2.0, 18.0, 2.0, 18.0, 30.0, 32.0, 2.0, 12.0, 2.0, 170.0, 0.0, 4.0, 2.0, 0.0, 24.0, 0.0, 2.0, 10.0, 2.0, 12.0, 2.0, 36.0, 0.0, 2.0, 0.0, 0.0, 0.0, 12.0, 22.0, 2.0, 0.0, 272.0, 2.0, 4.0, 2.0, 0.0, 2.0, 4.0, 2.0, 0.0, 0.0, 0.0, 0.0, 10.0, 0.0, 0.0, 4.0, 0.0, 2.0, 2.0, 2.0, 0.0, 0.0, 8.0, 2.0, 0.0, 2.0, 2.0, 6.0, 0.0, 0.0, 0.0, 34.0, 2.0, 0.0, 2.0, 0.0, 2.0, 92.0, 2.0, 0.0, 2.0, 2.0, 40.0, 2.0, 0.0, 2.0, 2.0, 0.0, 14.0, 2.0, 4.0, 2.0, 2.0, 2.0, 0.0, 18.0, 2.0, 28.0, 4.0, 0.0, 2.0, 2.0, 6.0, 214.0, 26226.0, 13813.0, 27626.0)
x_locations= numpy.arange(len(bx))
width=0.27
fig = plt.figure(figsize=(50, 20))
ax = fig.add_subplot(111)
before_test_mempools_bar = ax.bar(x_locations, list(before), width, color='r')
intermediate_test_mempools_bar = ax.bar(x_locations + width, list(intermediate), width, color='g')
after_test_mempools_bar = ax.bar(x_locations + width *2,list(after), width, color='b')
ax.set_ylabel('Memory')
ax.set_xticks(x_locations + width)
ax.set_xticklabels(bx,rotation=90)
ax.legend((before_test_mempools_bar[0],intermediate_test_mempools_bar[0],after_test_mempools_bar[0]),('BEFORE','INTERMEDIATE','AFTER'))
fig.savefig("plot.png")
plt.close()
The above code produces the following plot:
Goal:
My goal is to accommodate all the data in the plot that is visually nice and so the plot can be analyzed by any tester in the team.
Currently, it's hard to see what's happened with a smaller range of values.
One possible approach would be normalization but not sure if the data would be retained original.
Any possible solutions are appreciated.
Transcribing #Alexander Reynold's comment into an answer:
Use a logarithmic y-axis, i.e. instead of plot() use semilogy() – You can change the base depending on what the dynamic range you need to display is.
I didn't know that there is already an argument parameter in bar function to change the scale of Y-axis.
After adding log=True argument to all the bar functions as below,
before_test_mempools_bar = ax.bar(x_locations, list(before_test_mempools), width, color='r',log=True)
intermediate_test_mempools_bar = ax.bar(x_locations + width, list(intermediate_test_mempools), width, color='g',log=True)
after_test_mempools_bar = ax.bar(x_locations + width *2,list(after_test_mempools), width, color='b',log=True)
My plot looks much nicer now and easy to analyze.
If I may, I think your problem is not technical but that you didn't think enough about you want you to show and what you want the people to look at because the graphic you're showing doesn't seem to have a lot of "noise" - i.e. area of the graphics that don't give much or even any information.
So, even if you only provided simulated data, it seems that there is some room of improvement to make a much readable and "to the point" visualization.
For example you could:
remove uninteresting information (maybe those at 0.0 or those that haven't evolved ?)
regroup some categories by group (what about creating new aggregated categories ? or showing the data in a total different way with values on the x axes and names of categories on the y axes ?)
Also, maybe you're putting together different kind of things (those last 3 bx categories ('smmpg_twomb', 'total-pages' &'total-size') shouldn't they be put in a graph on their own ?)
Use a data structure like pandas' DataFrame to better handle and clean your data in order to do all of the three previous suggestions.
It's just a few suggestions but maybe it will help.
Here is an exemple of what you could do... Just to illustrate:
import matplotlib
matplotlib.use('Agg')
import sys,os,argparse,json,string,numpy
from datetime import datetime
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
bx = ('smmpg_b1024k', 'smmpg_b10k', 'smmpg_b11k', 'smmpg_b128', 'smmpg_b128k', 'smmpg_b12k', 'smmpg_b13k',
'smmpg_b14k', 'smmpg_b15k', 'smmpg_b160', 'smmpg_b16k', 'smmpg_b17k', 'smmpg_b18k', 'smmpg_b192',
'smmpg_b192k', 'smmpg_b19k', 'smmpg_b1k', 'smmpg_b20k', 'smmpg_b21k', 'smmpg_b224', 'smmpg_b22k',
'smmpg_b23k', 'smmpg_b24k', 'smmpg_b256', 'smmpg_b256k', 'smmpg_b25k', 'smmpg_b26k', 'smmpg_b27k',
'smmpg_b288', 'smmpg_b28k', 'smmpg_b29k', 'smmpg_b2k', 'smmpg_b30k', 'smmpg_b31k', 'smmpg_b32',
'smmpg_b320', 'smmpg_b320k', 'smmpg_b32k', 'smmpg_b33k', 'smmpg_b34k', 'smmpg_b352', 'smmpg_b35k',
'smmpg_b36k', 'smmpg_b37k', 'smmpg_b384', 'smmpg_b384k', 'smmpg_b38k', 'smmpg_b39k', 'smmpg_b3k',
'smmpg_b40k', 'smmpg_b416', 'smmpg_b41k', 'smmpg_b42k', 'smmpg_b43k', 'smmpg_b448', 'smmpg_b448k',
'smmpg_b44k', 'smmpg_b45k', 'smmpg_b46k', 'smmpg_b47k', 'smmpg_b480', 'smmpg_b48k', 'smmpg_b49k',
'smmpg_b4k', 'smmpg_b50k', 'smmpg_b512', 'smmpg_b512k', 'smmpg_b51k', 'smmpg_b52k', 'smmpg_b53k',
'smmpg_b544', 'smmpg_b54k', 'smmpg_b55k', 'smmpg_b56k', 'smmpg_b576', 'smmpg_b576k', 'smmpg_b57k',
'smmpg_b58k', 'smmpg_b59k', 'smmpg_b5k', 'smmpg_b608', 'smmpg_b60k', 'smmpg_b61k', 'smmpg_b62k',
'smmpg_b63k', 'smmpg_b64', 'smmpg_b640', 'smmpg_b640k', 'smmpg_b64k', 'smmpg_b672', 'smmpg_b6k',
'smmpg_b704', 'smmpg_b704k', 'smmpg_b736', 'smmpg_b768', 'smmpg_b768k', 'smmpg_b7k', 'smmpg_b800',
'smmpg_b832', 'smmpg_b832k', 'smmpg_b864', 'smmpg_b896', 'smmpg_b896k', 'smmpg_b8k', 'smmpg_b928',
'smmpg_b96', 'smmpg_b960', 'smmpg_b960k', 'smmpg_b992', 'smmpg_b9k', 'smmpg_ccb', 'smmpg_msb',
'smmpg_twomb', 'total-pages', 'total-size')
before = (0.0, 2.0, 2.0, 4.0, 8.0, 2.0, 2.0, 2.0, 2.0, 6.0, 2.0, 4.0, 44.0, 76.0, 6.0, 2.0, 2.0, 2.0, 18.0, 2.0, 18.0, 30.0, 32.0, 2.0, 12.0, 2.0, 170.0, 0.0, 4.0, 2.0, 0.0, 24.0, 0.0, 2.0, 10.0, 2.0, 12.0, 2.0, 36.0, 0.0, 2.0, 0.0, 0.0, 0.0, 12.0, 22.0, 2.0, 0.0, 272.0, 2.0, 4.0, 2.0, 0.0, 2.0, 4.0, 2.0, 0.0, 0.0, 0.0, 0.0, 10.0, 0.0, 0.0, 4.0, 0.0, 2.0, 2.0, 2.0, 0.0, 0.0, 8.0, 2.0, 0.0, 2.0, 2.0, 6.0, 0.0, 0.0, 0.0, 34.0, 2.0, 0.0, 2.0, 0.0, 2.0, 92.0, 2.0, 0.0, 2.0, 2.0, 40.0, 2.0, 0.0, 2.0, 2.0, 0.0, 14.0, 2.0, 4.0, 2.0, 2.0, 2.0, 0.0, 18.0, 2.0, 28.0, 4.0, 0.0, 2.0, 2.0, 6.0, 214.0, 26226.0, 13813.0, 27626.0)
intermediate = (0.0, 2.0, 2.0, 4.0, 8.0, 2.0, 2.0, 2.0, 2.0, 6.0, 2.0, 4.0, 44.0, 76.0, 6.0, 2.0, 2.0, 2.0, 18.0, 2.0, 18.0, 30.0, 32.0, 2.0, 12.0, 2.0, 170.0, 0.0, 4.0, 2.0, 0.0, 24.0, 0.0, 2.0, 10.0, 2.0, 12.0, 2.0, 36.0, 0.0, 2.0, 0.0, 0.0, 0.0, 12.0, 22.0, 2.0, 0.0, 272.0, 2.0, 4.0, 2.0, 0.0, 2.0, 4.0, 2.0, 0.0, 0.0, 0.0, 0.0, 10.0, 0.0, 0.0, 4.0, 0.0, 2.0, 2.0, 2.0, 0.0, 0.0, 8.0, 2.0, 0.0, 2.0, 2.0, 6.0, 0.0, 0.0, 0.0, 34.0, 2.0, 0.0, 2.0, 0.0, 2.0, 92.0, 2.0, 0.0, 2.0, 2.0, 40.0, 2.0, 0.0, 2.0, 2.0, 0.0, 14.0, 2.0, 4.0, 2.0, 2.0, 2.0, 0.0, 18.0, 2.0, 28.0, 4.0, 0.0, 2.0, 2.0, 6.0, 214.0, 26226.0, 13813.0, 27626.0)
after = (0.0, 2.0, 2.0, 4.0, 8.0, 2.0, 2.0, 2.0, 2.0, 6.0, 2.0, 4.0, 44.0, 76.0, 6.0, 2.0, 2.0, 2.0, 18.0, 2.0, 18.0, 30.0, 32.0, 2.0, 12.0, 2.0, 170.0, 0.0, 4.0, 2.0, 0.0, 24.0, 0.0, 2.0, 10.0, 2.0, 12.0, 2.0, 36.0, 0.0, 2.0, 0.0, 0.0, 0.0, 12.0, 22.0, 2.0, 0.0, 272.0, 2.0, 4.0, 2.0, 0.0, 2.0, 4.0, 2.0, 0.0, 0.0, 0.0, 0.0, 10.0, 0.0, 0.0, 4.0, 0.0, 2.0, 2.0, 2.0, 0.0, 0.0, 8.0, 2.0, 0.0, 2.0, 2.0, 6.0, 0.0, 0.0, 0.0, 34.0, 2.0, 0.0, 2.0, 0.0, 2.0, 92.0, 2.0, 0.0, 2.0, 2.0, 40.0, 2.0, 0.0, 2.0, 2.0, 0.0, 14.0, 2.0, 4.0, 2.0, 2.0, 2.0, 0.0, 18.0, 2.0, 28.0, 4.0, 0.0, 2.0, 2.0, 6.0, 214.0, 26226.0, 13813.0, 27626.0)
# Put your data in a DataFrame:
df = pd.DataFrame({'before': before,
'intermediate': intermediate,
'after': after, 'bx': bx,
'x_locations': numpy.arange(len(bx))
})
#filter columns - you can put them in another graph!
df_filt_cat = df.loc[(df.bx != 'smmpg_twomb') & (df.bx != 'total-pages') & (df.bx != 'total-size')]
# filter categories that stay 0 all the way
df_filt_zero = df_filt_cat.loc[(df_filt_cat.before != 0) & (df_filt_cat.intermediate != 0) & (df_filt_cat.after != 0)]
x_locations= numpy.arange(len(bx))
width=0.27
fig = plt.figure(figsize=(50, 20))
ax = fig.add_subplot(111)
before_test_mempools_bar = ax.bar(df_filt_zero.x_locations, df_filt_zero.before, width, color='r')
before_test_mempools_bar = ax.bar(df_filt_zero.x_locations, df_filt_zero.before, width, color='r')
intermediate_test_mempools_bar = ax.bar(df_filt_zero.x_locations + width, df_filt_zero.intermediate, width, color='g')
after_test_mempools_bar = ax.bar(df_filt_zero.x_locations + width *2, df_filt_zero.after, width, color='b')
ax.set_ylabel('Memory')
ax.set_xticks(x_locations + width)
ax.set_xticklabels(bx,rotation=90)
ax.legend((before_test_mempools_bar[0],intermediate_test_mempools_bar[0],after_test_mempools_bar[0]),('BEFORE','INTERMEDIATE','AFTER'))
# just to show the result I commented this line
#fig.savefig("plot.png")
# and put this one instead:
plt.show()
It obviously still needs improvement but it's already a bit more readable.
I'm new in tensorflow and I've been training a simple neural network, but once is trained, I don't know how to reuse the NN to get the outputs of an input.
def train_neural_network(x,y,aDataTrain,aTargetTrain,aDataTest,aTargetTest):
batch_size = 500
prediction = neural_network_model(x,len(aDataTrain[0]))
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=prediction,labels=y))
optimizer = tf.train.AdamOptimizer().minimize(cost)
hm_epochs = 1
saver = tf.train.Saver()
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for epoch in range(hm_epochs):
epoch_loss = 0
i = 0
while i < len(aDataTrain):
start = i
end = i + batch_size
batch_x = np.array(aDataTrain[start:end])
batch_y = np.array(aTargetTrain[start:end])
_,c = sess.run([optimizer,cost],feed_dict={x:batch_x,y:batch_y})
epoch_loss += c
i += batch_size
print ("Epoch", epoch, "completed out of", hm_epochs, "loss", epoch_loss)
correct =tf.equal(tf.argmax(prediction,1), tf.argmax(y,1))
accurracy = tf.reduce_mean(tf.cast(correct,'float'))
finalAcc = accurracy.eval({x:aDataTest,y:aTargetTest})
saver.save(sess, 'model/model.ckpt')
print("Accuracy:",finalAcc)
So, once I've saved the model and try to restore it, I don't know how to continue to get the output of the NN from the "input_data".
def execute_neural_network(x,y,aDataTrain,aTargetTrain,aDataTest,aTargetTest):
batch_size = 1
y_pred = []
prediction = neural_network_model(x,len(aDataTrain[0]))
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=prediction,labels=y))
optimizer = tf.train.AdamOptimizer().minimize(cost)
input_data = [5.0, 3.0, 1.0, 5.0, 6.0, 5.0, 2.0, 4.0, 7.0, 6.0, 3.0, 3.0, 3.0, 3.0, 3.0, 4.0, 2.0, 3.0, 3.0, 3.0, 3.0, 3.0, 2.0, 3.0, 2.0, 3.0, 2.0, 3.0, 3.0, 4.0, 3.0, 3.0, 2.0, 4.0, 3.0, 3.0, 2.0, 4.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 61.0, 21.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 75.0, 3.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 6.0, 35.0, 11.0, 10.0, 33.0, 24.0, 6.0, 2.0, 2.0, 3.0, 4.0, 3.0, 3.0, 8.0, 6.0, 5.0, 6.0, 5.0, 8.0, 9.0, 13.0, 7.0, 25.0, 11.0, 2.0, 2.0, 2.0, 2.0, 2.0]
saver = tf.train.Saver()
with tf.Session() as sess:
saver.restore(sess, 'model/model.ckpt')
#Get neural network output from input_data
Assuming you create your graph/network's model somehow like this:
with tf.Session() as sess:
#do other stuff
predictionOp = tf.argmax(py_x, 1)
saver.save(sess, 'model')
where predictionOp is the variable which is the output of your network.
You can add something like this afterwards: tf.add_to_collection("predictionOp", predictionOp)
to give the predictionOp a name to be easier to find. Then, you can reload your model and get the predictions with:
with tf.Session() as sess:
new_saver = tf.train.import_meta_graph('model.meta')
new_saver.restore(sess, 'model')
predictionOp = tf.get_collection("predictionOp")[0]
#get the prediction
prediction = sess.run(predictionOp, feed_dict={"x:0": input_data})
For more information, please take a look at the tensorflow documentation and here for some more information about the basics. Also, there are some other threads, which deal with similar problems, like this and this one.