How turn data into bar chart? - python

I'm struggling with how to turn the result of my code into a bar chart.
Code:
Result:
tried unsuccessfully add data to a dataframe

May be you can use matplotlib.pyplot and from that import plt. To create a bar chart use plt.bar function.

Related

In a pairplot, how can I not show confidence intervals but display grid lines instead? [duplicate]

I'm plotting two data series with Pandas with seaborn imported. Ideally I would like the horizontal grid lines shared between both the left and the right y-axis, but I'm under the impression that this is hard to do.
As a compromise I would like to remove the grid lines all together. The following code however produces the horizontal gridlines for the secondary y-axis.
import pandas as pd
import numpy as np
import seaborn as sns
data = pd.DataFrame(np.cumsum(np.random.normal(size=(100,2)),axis=0),columns=['A','B'])
data.plot(secondary_y=['B'],grid=False)
You can take the Axes object out after plotting and perform .grid(False) on both axes.
# Gets the axes object out after plotting
ax = data.plot(...)
# Turns off grid on the left Axis.
ax.grid(False)
# Turns off grid on the secondary (right) Axis.
ax.right_ax.grid(False)
sns.set_style("whitegrid", {'axes.grid' : False})
Note that the style can be whichever valid one that you choose.
For a nice article on this, refer to this site.
The problem is with using the default pandas formatting (or whatever formatting you chose). Not sure how things work behind the scenes, but these parameters are trumping the formatting that you pass as in the plot function. You can see a list of them here in the mpl_style dictionary
In order to get around it, you can do this:
import pandas as pd
pd.options.display.mpl_style = 'default'
new_style = {'grid': False}
matplotlib.rc('axes', **new_style)
data = pd.DataFrame(np.cumsum(np.random.normal(size=(100,2)),axis=0),columns=['A','B'])
data.plot(secondary_y=['B'])
This feels like buggy behavior in Pandas, with not all of the keyword arguments getting passed to both Axes. But if you want to have the grid off by default in seaborn, you just need to call sns.set_style("dark"). You can also use sns.axes_style in a with statement if you only want to change the default for one figure.
You can just set:
sns.set_style("ticks")
It goes back to normal.

How can I loop through a list of elements and create time series plots in Python

Here is a sample of the data I'm working with WellAnalyticalData I'd like to loop through each well name and create a time series chart for each parameter with sample date on the x-axis and the value on the y-axis. I don't think I want subplots, I'm just looking for individual plots of each analyte for each well. I've used pandas to try grouping by well name and then attempting to plot, but that doesn't seem to be the way to go. I'm fairly new to python and I think I'm also having trouble figuring out how to construct the loop statement. I'm running python 3.x and am using the matplotlib library to generate the plots.
so if I understand your question correctly you want one plot for each combination of Well and Parameter. No subplots, just a new plot for each combination. Each plot should have SampleDate on the x-axis and Value on the y-axis. I've written a loop here that does just that, although you'll see that since in your data has just one date per well per parameter, the plots are just a single dot.
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
df = pd.DataFrame({'WellName':['A','A','A','A','B','B','C','C','C'],
'SampleDate':['2018-02-15','2018-03-31','2018-06-07','2018-11-14','2018-02-15','2018-11-14','2018-02-15','2018-03-31','2018-11-14'],
'Parameter':['Arsenic','Lead','Iron','Magnesium','Arsenic','Iron','Arsenic','Lead','Magnesium'],
'Value':[0.2,1.6,0.05,3,0.3,0.79,0.3,2.7,2.8]
})
for well in df.WellName.unique():
temp1 = df[df.WellName==well]
for param in temp1.Parameter.unique():
fig = plt.figure()
temp2 = temp1[temp1.Parameter==param]
plt.scatter(temp2.SampleDate,temp2.Value)
plt.title('Well {} and Parameter {}'.format(well,param))

Vertical spacing between xticklabel to the bottom of x-axis

I am wondering if there could be any way to change the spacing between xticklabel (i.e. $\widetilde{M}) and the bottom of x-axis? In my case the spacing is too small so that the tilde above M (left bar) becomes invisible. BTW I am using pandas' plot function to generate the bar plot.
Since Pandas uses the Matplotlib library for all the plotting, you can change this setting through rcParams. First import:
from matplotlib import rcParams
and then (before plotting anything) change the padding above the xticks:
rcParams['xtick.major.pad'] = 20
Assuming you import matplotlib.pyplot as plt You can manipulate the pyplot object via the tick_params method and pad arg. E.g.:
plt.tick_params(pad=10)

ggplot Bar Plot semantics

I am trying to use ggplot in Python for the first time and the semantics are completely unobvious to me.
I have a pandas dataframe with two columns: date and entries_sum. What I would like to do is plot a bar plot with the date column as each entry on the x-axis and entries_sum as the respective heights.
I cannot figure out how to do this with the ggplot API. Am I formatting my data wrong for this?
How about:
ggplot(aes(x='date', y='entries_sum'), data=data) + geom_bar(stat='identity')

How to get rid of grid lines when plotting with Seaborn + Pandas with secondary_y

I'm plotting two data series with Pandas with seaborn imported. Ideally I would like the horizontal grid lines shared between both the left and the right y-axis, but I'm under the impression that this is hard to do.
As a compromise I would like to remove the grid lines all together. The following code however produces the horizontal gridlines for the secondary y-axis.
import pandas as pd
import numpy as np
import seaborn as sns
data = pd.DataFrame(np.cumsum(np.random.normal(size=(100,2)),axis=0),columns=['A','B'])
data.plot(secondary_y=['B'],grid=False)
You can take the Axes object out after plotting and perform .grid(False) on both axes.
# Gets the axes object out after plotting
ax = data.plot(...)
# Turns off grid on the left Axis.
ax.grid(False)
# Turns off grid on the secondary (right) Axis.
ax.right_ax.grid(False)
sns.set_style("whitegrid", {'axes.grid' : False})
Note that the style can be whichever valid one that you choose.
For a nice article on this, refer to this site.
The problem is with using the default pandas formatting (or whatever formatting you chose). Not sure how things work behind the scenes, but these parameters are trumping the formatting that you pass as in the plot function. You can see a list of them here in the mpl_style dictionary
In order to get around it, you can do this:
import pandas as pd
pd.options.display.mpl_style = 'default'
new_style = {'grid': False}
matplotlib.rc('axes', **new_style)
data = pd.DataFrame(np.cumsum(np.random.normal(size=(100,2)),axis=0),columns=['A','B'])
data.plot(secondary_y=['B'])
This feels like buggy behavior in Pandas, with not all of the keyword arguments getting passed to both Axes. But if you want to have the grid off by default in seaborn, you just need to call sns.set_style("dark"). You can also use sns.axes_style in a with statement if you only want to change the default for one figure.
You can just set:
sns.set_style("ticks")
It goes back to normal.

Categories