Plot standard deviation with only positive values - python
I wanted to ask about a problem that I can't find a solution to, I'm quite new to python and programming.
I have my code where I calculate different statistical measurements and in the fourth graph axes [1:1] I am trying to represent the standard deviation of my variable (accumulated daily rainfall in mm) but I have a problem and that is that the standard deviation represents values upwards and below average. Precipitation cannot have negative values and I wanted to know if it is possible to put some kind of filter so that only values equal to or greater than 0 are plotted.
Here I leave my example code and the data that I use
import numpy as np
import pandas as pd
from sklearn.datasets import load_iris
import seaborn as sns
from matplotlib import pyplot as plt
SALIDAS = 'C:/Users/ferfo/Desktop/'
datos = pd.read_excel('C:/Users/ferfo/Desktop/Distribuciones/prueba.xlsx')
datos1 = pd.read_excel('C:/Users/ferfo/Desktop/Distribuciones/lineas.xlsx')
sns.set_style('darkgrid')
fig, axes =plt.subplots(2,2, figsize=(10,6))
sns.ecdfplot(ax=axes[0,0], data=datos)
sns.histplot(ax=axes[0,1], data=datos, fill = True, common_norm=False, alpha=0.2, linewidth=2, element="step")
sns.lineplot(ax=axes[1,0], data=datos1, markers=True, dashes=False,)
sns.barplot(ax=axes[1,1], data=datos, ci = "sd", capsize=0.1, )
axes[0,0].set_ylabel("Probabilidad")
axes[0,0].set_xlabel("mm/día")
axes[0,0].set_ylim(0, 1.1)
axes[0,0].set_yticks([0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.1])
axes[0,0].set_xticks([0,50,100,150,200,250,300,350])
axes[0,1].set_xticks([0,50,100,150,200,250,300,350])
axes[0,1].set_yticks([0,50,100,150,200,250,300,350,400,450,500])
axes[0,1].set_ylabel("Frecuencia")
axes[0,1].set_xlabel("mm/día")
axes[0,1].get_legend().remove()
axes[1,0].set_yticks([0,50,100,150,200,250,300])
axes[1,0].set_xlabel("Meses")
axes[1,0].set_ylabel("mm")
axes[1,0].get_legend().remove()
axes[1,0].set_xticks([1,3,5,8,11])
#axes[1,1].set_yticks([-10,30])
axes[1,1].set_xlabel("Producto")
#axes[1,1].set_ylabel("mm/día")
fig.suptitle('lomitas, 2001-2020', fontsize=20)
plt.show()
fig.savefig(SALIDAS + 'graficos', dpi=600, bbox_inches='tight')
prueba.txt
This is my data: https://drive.google.com/file/d/1TSwulKNFerHMvv5Mdhc_m1zqwRac0lYj/view?usp=sharing
The first 1000 rows (that will fit on SO), out of 1831.
Observed data,Imerg data,Persiann Data
33.0,12.70423317,65.75
12.0,13.56632233,31.32
4.0,21.09570122,43.52
1.0,9.74461746,5.77
17.3,1.820376158,6.55
18.0,5.2507658,61.730003
2.0,8.476202965,14.250001
40.0,3.271785736,8.710001
1.0,9.8995018,25.009998
24.0,8.377342225,22.08
1.0,13.10612583,13.53
3.0,7.375349045,14.24
7.0,41.91541291,3.44
68.0,26.54439736,57.81
15.0,4.023840905,2.65
2.0,6.984012125,14.709999
50.0,13.24643517,2.61
35.0,2.314537525,62.61
22.0,4.787216664,47.95
23.0,6.563237665,80.09
41.0,26.61835861,2.73
52.5,87.12622835,35.05
21.0,20.77411652,4.5
5.0,39.9513588,2.77
21.3,34.07968521,46.68
4.0,4.571947575,2.94
21.0,7.785022735,11.190001
7.0,24.5557766,6.7700005
2.0,14.00565529,2.15
14.0,6.835758685,3.9299998
6.0,13.60206604,1.5
1.0,31.71725464,19.919998
7.0,3.962635517,33.16
20.2,1.291003466,12.959999
20.0,55.3718796,1.03
10.0,1.06314838,150.06
2.0,1.467782021,8.41
5.8,4.719767094,7.9300003
2.0,2.669240952,2.72
10.0,17.57000542,17.4
1.0,1.548810959,2.03
8.0,1.151179791,1.37
3.0,20.55989838,3.85
9.0,2.467414141,1.9200001
2.0,1.306825042,2.07
8.0,1.14,2.69
2.0,1.127427101,14.9800005
18.0,1.399605274,2.4500003
10.0,6.10573721,2.1100001
8.0,2.593387604,4.76
16.0,1.714526534,5.64
20.0,7.021852015,1.24
49.0,1.874579191,1.54
3.3,1.057072401,2.88
16.0,5.83480644,3.24
8.0,3.455219269,5.8599997
8.0,1.475891114,2.72
28.0,6.827443125,8.690001
13.0,18.33798981,2.26
4.0,6.57049513,4.49
2.0,31.0540371,1.25
35.0,53.7753334,1.3299999
11.0,21.80572129,2.3899999
6.5,34.6747551,3.56
33.0,1.931889653,2.33
13.0,12.64225388,3.62
5.0,8.975834845,2.33
37.0,1.71813643,15.01
8.0,4.632123471,5.06
16.0,20.17470742,1.51
11.0,27.08102036,3.59
2.0,2.386453629,4.99
1.0,1.059182048,1.5600001
21.0,26.59081078,4.0099998
2.0,12.13219738,7.1099997
45.0,1.741666675,3.78
11.0,1.191877246,2.83
8.0,1.437874556,4.38
36.0,4.313007832,1.56
23.0,43.39625931,2.3700001
1.0,4.652664662,1.39
44.8,2.123159409,7.83
2.0,1.013100386,4.0
4.0,3.444443941,5.9900002
3.0,1.029917956,1.6299999
3.0,64.20615385,1.46
14.0,2.552409411,1.75
15.0,1.070342303,22.1
20.0,19.51611519,14.44
34.0,11.814847,9.370001
20.0,3.378883601,31.640001
17.0,4.592389584,4.62
2.0,5.184751985,4.04
12.0,1.251710058,8.940001
31.0,1.20076859,20.54
3.0,2.656115532,16.52
12.0,3.296927929,22.5
11.0,6.101575375,8.24
37.0,1.621261239,16.720001
47.0,3.146972418,25.58
8.0,23.63509369,3.3600001
5.0,4.09155941,3.7999997
13.0,4.080201626,1.9300001
25.0,13.95099068,13.62
28.5,9.444846155,7.8
4.0,27.48032952,1.25
4.0,38.84066773,42.8
6.0,1.212481141,19.18
5.0,1.080495119,4.09
20.0,40.26078034,2.59
7.0,2.846819878,9.09
4.0,54.2149887,3.52
8.0,13.21701241,18.25
4.0,3.699003458,1.59
5.0,4.130330563,13.790001
5.0,20.58119202,6.25
5.0,6.42111683,4.21
44.0,4.309965134,1.56
10.0,4.79896164,2.24
3.0,7.026090145,1.5999999
3.0,2.08438778,6.4399996
3.0,25.36527062,3.0900002
22.0,24.76248741,23.900002
2.0,26.50693512,56.08
1.0,32.33215714,18.52
4.0,28.11775589,1.8699999
17.0,1.378523588,7.12
11.0,3.523523569,22.32
30.0,5.69707489,16.54
29.0,27.38665581,9.93
1.0,38.52075959,46.18
3.0,1.750359059,4.9399996
1.0,14.85701275,1.88
2.6,41.54547501,37.92
28.0,1.331750036,5.47
16.0,14.75776387,54.08
6.0,3.94290042,13.11
34.0,21.99007416,5.43
12.0,21.82343102,9.42
8.0,2.251169443,18.39
5.0,3.715127945,10.76
24.0,11.68067074,14.76
1.0,8.149575235,10.639999
9.0,3.602071047,11.530001
35.0,35.90866089,27.52
2.0,1.736975193,23.21
8.0,5.936116695,14.05
1.0,2.024060011,24.670002
3.0,7.263765335,21.99
14.0,1.832577467,12.419999
12.0,4.149312973,14.73
15.0,1.578367353,9.52
1.0,1.461082697,3.79
3.0,1.300221563,2.6699998
4.0,3.882947684,6.3
23.0,1.156816244,1.5699999
31.0,1.774330497,3.9099998
1.0,1.081079126,9.86
21.0,63.7815933,1.1
7.0,5.40561533,3.1
38.9,1.916676522,1.3499999
1.0,1.694874764,1.21
2.0,1.020053149,2.6799998
1.0,3.230535031,72.840004
18.0,2.468552113,3.8899999
47.0,2.557238341,1.9
3.0,2.99013114,3.03
1.0,1.321612239,1.81
15.0,11.32548142,1.2
5.0,1.680747986,1.92
2.0,4.724195004,3.9
1.0,3.12424779,2.5700002
1.0,19.96909905,11.53
2.4,38.93196869,1.54
3.0,6.141599655,1.24
2.0,10.2309351,2.06
2.2,1.496399522,1.99
3.0,14.13191891,4.8900003
3.0,6.556683065,2.02
1.0,2.044409514,1.8
7.0,13.88462162,6.32
2.0,2.669220686,2.21
4.0,9.125458715,1.6700001
1.0,5.971014975,4.23
2.0,24.87825394,8.09
40.0,4.818218708,4.5899997
1.0,1.526267767,22.439999
42.0,12.33635044,1.3199999
14.0,6.067589285,7.02
5.0,4.542275429,9.35
14.0,15.26683712,1.36
3.0,2.287184716,1.6099999
27.0,13.89541149,6.42
9.0,2.849863529,5.52
16.0,4.114969254,6.3199997
5.0,2.60952878,2.6299999
7.0,25.81751633,1.12
22.0,7.642860415,54.38
61.0,14.60452652,2.99
3.0,2.860728264,1.4300001
38.0,13.65011311,2.05
24.0,4.403223992,4.0699997
8.0,16.61255455,5.7299995
15.0,1.931255818,1.6700001
4.0,12.71534157,4.97
2.0,13.96313668,1.74
2.0,4.058600903,4.7799997
4.0,4.762280464,2.69
12.0,9.048459055,2.84
7.0,2.783326626,2.87
24.0,2.251889944,5.2999997
17.0,12.83441448,4.16
29.0,11.20629025,1.34
37.0,28.90879059,1.22
4.0,1.714102268,23.29
2.0,1.729247093,1.87
7.0,11.54702091,102.02
14.0,1.603832722,1.26
4.0,48.88271332,3.4900002
5.0,3.357400656,1.33
9.0,26.58070755,1.3499999
7.0,1.279444337,11.709999
52.0,7.07122135,6.92
21.0,4.065811158,1.55
8.0,1.305071712,3.3400002
2.0,33.32134629,34.989998
1.0,25.21928978,5.46
1.0,7.68272543,3.69
8.0,4.058069229,12.27
14.0,1.392273307,31.66
27.0,1.614271045,2.51
1.0,1.43,24.939999
5.0,1.564941883,2.76
1.0,5.490926745,19.510002
2.0,2.741349459,8.51
4.0,1.820300937,7.93
7.0,1.200169325,9.7
27.0,1.227725864,3.3899999
53.0,1.409593702,1.26
13.0,1.020598889,11.91
2.0,1.532613397,10.45
6.0,2.150630713,51.839996
2.0,9.32765293,1.0999999
3.0,3.207234144,27.57
32.0,1.102299214,36.58
4.0,11.28597355,9.549999
1.0,32.67594147,2.3
5.0,17.2740078,15.48
42.0,3.444516182,6.82
10.0,2.200684548,7.47
2.0,42.5202179,30.38
6.0,1.706894517,21.759998
2.0,14.07932759,18.81
11.0,4.025928021,9.6
25.0,16.11277199,2.11
17.0,6.93875265,1.03
9.0,4.846222401,10.18
31.3,1.64617455,6.8199997
18.0,1.422170997,14.7
3.0,2.14275384,16.5
42.0,20.2088604,4.75
28.0,16.17591286,24.34
113.5,1.768956781,5.91
27.0,7.651679995,13.950001
16.0,62.23706435,1.66
40.0,3.120871783,9.92
5.0,1.11462462,1.3499999
25.0,17.13158798,31.470001
1.0,35.90638352,3.34
1.0,11.49289704,30.420002
2.0,1.723016501,3.0900002
7.0,1.727642894,1.8199999
62.5,15.11504936,3.46
15.0,12.78649616,15.449999
6.0,1.142826557,2.9
2.0,4.31261921,1.44
2.0,19.54297829,1.8
5.0,21.42444229,1.17
9.0,1.985171438,5.24
4.0,38.83046723,1.53
3.0,24.3289547,2.63
28.0,21.55071259,8.26
3.0,20.35590744,5.58
18.5,17.1479969,20.69
1.0,2.328164578,6.65
77.0,6.90966034,1.5999999
3.0,8.87460327,4.1
6.0,19.85622978,5.88
18.0,11.50050545,8.62
1.0,2.399034024,4.4399996
13.0,17.8201561,7.3199997
1.0,63.47223665,5.11
5.0,10.70358849,1.9399999
4.0,1.303659797,1.14
5.0,7.051344395,1.2
2.0,1.317322851,2.83
2.0,1.153054357,20.35
1.7,1.288836599,1.0
3.5,6.40096426,2.18
4.7,10.61519242,3.25
2.0,38.07836151,1.4499999
1.0,1.00505364,1.06
5.0,4.601175309,14.140001
13.0,1.059544564,1.11
50.0,1.025045872,1.08
2.4,2.140906573,24.24
5.0,11.28417015,6.04
2.8,1.706882835,1.6299999
15.5,63.1325226,5.55
17.0,5.925836565,2.69
3.0,1.94356668,5.5099998
4.5,9.45316124,12.35
36.0,2.504364014,1.73
1.0,1.470301152,2.85
1.0,1.242533088,3.36
12.1,1.670167685,3.0299997
5.0,57.5176239,1.06
15.0,1.107224822,3.8200002
5.0,3.0542202,6.79
3.0,2.898064137,4.32
7.0,30.05044174,1.75
3.0,3.427459955,1.1800001
4.0,4.624752045,1.04
2.0,11.62128449,1.5600001
8.0,6.490193845,3.7
2.0,1.937290669,2.6000001
7.0,8.65875244,1.4100001
52.0,1.299692512,1.69
5.0,1.855275035,48.739998
1.0,3.769208908,7.24
7.6,4.55385828,6.29
3.5,6.51372051,1.71
1.3,8.0854969,1.21
22.2,1.507522464,109.61
22.5,9.14739609,8.1
7.5,27.17226029,6.6499996
2.0,32.79916382,6.2500005
1.0,1.280574084,1.05
3.5,26.51655007,1.08
2.5,2.701778889,3.1100001
1.0,5.269325735,2.01
8.0,30.63650131,1.4300001
20.0,71.78442385,27.51
32.0,1.373457909,28.66
3.0,12.21031952,21.530003
61.0,35.02967835,2.9800003
7.0,14.67937184,4.88
3.5,4.434751988,2.06
2.0,11.85890293,6.34
35.0,25.02809716,3.44
11.0,3.947379113,21.65
4.5,3.420857191,6.13
31.0,2.146751881,47.380005
2.0,21.10358238,82.47
15.0,2.37749362,6.38
38.0,11.68755818,2.21
6.0,2.17284298,63.430004
21.0,7.695138455,60.98
3.0,11.97859764,30.349998
2.0,14.64129257,1.68
6.0,5.88892269,4.81
13.0,1.734639526,24.029999
5.0,4.035034657,23.36
1.7,1.285043836,1.87
1.5,1.238770008,24.31
5.5,19.83879471,2.27
9.2,4.221150399,10.42
8.0,23.05646897,13.280001
2.0,1.394252658,17.740002
16.0,7.788359165,2.06
4.0,6.4100194,21.4
16.0,67.55716705,11.23
21.0,1.351992965,61.07
5.0,5.084335325,45.9
12.0,12.95212364,4.08
23.0,25.68342018,4.21
6.0,1.988664508,9.7
3.0,3.016326189,10.969999
8.0,2.866974354,25.95
1.0,2.696616888,2.54
1.0,1.581075788,2.5
41.0,2.780577898,4.09
8.0,1.417200446,26.240002
4.0,1.385309816,7.45
10.5,7.5372777,12.17
16.0,7.932168005,69.51
18.0,1.451128483,10.07
11.0,1.840451598,3.63
17.0,1.065397263,2.3
26.0,4.893643856,2.9599998
1.0,1.452208638,2.23
19.0,37.93759156,3.18
4.0,12.90710354,5.83
37.0,6.14060068,1.39
16.4,8.097572325,3.87
5.4,23.57411003,1.8499999
1.0,6.214107035,11.530001
2.9,6.978374005,1.76
5.5,43.03276825,2.3600001
1.0,1.466169358,6.4300003
1.0,1.140809417,3.33
21.5,1.293450475,10.71
7.6,3.49955225,2.32
2.0,14.28147984,1.7900001
1.0,3.699310303,34.33
12.0,4.277731419,2.23
45.0,5.301327705,1.99
69.2,7.982951165,10.09
8.6,3.936149597,10.08
1.0,1.424581647,2.6699998
9.2,4.491571904,46.879997
17.5,2.771928311,1.0
20.0,9.17326832,4.99
3.1,2.072081805,1.12
7.0,5.55553627,1.27
32.7,14.50772381,2.66
26.0,2.33113885,2.65
2.5,5.78749275,48.21
27.3,11.18823529,5.89
49.5,5.236501695,17.56
2.5,7.31285858,8.110001
24.0,1.520752192,1.1600001
9.7,9.462599755,1.9200001
1.6,20.17654228,1.72
3.0,10.11459542,4.84
8.6,27.88303757,4.3
21.0,12.77318192,1.93
1.5,1.652448058,2.9099998
2.3,2.164780855,5.19
1.2,5.11115074,2.9099998
3.1,4.954486847,6.77
4.9,1.114153981,2.13
1.0,2.178640366,2.49
3.8,3.012405396,33.73
22.8,51.1032982,36.66
65.5,11.25961972,72.69
3.0,6.713029385,5.6
14.2,2.496469736,3.9700003
4.0,12.115098,37.68
9.3,2.551826239,2.21
18.2,14.48979855,3.06
24.0,7.24518347,1.51
1.3,21.97145844,79.93
11.3,5.81929302,29.16
2.0,35.17000199,1.5
2.0,21.69516754,10.809999
17.9,8.1897316,2.9
15.0,15.60975838,28.07
33.0,3.585752011,17.85
18.1,7.03698683,26.3
1.0,15.85383892,1.96
5.0,8.665060045,20.49
10.0,5.237526895,7.74
3.0,9.37757492,8.4
11.0,2.525708676,1.0699999
33.0,1.059689999,6.8199997
5.0,1.390462637,62.05
9.0,2.451468468,2.9699998
42.0,1.846368075,12.53
3.0,1.235369563,23.34
3.0,1.421132684,1.9200001
5.0,1.591700435,18.150002
21.0,1.431996823,8.74
3.0,3.120195151,3.44
4.0,10.05565357,9.03
3.0,1.057814002,14.1
22.0,8.63092613,5.19
45.0,11.97591305,42.8
24.0,1.507814646,13.559999
34.0,6.692327025,48.93
8.0,2.86255455,3.81
24.0,3.043321371,25.85
8.5,3.122832775,23.18
1.5,11.90790558,13.000001
9.3,8.271219255,110.89
3.0,14.87175751,5.38
3.5,47.65599442,14.65
11.7,6.447260855,4.29
2.5,16.07569123,8.72
7.0,6.27013159,12.32
3.5,35.76211167,6.0299997
6.0,26.0370102,4.59
1.8,6.6210227,2.03
14.5,6.33511257,1.05
2.5,32.02148819,3.72
5.1,1.203332901,1.84
11.3,11.10483933,1.02
5.3,3.092888594,5.2300005
14.0,41.64496613,3.4299998
4.0,9.58962822,5.64
20.0,1.257387281,4.42
18.0,16.84815598,1.6800001
15.0,15.92509461,3.3799999
5.0,39.24178314,1.0400001
12.0,28.16544533,2.4299998
7.5,4.047671795,5.16
2.0,2.273884535,1.99
11.0,8.58615303,5.0
27.7,22.31294441,1.3499999
2.0,9.67351246,1.05
6.0,17.06152153,2.33
3.0,9.642523765,23.4
25.5,1.165874005,27.91
35.0,11.69623184,52.79
47.0,38.67126847,3.86
2.3,61.18006515,1.7
1.0,7.492923735,1.53
13.5,12.18782616,2.0900002
10.0,17.36215019,10.040001
16.2,9.499432565,2.15
26.0,9.225958825,46.11
1.3,39.28028488,2.56
7.6,3.471356869,1.97
8.5,8.659394265,9.45
17.0,4.660372734,10.440001
36.0,61.9743538,3.2599998
21.7,12.09271908,3.6699998
47.0,24.33893013,4.51
21.0,6.91462612,3.37
27.0,2.297224999,1.51
5.0,1.394450546,1.3599999
5.0,16.00174332,3.46
2.0,14.10092736,11.889999
4.0,22.22217942,1.04
9.0,67.13967135,31.410002
6.0,4.184929371,1.4599999
4.0,6.180713175,19.4
2.0,3.645504713,6.21
5.0,24.17942238,5.4
1.0,11.77395439,11.450001
6.0,16.84624863,5.58
2.0,9.62325859,10.45
6.0,16.02267838,11.73
21.0,13.3161335,6.73
16.0,1.80894053,3.33
4.0,5.394687655,48.8
5.0,24.77208328,17.82
7.0,17.31050492,5.4999995
4.0,9.31569481,96.34
2.0,11.5558157,9.599999
45.0,21.96049881,12.68
34.0,1.795776129,12.01
3.0,4.568071366,2.1299999
64.0,8.809449195,6.38
28.0,17.17154122,14.49
8.0,3.798393965,6.1900005
2.0,3.239580393,14.32
23.0,7.43819666,2.98
3.0,2.554473639,6.05
2.0,7.20397377,3.35
24.0,21.64646912,1.23
28.0,6.8011055,1.65
27.0,51.22446825,1.71
53.0,2.336632967,3.22
14.0,1.857179165,14.05
3.0,3.921233416,14.67
2.0,8.250204085,6.05
33.0,36.43959427,4.37
3.0,35.4586258,2.12
5.0,2.924695492,2.04
17.0,3.519897938,6.7200003
18.0,57.69216535,20.48
11.0,6.79311371,8.83
4.0,2.43661356,10.25
37.0,5.926236155,1.97
2.0,2.30543375,1.2900001
18.0,21.94180298,10.57
1.0,21.24626732,36.19
7.0,4.31278801,3.73
1.0,6.77379656,5.2799997
2.0,5.612919805,17.69
10.0,5.471610545,1.8199999
3.0,5.3090024,2.59
15.0,2.189461708,24.79
20.0,4.415833473,9.45
33.0,2.321558237,9.4
3.0,5.695771215,3.13
44.0,13.87459469,14.059999
14.0,2.366339445,3.52
2.0,3.329537154,5.53
3.0,1.751751542,32.37
4.0,7.689642905,10.49
4.0,1.51193893,1.35
2.0,1.155116558,1.42
1.0,1.199524403,61.78
10.0,3.710379839,7.83
5.0,1.770510078,4.82
10.0,1.905061603,30.7
8.0,5.34256077,27.550001
23.0,1.739247799,76.08
34.0,38.56280136,32.3
1.0,6.42942953,3.15
1.0,11.48092175,62.170002
39.0,2.078872204,3.92
11.0,19.59555435,10.219999
6.0,6.19163275,43.309998
4.0,5.939269065,1.3
3.0,22.87758637,10.98
3.0,2.864192009,1.45
7.0,48.72347641,21.2
8.0,3.442718983,89.59
2.0,7.616796495,10.110001
1.0,2.508226633,2.96
5.0,6.681570055,75.770004
44.0,2.179568291,1.4200001
3.0,2.951803446,10.48
4.0,1.397823572,11.66
9.0,6.152549745,20.35
13.0,44.06642151,1.47
30.0,16.16477585,22.18
2.0,3.826816082,3.3700001
8.0,3.112096072,13.259999
1.0,6.575606345,1.8900001
17.0,1.482020021,48.0
10.0,2.736569643,4.2
21.0,2.932685614,4.33
43.0,9.989481925,1.64
6.0,13.08501339,21.89
28.0,2.157101155,2.53
12.0,1.35453558,132.59
18.0,21.74938965,87.01001
18.0,1.661110401,4.1499996
58.0,2.03024149,2.05
8.0,2.228796006,25.630001
3.0,2.194865465,7.07
29.0,7.931626795,32.85
5.0,7.26604271,17.970001
47.0,20.16017533,56.81
9.0,2.508003474,39.64
22.0,18.76267052,1.51
15.0,23.55038834,20.79
51.0,20.85602761,2.28
64.0,16.18298722,15.879999
2.0,37.16973496,2.93
6.8,10.7100668,1.7
2.0,2.656838179,6.0299997
1.7,8.5988245,4.49
8.8,3.148923874,5.21
4.0,1.364438057,5.59
2.0,2.821480751,2.04
10.0,8.46378422,6.04
20.0,2.713042021,17.470001
3.0,5.70679426,9.54
16.0,1.062875986,1.95
16.0,2.508112192,1.48
10.0,13.24829483,3.1599998
9.0,13.35315609,2.73
86.0,10.60771466,5.7699995
2.0,9.02454853,5.65
5.0,25.73985863,2.47
20.5,8.04908943,1.76
45.0,8.649107935,3.13
6.0,3.438475371,2.8000002
30.0,3.145784617,2.54
11.5,5.690588475,1.6
1.2,3.900574684,3.15
7.0,1.642292857,7.9700003
19.2,95.4910965,3.49
11.0,22.3479023,1.03
5.0,8.625390055,3.28
14.0,17.87278557,1.72
3.0,51.85173415,4.2599998
9.0,9.86716366,1.42
10.0,1.725934148,1.38
7.0,7.497133255,1.32
5.0,36.0772171,2.27
7.0,1.681801677,3.58
22.0,33.22405243,2.79
9.0,1.467683554,4.44
30.0,13.11451245,12.830001
3.0,14.44763184,1.38
3.0,19.91684342,9.0
10.0,41.07674408,37.51
27.0,21.05844116,29.219997
46.0,1.294272781,17.66
9.0,8.95629406,3.35
82.0,2.58863163,2.27
83.0,11.92989922,4.4
15.0,43.7828598,10.33
41.0,7.786485195,1.0600001
13.0,7.31237173,7.79
6.0,1.55503273,1.54
17.0,6.330646515,8.16
29.0,1.532290578,26.54
94.0,30.26382637,34.27
6.0,9.99059868,8.91
43.0,20.92362976,37.43
2.0,1.524400234,30.09
29.0,2.260905266,15.21
61.0,26.32531929,18.919998
11.0,2.334921837,32.82
9.0,9.19584751,59.58
15.0,2.663776636,14.78
28.0,1.73086071,1.3199999
21.0,1.000801564,2.01
7.0,7.184841155,11.57
1.0,16.885458,2.44
1.0,9.996009825,11.049999
11.0,29.07500458,4.76
7.0,28.82209015,1.02
3.0,4.637232781,3.1100001
2.0,2.153310299,30.399998
1.0,2.010419369,45.55
8.0,26.56690979,2.47
16.0,1.144513488,4.73
21.0,1.671649695,6.7600007
3.0,1.65417099,8.87
5.0,4.671144009,5.95
27.0,2.909118414,3.32
4.0,8.24102974,13.8
4.0,2.693380595,14.49
21.0,3.064752341,7.7699995
2.0,8.33625126,1.2
23.0,24.75660515,21.239998
15.0,14.11971665,104.16
107.0,4.368866444,2.97
30.0,3.136216641,1.24
7.0,1.182296515,1.54
19.0,2.363009453,6.37
24.0,67.74961855,7.33
30.0,5.13684225,1.66
24.0,4.606848717,1.3800001
18.0,6.117928505,1.06
15.0,7.6142869,1.75
11.0,7.933288095,3.62
2.0,4.611485005,12.22
73.0,2.199810028,5.0099998
32.0,29.52713013,2.47
10.0,1.146588326,12.360001
2.0,2.026584387,1.8199999
11.0,1.142000914,4.53
57.0,11.43570423,12.92
7.0,43.80160141,1.77
10.0,1.085262776,13.07
7.0,2.720019579,7.9700003
49.0,3.989929915,5.35
2.0,2.600961924,1.08
4.0,6.558179855,1.35
3.0,9.41394329,3.7799997
2.0,6.647725105,5.58
1.0,38.19209671,4.21
5.0,4.519927502,5.95
18.0,3.880130053,1.11
9.0,1.045809627,1.53
37.0,2.701902867,1.0
4.0,6.56444454,1.44
5.0,3.529962302,4.21
25.0,19.17519951,2.39
7.0,1.562627673,1.54
1.0,39.37012863,2.31
12.0,16.47767449,1.9499999
1.0,58.903965,5.2200003
1.0,16.95523072,1.9
9.0,3.100278616,2.21
12.0,45.80677033,1.0699999
4.0,26.81613541,1.35
1.0,3.593140841,2.04
5.0,1.917018533,14.929999
28.0,2.88641119,5.74
2.0,34.33824539,3.42
2.0,2.267287493,11.120001
19.0,7.366959095,2.5
10.0,70.9339676,2.44
9.0,19.76496125,1.34
4.0,2.355486632,5.45
1.0,4.309099198,8.219999
1.0,2.074670315,13.22
2.0,1.886642456,2.85
14.0,40.44182587,2.05
5.0,32.99110413,23.02
5.0,1.268943787,6.58
4.0,2.145960093,1.3
5.0,1.39419365,2.2
20.0,1.174509287,1.18
11.0,2.198520899,14.9800005
6.0,2.230074644,19.82
6.0,6.072119235,1.45
1.0,4.664021969,3.4100003
4.0,2.227411747,3.12
7.0,2.113803625,16.439999
14.0,6.688260555,6.2200003
39.0,1.226664901,2.26
21.0,3.213046551,21.76
40.0,1.002687574,6.41
30.0,1.483391285,43.269997
7.0,13.00875283,7.74
6.0,2.928070784,2.54
6.0,31.15128517,21.2
15.0,9.223342895,13.26
17.0,59.55508805,1.42
16.0,1.27139616,5.62
42.0,2.204371214,5.0699997
2.0,2.447686196,2.46
4.0,14.17787552,35.41
4.0,43.20114517,3.27
5.0,36.44638825,21.529999
10.0,14.93710041,41.4
8.0,8.20574093,1.4200001
12.0,1.637166262,5.71
33.0,1.203313589,3.8300002
41.0,21.69332695,32.79
25.0,4.260479927,21.29
9.0,2.558784724,38.98
25.0,3.04798007,5.02
4.0,3.111752034,31.34
4.0,6.786047935,24.27
7.0,8.4459219,4.18
26.0,11.70038319,31.630001
51.0,3.495490313,1.24
5.0,4.241265774,1.4
11.0,4.8981843,7.13
13.0,9.211686135,2.54
50.0,12.39083863,8.24
19.0,9.209892275,9.120001
83.0,2.324657202,10.95
23.0,9.65412903,9.49
21.0,31.06323052,2.95
38.0,1.128272534,1.1
1.0,2.512983084,1.8299999
5.0,16.3822918,1.3
3.0,11.90946579,1.63
6.0,7.08117676,1.01
2.0,19.39507294,2.15
15.0,19.04957772,1.14
5.0,53.11849215,4.01
25.0,42.92922592,1.77
6.0,14.9218731,1.3599999
1.0,21.0775013,1.72
6.0,32.00092316,1.38
5.0,1.04565537,1.4200001
11.0,12.34065342,1.53
8.0,39.12719345,2.82
20.0,21.81253624,1.4
2.0,33.09275818,2.6599998
6.0,1.996003509,2.35
4.0,10.73557759,9.23
20.0,3.835647583,1.13
3.0,11.55557251,1.18
18.0,58.3459854,2.71
2.0,63.196373,1.76
2.0,3.220089197,2.6799998
20.0,23.93250275,2.54
38.0,2.286283016,7.25
2.0,1.07400322,11.82
2.0,59.8628502,2.29
30.0,2.739398718,3.05
3.0,23.52008248,10.07
2.0,7.707740785,2.71
8.0,10.88557053,1.12
12.0,2.47727871,17.189999
10.0,6.07909584,2.24
9.0,3.649833203,1.7700001
4.0,32.12921524,2.2399998
19.0,1.531433821,1.25
22.0,1.535874009,1.23
11.0,1.569700599,9.17
42.0,2.108448267,6.5999994
11.0,77.33182525,2.2
8.0,3.344490767,1.5899999
4.0,9.55613613,3.1
10.0,4.887585163,9.41
18.0,35.29027939,1.22
2.0,2.152896881,2.17
25.0,2.639908314,6.58
7.0,1.753674388,22.89
2.0,37.65769196,22.029999
10.0,2.503957987,4.27
19.0,2.736332894,2.92
2.0,2.734235764,4.6400003
5.0,34.71192932,30.09
2.0,79.5751724,22.71
28.0,15.41206646,1.74
1.0,30.84560204,20.79
1.0,1.311088205,75.11
3.0,24.92964554,2.2
22.0,29.93969918,27.46
5.0,27.75062371,26.349998
3.0,31.69940377,30.82
1.0,3.944314957,2.4499998
2.0,1.557312489,50.29
13.0,1.235749007,4.5899997
3.0,12.3859272,42.89
6.5,38.85156632,2.64
17.0,6.500573635,12.950001
13.0,38.20243073,60.57
6.0,22.09395218,46.91
5.0,29.17655945,15.75
10.0,1.43235457,6.68
6.0,4.367777825,10.860001
40.0,5.10657072,17.16
20.0,12.44417382,5.5600004
15.0,1.133333683,20.51
2.0,2.290113449,4.52
2.0,59.1026268,37.29
1.0,8.303461075,8.29
2.0,1.454311133,12.51
1.0,6.68616104,14.710001
4.0,1.05869627,1.99
3.0,7.288159845,9.14
19.0,4.696534157,2.97
11.0,1.543948889,61.05
16.0,1.902146697,11.7
4.0,10.61460114,8.91
4.0,10.18768692,1.16
4.0,11.54320431,5.18
15.0,4.913286686,3.13
7.0,4.915909291,1.14
5.0,1.031675935,9.58
7.0,3.898350954,29.689999
35.0,34.91336441,6.7200003
17.0,18.01113892,5.75
2.0,2.833272219,13.74
28.0,5.176920415,6.09
5.0,16.68647957,7.79
9.0,9.293769835,17.48
15.0,4.145808697,1.03
5.0,19.18017769,36.120003
29.0,2.869644404,5.0299997
25.0,7.71194124,1.3900001
21.0,1.118057967,4.15
4.0,1.011766196,1.24
3.0,4.288121224,1.59
15.0,18.01800728,11.950001
17.0,2.095095396,4.27
21.0,5.09799528,1.21
4.0,3.605466366,2.26
5.0,4.272053242,1.4399999
20.0,1.356512428,1.71
19.0,4.395007611,3.11
2.0,16.10503197,2.2400002
59.0,8.85128689,2.54
2.0,3.780042649,2.44
18.0,25.41714287,2.6
21.0,18.50357628,2.6100001
23.0,12.17268467,9.51
12.0,1.71827972,1.46
20.0,1.340227962,4.1
10.0,4.668937683,2.88
4.0,1.653563857,13.76
3.0,11.45629502,2.8600001
40.0,23.80907822,3.53
4.0,8.023687365,1.54
25.0,13.02610493,10.79
2.0,10.09106159,3.98
40.0,1.432140589,1.05
36.0,49.78308106,1.5999999
31.0,25.32273484,28.27
4.0,10.05254841,1.79
25.0,12.45585251,4.94
25.0,7.96915245,3.36
16.0,4.125425816,5.0299997
2.0,17.35515785,7.01
20.0,2.154047728,43.85
15.0,1.133311153,1.3599999
20.0,6.99955845,3.4099998
25.0,7.06923151,13.52
9.0,2.061743498,11.83
6.0,15.1108923,5.86
6.0,3.659174204,8.83
21.0,25.09469795,63.71
12.0,12.78966046,1.03
7.0,3.70449996,4.68
2.0,81.32299805,1.62
10.0,1.47226286,2.44
11.0,1.767955542,4.1099997
9.0,14.35262299,4.1800003
2.0,26.53904343,7.3300004
7.0,29.06570626,1.6500001
10.0,1.977015496,24.59
3.0,4.072252751,29.779999
4.0,56.03784945,74.07
29.0,50.3431473,14.5
2.0,2.982461214,1.08
1.0,1.07741952,3.1200001
2.0,23.38036537,10.590001
1.0,19.09048653,55.350002
1.0,41.51933289,5.07
1.0,5.85829115,1.5
3.0,81.27360535,6.6
16.0,7.64243841,4.65
2.0,32.28141022,13.530001
40.0,2.746798277,7.29
3.0,1.134368301,1.86
1.0,1.18452096,1.29
4.0,11.01940632,14.890001
44.0,2.367835284,45.96
6.0,9.290693285,8.3
13.0,6.92009163,1.75
10.0,12.8741827,5.77
5.0,7.534250735,2.24
21.0,14.394454,1.32
20.0,6.47271347,1.48
12.0,1.485815168,1.3
29.0,1.470686913,2.6499999
46.0,2.631582499,13.61
22.0,3.658107281,1.3499999
8.0,3.507339239,2.4399998
11.0,9.38621521,1.08
21.0,1.363355041,5.6800003
2.0,2.211771965,2.9899998
Related
Large Datsample: failing to better visualize data point using matplotlib plot
The size of the data samples is very large, making it difficult to visualise the data points using a matplotlib plot. Sample Code: import matplotlib.pyplot as plt plt.plot(myList_timestamps, myList_fitnessValues) plt.xlabel('Timestamps (seconds)') #plt.xticks(range(1, 51) #plt.xticks(range(1, 53, 5)) plt.ylabel('WATT - MSU Fitness Values') plt.title('Evolutionary Optimization - Execution Time') plt.show() Output: I have 9113 candidates solutions as data samples to plot against 9113 data samples as fitness values. How should I plot this large data using python to better visualize the data? Data Sample: myList_timestamps = [[0.06160092353820801, 0.07070684432983398, 0.0794517993927002, 0.08730483055114746, 0.09506797790527344, 0.10278487205505371, 0.11050796508789062, 0.11819696426391602, 0.12598776817321777, 0.13364410400390625, 0.1412339210510254, 0.14882898330688477, 0.15642499923706055, 0.16405892372131348, 0.171644926071167, 0.17924880981445312, 0.1868269443511963, 0.1943988800048828, 0.2020108699798584, 0.21060776710510254, 0.219498872756958, 0.22813701629638672, 0.23638296127319336, 0.24529194831848145, 0.25347185134887695, 0.26166296005249023, 0.2696189880371094, 0.2773740291595459, 0.2849307060241699, 0.2925240993499756, 0.30014586448669434, 0.3077728748321533, 0.31533288955688477, 0.32283592224121094, 0.3303370475769043, 0.3378570079803467, 0.34534668922424316, 0.352841854095459, 0.36031174659729004, 0.3678579330444336, 0.3753628730773926, 0.3828439712524414, 0.3903648853302002, 0.39795589447021484, 0.40547990798950195, 0.412992000579834, 0.42046594619750977, 0.42803382873535156, 0.435579776763916, 0.44308996200561523, 0.450577974319458, 0.45802807807922363, 0.4655318260192871, 0.4730229377746582, 0.48052191734313965, 0.488048791885376, 0.49558186531066895, 0.5031087398529053, 0.5106048583984375, 0.5181560516357422, 0.525662899017334, 0.5331556797027588, 0.5406389236450195, 0.5481007099151611, 0.5555720329284668, 0.563060998916626, 0.5705769062042236, 0.578115701675415, 0.5856177806854248, 0.5931298732757568, 0.6006178855895996, 0.6081528663635254, 0.6156718730926514, 0.6231448650360107, 0.6306188106536865, 0.6381428241729736, 0.6456358432769775, 0.6531088352203369, 0.6606647968292236, 0.6682088375091553, 0.6756858825683594, 0.6832168102264404, 0.6907000541687012, 0.6981749534606934, 0.7056229114532471, 0.7130780220031738, 0.7205479145050049, 0.728065013885498, 0.7355530261993408, 0.743027925491333, 0.7505538463592529, 0.7580459117889404, 0.7654819488525391, 0.7729947566986084, 0.7804989814758301, 0.7879579067230225, 0.7954659461975098, 0.8029458522796631, 0.8104219436645508, 0.8179588317871094, 0.8254818916320801, 0.8329558372497559, 0.840451717376709, 0.8479418754577637, 0.8554189205169678, 0.8629167079925537, 0.8704218864440918, 0.8782069683074951, 0.8857617378234863, 0.8933010101318359, 0.9008169174194336, 0.9083929061889648, 0.9159009456634521, 0.923414945602417, 0.9309487342834473, 0.9386038780212402, 0.9461567401885986, 0.9536347389221191, 0.9610898494720459, 0.9685368537902832, 0.9759769439697266, 0.983414888381958, 0.9908480644226074, 0.9982888698577881, 1.0057227611541748, 1.01314377784729, 1.0205698013305664, 1.0280189514160156, 1.035449743270874, 1.0429389476776123, 1.0503628253936768, 1.0578010082244873, 1.0658130645751953, 1.0734107494354248, 1.081054925918579, 1.0888869762420654, 1.0964579582214355, 1.1040010452270508, 1.1115117073059082, 1.1190118789672852, 1.1264939308166504, 1.1339750289916992, 1.141474723815918, 1.1489946842193604, 1.156526803970337, 1.164029836654663, 1.1716160774230957, 1.1790966987609863, 1.1865930557250977, 1.1940937042236328, 1.2019388675689697, 1.2094628810882568, 1.216930866241455, 1.2243878841400146, 1.2318336963653564, 1.2393128871917725, 1.2467608451843262, 1.2542097568511963, 1.2619950771331787, 1.2704198360443115, 1.2786128520965576, 1.2871167659759521, 1.2947309017181396, 1.302293062210083, 1.309783697128296, 1.3177897930145264, 1.3256456851959229, 1.3331577777862549, 1.340836763381958, 1.348417043685913, 1.355942964553833, 1.3635058403015137, 1.3709850311279297, 1.3785638809204102, 1.3860559463500977, 1.3935277462005615, 1.4009969234466553, 1.408479928970337, 1.415954828262329, 1.423440933227539, 1.4309158325195312, 1.4383947849273682, 1.4458889961242676, 1.453355073928833, 1.4608356952667236, 1.468317985534668, 1.4757959842681885, 1.4833028316497803, 1.4908149242401123, 1.4983007907867432, 1.505788803100586, 1.5132827758789062, 1.520780086517334, 1.5282917022705078, 1.5357389450073242, 1.5432488918304443, 1.5507168769836426, 1.5581979751586914, 1.565687656402588, 1.5731756687164307, 1.58066987991333, 1.5881669521331787, 1.5956358909606934, 1.6031649112701416, 1.6106679439544678, 1.6181929111480713, 1.6265389919281006, 1.634814977645874, 1.6424179077148438, 1.6499037742614746, 1.657348871231079, 1.6648588180541992, 1.6722848415374756, 1.6797456741333008, 1.6871848106384277, 1.6946487426757812, 1.7022688388824463, 1.7098469734191895, 1.7173528671264648, 1.724863052368164, 1.73232102394104, 1.7397880554199219, 1.7472498416900635, 1.7546827793121338, 1.762143850326538, 1.7696146965026855, 1.777108907699585, 1.7845828533172607, 1.7920348644256592, 1.7994859218597412, 1.806952953338623, 1.8144299983978271, 1.8218896389007568, 1.8293559551239014, 1.8368110656738281, 1.8442790508270264, 1.851726770401001, 1.8592119216918945, 1.86667799949646, 1.8741397857666016, 1.8815827369689941, 1.8890256881713867, 1.8964788913726807, 1.9039208889007568, 1.911383867263794, 1.918832778930664, 1.9262988567352295, 1.9337799549102783, 1.94124174118042, 1.948828935623169, 1.9562938213348389, 1.9637949466705322, 1.9712047576904297, 1.9786548614501953, 1.986097812652588, 1.9935338497161865, 2.000976800918579, 2.0084168910980225, 2.016091823577881, 2.023655891418457, 2.031132936477661, 2.038616895675659, 2.0460739135742188, 2.053546905517578, 2.060973882675171, 2.0684218406677246, 2.0758438110351562, 2.083289861679077, 2.0906968116760254, 2.0981409549713135, 2.1055638790130615, 2.1129748821258545, 2.1203808784484863, 2.1278228759765625, 2.1352219581604004, 2.1426548957824707, 2.1502327919006348, 2.1577627658843994, 2.165205955505371, 2.1726489067077637, 2.180156946182251, 2.1876187324523926, 2.195056915283203, 2.202542781829834, 2.210002899169922, 2.217458963394165, 2.2249059677124023, 2.232353925704956, 2.2398228645324707, 2.247271776199341, 2.2547237873077393, 2.262202739715576, 2.269657850265503, 2.277296781539917, 2.284979820251465, 2.2924628257751465, 2.2999508380889893, 2.3074228763580322, 2.3148908615112305, 2.3223717212677, 2.329817771911621, 2.3372578620910645, 2.34472393989563, 2.3521809577941895, 2.359632968902588, 2.367115020751953, 2.374567985534668, 2.382063865661621, 2.38950777053833, 2.3970019817352295, 2.404465913772583, 2.4119558334350586, 2.4194018840789795, 2.4268767833709717, 2.4343249797821045, 2.441788911819458, 2.4492337703704834, 2.45668888092041, 2.4641637802124023, 2.471620798110962, 2.479109764099121, 2.48657488822937, 2.494025945663452, 2.501471996307373, 2.508949041366577, 2.5164427757263184, 2.523920774459839, 2.531388998031616, 2.53886079788208, 2.5463309288024902, 2.5537829399108887, 2.5612847805023193, 2.568727731704712, 2.576223850250244, 2.583711862564087, 2.591172933578491, 2.598625898361206, 2.6060757637023926, 2.6135129928588867, 2.621011972427368, 2.628448963165283, 2.635972738265991, 2.643435001373291, 2.650902032852173, 2.6583468914031982, 2.665862798690796, 2.673314094543457, 2.680816888809204, 2.688267946243286, 2.6957550048828125, 2.7032127380371094, 2.7106738090515137, 2.7181079387664795, 2.725554943084717, 2.732996940612793, 2.740450859069824, 2.747886896133423, 2.7553389072418213, 2.7627639770507812, 2.7702107429504395, 2.777662992477417, 2.7851169109344482, 2.7925288677215576, 2.80000376701355, 2.8074288368225098, 2.8148789405822754, 2.8223319053649902, 2.8297858238220215, 2.8372128009796143, 2.84466290473938, 2.852128028869629, 2.85958194732666, 2.8670127391815186, 2.8744797706604004, 2.8819189071655273, 2.8893797397613525, 2.896803855895996, 2.9042470455169678, 2.911679983139038, 2.919153928756714, 2.9266068935394287, 2.9340579509735107, 2.9415018558502197, 2.9490177631378174, 2.9564428329467773, 2.9638688564300537, 2.9712448120117188, 2.9786460399627686, 2.986050844192505, 2.9934427738189697, 3.0008530616760254, 3.0082297325134277, 3.015631914138794, 3.023007869720459, 3.030390977859497, 3.0377516746520996, 3.04512882232666, 3.052503824234009, 3.0598559379577637, 3.067525863647461, 3.074979782104492, 3.082453966140747, 3.089857816696167, 3.0973098278045654, 3.104733943939209, 3.1121609210968018, 3.11958384513855, 3.1270148754119873, 3.1344220638275146, 3.141826868057251, 3.1492297649383545, 3.1566479206085205, 3.1641108989715576, 3.1720409393310547, 3.18062686920166, 3.188631772994995, 3.19647479057312, 3.2040579319000244, 3.211491823196411, 3.2189619541168213, 3.2264137268066406, 3.2338807582855225, 3.241302013397217, 3.248771905899048, 3.256213903427124, 3.263671875, 3.2710888385772705, 3.2785208225250244, 3.285946846008301, 3.293437957763672, 3.3010239601135254, 3.3086907863616943, 3.3162219524383545, 3.3237030506134033, 3.3311376571655273, 3.3386118412017822, 3.3460726737976074, 3.3535208702087402, 3.3609509468078613, 3.368414878845215, 3.3758559226989746, 3.3833189010620117, 3.3907477855682373, 3.3982179164886475, 3.405695915222168, 3.413137912750244, 3.420606851577759, 3.4280447959899902, 3.435490846633911, 3.4429378509521484, 3.4504079818725586, 3.4578518867492676, 3.4652678966522217, 3.4726951122283936, 3.4801628589630127, 3.4876327514648438, 3.4950459003448486, 3.502520799636841, 3.5099668502807617, 3.5174667835235596, 3.5249149799346924, 3.532382011413574, 3.5398058891296387, 3.547271966934204, 3.554724931716919, 3.5621488094329834, 3.5695910453796387, 3.5770299434661865, 3.5844788551330566, 3.5919089317321777, 3.599360942840576, 3.6068217754364014, 3.6142799854278564, 3.6217379570007324, 3.6291840076446533, 3.636641025543213, 3.6440939903259277, 3.651533842086792, 3.658979892730713, 3.6664540767669678, 3.67389178276062, 3.681334972381592, 3.688839912414551, 3.6963768005371094, 3.7038447856903076, 3.711305856704712, 3.718761920928955, 3.726195812225342, 3.7336368560791016, 3.741126775741577, 3.7485568523406982, 3.7559916973114014, 3.763450860977173, 3.770900011062622, 3.778341770172119, 3.785810947418213, 3.7932307720184326, 3.800668954849243, 3.808100938796997, 3.8155479431152344, 3.82303786277771, 3.8304550647735596, 3.8379018306732178, 3.845344066619873, 3.852766990661621, 3.860213041305542, 3.867640733718872, 3.8750839233398438, 3.8825418949127197, 3.8900070190429688, 3.897446870803833, 3.9049458503723145, 3.9123809337615967, 3.919834852218628, 3.927325963973999, 3.934762954711914, 3.9422247409820557, 3.9497127532958984, 3.957167863845825, 3.9645960330963135, 3.972066879272461, 3.9795138835906982, 3.9869298934936523, 3.9943947792053223, 4.001836776733398, 4.0092689990997314, 4.016718864440918, 4.0241899490356445, 4.031642913818359, 4.039106845855713, 4.046592950820923, 4.05404806137085, 4.061479806900024, 4.068920850753784, 4.076357841491699, 4.083805799484253, 4.0912556648254395, 4.098691701889038, 4.106162786483765, 4.1136109828948975, 4.121060848236084, 4.128498792648315, 4.135960817337036, 4.143415689468384, 4.15084171295166, 4.158272981643677, 4.16582989692688, 4.173282861709595, 4.180737733840942, 4.188170909881592, 4.195602893829346, 4.203077793121338, 4.210502862930298, 4.2179529666900635, 4.225406885147095, 4.232857704162598, 4.240309000015259, 4.247731924057007, 4.255206823348999, 4.262646913528442] myList_fitnessValues = [1.177397872785327, 1.1838368070851042, 1.198426283830517, 1.1971495165606483, 1.1300637485336795, 1.2187992912454821, 1.2145353817939883, 1.0729413153620015, 1.2521284084941269, 1.2183068116189408, 1.195634989638366, 1.1613388860470966, 1.2217006054348303, 1.206234560770683, 1.2372446068751055, 1.187058775523, 1.1872546511295015, 1.1966112517544802, 1.2145107120984742, 1.2421864845871378, 1.1890153127520433, 1.1674951340729436, 1.2251505016710167, 1.1958552931582382, 1.2080607542394712, 1.201035514597457, 1.092659066061191, 1.2306418318602446, 1.1995437445068218, 1.2449192292367206, 1.2106208502011808, 1.2112721352650087, 1.1196669840676667, 1.1134332262454683, 1.1197768644022856, 1.2261263457543805, 1.231366828628176, 1.2196350828703688, 1.08741318320004, 1.2032137535738274, 1.2024228903569536, 1.2137572975032105, 1.0738592164216931, 1.1738526733756591, 1.1544974613440897, 1.160844467172908, 1.2187677280979918, 1.162505454897613, 1.2021549705530339, 1.229063908531223, 1.214924462090727, 1.1411833735549284, 1.1883797211741252, 1.1342311436728563, 1.2194421521815677, 1.1237953059433416, 1.185322478323287, 1.1688528378709393, 1.138039592406455, 1.1855580350049484, 1.2303222163698007, 1.2140360262028758, 1.09912727836326, 1.0982013456663848, 1.2074961979865895, 1.2130674992213648, 1.1064772919391566, 1.2183787053226458, 1.2387016873859218, 1.1316362444070998, 1.0955985789217237, 1.2295510887027803, 1.2321228706728062, 1.2291667095487586, 1.1943183790667353, 1.1806877475400122, 1.0821097661565597, 1.1885871916833606, 1.2287827776186633, 1.1245075536475073, 1.246567313324614, 1.1968924804246073, 1.2357189468661003, 1.0798212767853532, 1.210981845170037, 1.1949578119730175, 1.0745447494722138, 1.1842984199966768, 1.1885233082136473, 1.1404877293427729, 1.176750616683678, 1.2322331744279031, 1.2008328893267939, 1.1839763301938666, 1.1740540064695157, 1.1215709455350205, 1.1838699168837248, 1.2190806980658488, 1.2187178223617976, 1.188198435991883, 1.2420874742392598, 1.1936975325903234, 1.145645140863139, 1.1896439998849606, 1.0901724022621744, 1.2214054198855253, 1.202183913330283, 1.2214232388980968, 1.2451547757149166, 1.1542504637802762, 1.2150818383252948, 1.1551718106916113, 1.180265276583371, 1.2259447669065064, 1.23970172148869, 1.2195702465867029, 1.2121212076750423, 1.1196861951049026, 1.084233317578786, 1.2184195145467944, 1.2019297900082373, 1.2197546777584807, 1.1806877475400122, 1.1935874583246553, 1.1947324698675565, 1.1949174251388859, 1.1859323990481676, 1.0906342354229615, 1.1176255050944655, 1.1496417617749741, 1.214221309853014, 1.1871680736265695, 1.1915179673491303, 1.2025838867023781, 1.197499571598236, 1.1366803103334713, 1.2085395261620986, 1.211657983876409, 1.2119904284994945, 1.1499635839213362, 1.2048809684531807, 1.18988003425591, 1.162958419973022, 1.2117707427085584, 1.1243944753618493, 1.1744385678325748, 1.1903600159926122, 1.2016224458259388, 1.211296343777177, 1.1349759574949243, 1.0718396654449382, 1.1964735952940981, 1.2321228706728062, 1.240538488513929, 1.137008792662425, 1.118080518441783, 1.2179995323083854, 1.2332167673456187, 1.2299392260321718, 1.229455434517842, 1.0945646172721897, 1.1684574384092985, 1.2216592587636825, 1.1473954661560457, 1.0972316717042851, 1.2069927716927877, 1.145655054243576, 1.1709533542017871, 1.2399276594736448, 1.0571702762640665, 1.1289925835126173, 1.1978661608433139, 1.1751549861474675, 1.189320827332064, 1.114652077172573, 1.0855461561951376, 1.114545327811882, 1.213725567748654, 1.20353452440095, 1.1820774536021856, 1.186462718947463, 1.1889690769217898, 1.2018835746505774, 1.211090224753304, 1.1831781914671817, 1.1773466438721967, 1.197092394238814, 1.2041535500147282, 1.163132237400184, 1.168563226082197, 1.1678829662040073, 1.1363664937760698, 1.1083990267935506, 1.2031778809291547, 1.0676216251859287, 1.2177599264089978, 1.0990307312997643, 1.21049553896777, 1.1599270669137582, 1.2328076437831437, 1.0972099959852455, 1.2158413254752458, 1.1858591862647971, 1.160354488282236, 1.1885987402151457, 1.242744809392655, 1.180804379621974, 1.1948754664090295, 1.1999708176480794, 1.0863273779101585, 1.1865571118556641, 1.2247520706088966, 1.1902065318111597, 1.1769933798289114, 1.1908864309517615, 1.2057410331253477, 1.2364890730379687, 1.1663675183275037, 1.1088393200653563, 1.20706966917313, 1.2442896235721, 1.1069454133505705, 1.2628901213116968, 1.1207013243831028, 1.1582247278576716, 1.0708548471205084, 1.2155678255250282, 1.1986370029163065, 1.1459855041681286, 1.2054266674604792, 1.192257639008284, 1.197672089140054, 1.198202892392417, 1.1025040708024108, 1.121321746966252, 1.2149674581109837, 1.2123920496821512, 1.227103878165898, 1.189101851528379, 1.253525044950779, 1.2498189114548643, 1.173845452730351, 1.2083118238298576, 1.2030549929175092, 1.2271213348837007, 1.1478325884552891, 1.1960780932197772, 1.1902259956766275, 1.2467831992009593, 1.0792760733500293, 1.1869221700876043, 1.0824793309140637, 1.1955662830576248, 1.1080499423655457, 1.2006240107240815, 1.0880807583848786, 1.2157448455744477, 1.1521531149930204, 1.240280892270902, 1.1238415805874602, 1.1828435837181859, 1.1712592947196425, 1.2137283926841305, 1.2424701024482705, 1.2263538380098462, 1.2070290285031617, 1.1631224185724471, 1.0794787639871248, 1.093670630714558, 1.1265887464291346, 1.2318408943741077, 1.1936771541321396, 1.2169441544187152, 1.198506382581772, 1.186458880174174, 1.2103524823669856, 1.2285778509901992, 1.1200216208405227, 1.1387896672101574, 1.0908173539816957, 1.2308851210556966, 1.2035466664307617, 1.1001905414241768, 1.1424185494658932, 1.2269161990482325, 1.1999656325314627, 1.1967207679880325, 1.1600771097377474, 1.2069027992929418, 1.1385148138423051, 1.1489017335157772, 1.1068267732858115, 1.2205880980904533, 1.218044294574066, 1.2529730847546638, 1.186660925630313, 1.2060697606531923, 1.2045284746581517, 1.1642166388713013, 1.1103498769950435, 1.1756364918041724, 1.1065195117330475, 1.185722908999943, 1.2160505306065248, 1.1583256484574564, 1.1826392418072076, 1.178493074752072, 1.1177123697895326, 1.2412795138296302, 1.2170991263240316, 1.1378564491277, 1.2598329438516054, 1.1594168596923815, 1.067412768958962, 1.0681905031107433, 1.1088495388520627, 1.2260312346475448, 1.1845181121770647, 1.0908462423974803, 1.2254157975354272, 1.1726057354383534, 1.2463105895418234, 1.1938360058317639, 1.1809949387357708, 1.214965669951487, 1.1806096453015262, 1.2120442182541238, 1.2039396191666214, 1.2241011795101584, 1.1835653941636586, 1.1872311824740118, 1.2049867769183018, 1.1032492996465715, 1.2459948771640978, 1.210714791333494, 1.2017638381896383, 1.2082205245581055, 1.2100706475737704, 1.1777593480571773, 1.2463816959419804, 1.1956288937602344, 1.2250384673113388, 1.2232925845822948, 1.2271097732217437, 1.2041158407114751, 1.1731142176012719, 1.089562181699617, 1.2065580430236436, 1.1286176112592208, 1.214260708902002, 1.100397749837259, 1.1634968104491086, 1.2031492654249205, 1.241916873584268, 1.128692464375822, 1.2438405074344832, 1.221942545955605, 1.2122284632985285, 1.2196872139542247, 1.1963958742294165, 1.211163602848183, 1.1876392875222728, 1.1120181290701372, 1.1928622611586417, 1.2310597744441403, 1.0909886287400576, 1.1746761873370748, 1.086400046407615, 1.1948938617215121, 1.237389733833963, 1.2002584041594944, 1.1634829773569397, 1.1560999466513606, 1.1517515881362235, 1.18561959209192, 1.1243333063590204, 1.168110787112396, 1.252233283674239, 1.1809616018853473, 1.1172192014427276, 1.065718486758231, 1.1735702052275503, 1.2319344426459806, 1.2406551834164845, 1.134545708488982, 1.212394683299605, 1.0839740327133316, 1.154921467945748, 1.1868420784058569, 1.27846759456701, 1.1337877151557247, 1.2090680051988998, 1.111959785928736, 1.2162877159119596, 1.2617090658101289, 1.0746368205192902, 1.082494892236285, 1.12003079427392, 1.2349350980294647, 1.2079171758399385, 1.1540805938938137, 1.1904244522100265, 1.0925561509117376, 1.1130713817081679, 1.1996791615125522, 1.1953376557177446, 1.1721740496775683, 1.1498018407550115, 1.2189399864150035, 1.2174001512005672, 1.1841444791371007, 1.185707384067646, 1.1818600419697818, 1.1487639315280984, 1.187990790473883, 1.2070236352846957, 1.183120704393338, 1.2131486529878408, 1.2230034850431808, 1.2598577318052009, 1.222494513225296, 1.1989335894352298, 1.133213715468035, 1.137460808129861, 1.24270509873175, 1.1877173094601927, 1.2104442602106054, 1.2230272768431958, 1.1848372792316968, 1.1892502628879684, 1.2035024239408367, 1.1289245106213106, 1.1547680583390754, 1.1817062724464646, 1.07460992973405, 1.2424105540969468, 1.2006706347201768, 1.1469299638380548, 1.2003475049998125, 1.2628425996056627, 1.1704529581521437, 1.2318309803876157, 1.0800513855721836, 1.228251341459926, 1.20519927398022, 1.2026116263341706, 1.2267213579299914, 1.1944767555176976, 1.0973340714559194, 1.199844572870176, 1.2167600163050747, 1.1973706771935049, 1.1274929727743968, 1.1847494081385286, 1.2179786952027045, 1.2103068524172256, 1.1648972358845942, 1.2012871447601516, 1.0806169290790832, 1.0638847843439245, 1.1523924483632424, 1.2163186571317048, 1.2318610477915777, 1.1790869269637845, 1.1800511479858375, 1.1828738610906249, 1.1414027009085952, 1.2239157840282788, 1.2163662161977793, 1.0777765284762604, 1.1871756186016387, 1.191419398750568, 1.2077786982792487, 1.1306928350191163, 1.2219862084208202, 1.1704952108872595, 1.1350341511093405, 1.2382530787288621, 1.197672089140054, 1.1634636863060297, 1.2198105693727255, 1.1738029086162305, 1.1866104828955661, 1.2050422293564858, 1.0986376515523584, 1.1639928343093937, 1.22645365263098, 1.0831783532562473, 1.1793732758175444, 1.2095496760640134, 1.1933309580469191, 1.0970298786458046, 1.1494963511728211, 1.1967270644046457, 1.2344818441993706, 1.2272379509433546, 1.1112370068652921, 1.221504646323395, 1.2374620707520216, 1.1180642101127265, 1.2499150575244404, 1.1306307576694052, 1.2043884061922128, 1.2148802673894985, 1.1818496551780364, 1.256060021892613, 1.1922912062142983, 1.1902422382130782, 1.1992276134291726, 1.1710757539172894, 1.123994660195365, 1.2214993644613943, 1.155215069374298, 1.1086344864348479, 1.0910943060265557, 1.2191511677776559, 1.210061225791385, 1.177381635100414, 1.181486384213164, 1.165494009707241, 1.1963931772967231, 1.2102493016491176, 1.101845863755783, 1.2104131731458112, 1.2496346326865795, 1.1918641349127161, 1.2362974006491536, 1.2055345356030078, 1.2285741635823975, 1.2335964200302294, 1.2299260975739024, 1.252639296531916, 1.1816404229058095, 1.0906166413304024, 1.2083432826502967, 1.198686258537757, 1.1415695127122047, 1.092894116614261, 1.2066842100186415, 1.156538986861618, 1.2474806142885053, 1.2187478225293684, 1.2316920790783128, 1.2105404142792078, 1.2045940601752774, 1.1231347496689397, 1.1047593741136272, 1.18129835095779, 1.1835647508539222, 1.2450528028358812, 1.2222158604224076, 1.2150490929276319, 1.1816927028319475, 1.1823015755626682, 1.2708857606096744, 1.1919272687522717, 1.199215576802391, 1.2235538374085948, 1.2001199439086292, 1.1730857828737784, 1.209032518532766, 1.240920756903906, 1.102814033624564, 1.218812306587527, 1.1996553618634807, 1.179606921083769, 1.2017295317409378, 1.2330407322845536, 1.1187392156488476, 1.225736440475797, 1.0995456254389886, 1.1398239919352195, 1.2035675444496818, 1.1586383728042269, 1.2287334286814806, 1.195581908342988, 1.182475780454091, 1.1987430360427977, 1.216557035654513, 1.1996494907287538, 1.2383901831314694, 1.1531934815518878, 1.229216103794829, 1.2106112336572799, 1.1849778997346532, 1.18237184590969, 1.2009038458812764, 1.0961585804850271, 1.178040774021339, 1.1722305560727864, 1.2280646936758626, 1.1730878580889061, 1.1798127065856396, 1.224173817391561, 1.2065293766499958, 1.1997898485636171, 1.2424004246290328, 1.1717570065002927, 1.2338402423416157, 1.2494056527462882, 1.2188644637313981, 1.2212661458082938, 1.2339544318944837, 1.1071211607425422, 1.1606278890869028, 1.2189699753534322, 1.180272917562664, 1.1426456950772235, 1.0522788530258245, 1.1829427275613456, 1.2262188308828839, 1.2251773195743205, 1.1956258209753046, 1.2114920876892714, 1.1953916820234736, 1.23382398473895, 1.1582401755284804, 1.191629137388988, 1.2178006337369847, 1.251136439760085, 1.1365976380520602, 1.174275078234959, 1.0808087704223992, 1.2032740733244425, 1.2103517133973012, 1.11326005536463, 1.1909349869585562, 1.2212796832585389, 1.1075096790834102, 1.2498229141296608, 1.084664865732375, 1.1683357564539953, 1.2082937933568851, 1.252239384886692, 1.2241448948948157, 1.2220195905349323, 1.0755183739777228, 1.2246287887655924, 1.203941883586293, 1.1242510612918695, 1.2235007768884452, 1.1730788382137691, 1.0994391409748683, 1.223672903798066, 1.1273787876886823, 1.2387058055283537, 1.2136671563285772, 1.204874914999746, 1.1863124400411849, 1.2194323539365215, 1.139574455552127, 1.1883768406708517, 1.2000846688283575, 1.1745314981161292, 1.2216393545756357, 1.148559186473642, 1.1276502268015958, 1.1678501220114077, 1.248042556728196, 1.1528823530190904, 1.182349952140096, 1.202872559373987, 1.057656133683926, 1.196122637100774, 1.2031121605191817, 1.1634951499402728, 1.2095000735625363, 1.1901826500944825, 1.1705303635565636, 1.221904684759513, 1.2008426805755377, 1.2191513614245515, 1.2383835946927975, 1.1822466263148794, 1.2000277251766025, 1.0675643227701521, 1.2229772647360104, 1.082493154489034, 1.178347854805873, 1.1940673459489852, 1.1946568831787179, 1.219277339137701, 1.135039734235405, 1.2539824081361624, 1.2267246222664205, 1.0960629129827957, 1.2130669354862218, 1.2300957041596126, 1.1573830982698168, 1.096123662648259, 1.2477729284441184, 1.2135638836890315, 1.220630164390247, 1.2162877159119596, 1.2090167543426475, 1.187489906720505, 1.2275503381344637, 1.1086754622565136, 1.1618707919314104, 1.1070407212315239, 1.1923226787718677, 1.0900666694354006, 1.2262690661499525, 1.2056761416930777, 1.2458301275482253, 1.1732441231849604, 1.2211117817426773, 1.1948872902367709, 1.130818495246797, 1.2026206008072473, 1.2067040095784871, 1.1913340391980174, 1.2398675486238038, 1.1780518996775449, 1.1806804473198347, 1.2154433988507445, 1.2041310140780057, 1.1948521569436659, 1.1658255171990985, 1.2146852320116623, 1.2174547247773808, 1.2307680369014695, 1.1682623391256952, 1.2188082178033945, 1.2423527542349246, 1.13230783361083, 1.2097691357097797, 1.2047969399649594, 1.1517698102978422, 1.2065252124817711, 1.0985349880573572, 1.1426104372808603, 1.2351760150170086, 1.1902473719724727, 1.1791482059371399, 1.1185800577890548, 1.1774186347558009, 1.2397017660770022, 1.1932399219346395, 1.1009298704332167, 1.1104128735371144 ] How should I plot this large data using python to better visualize the data?
A simple and common method to get a better overview about this kind of data is to calculate the moving average (mainly it to see if there are any trends). See this post for different approaches to calculate the moving average in python. Note 1: You need to decide how much you want to smooth the data by setting a parameter (called N here). You might have to play around a little with N to see which value best suits your data. Note 2: By calculating the moving average the length of you data changes (it gets N-1 shorter). So the timestamp values must also be shortened. Using the sample data from the question and choosing N=51: import numpy as np N = 51 myList_fitnessValues_ma = np.convolve(myList_fitnessValues, np.ones(N)/N, mode='valid') myList_timestamps_ma = myList_timestamps[int((N-1)/2):-int((N-1)/2)] plt.plot(myList_timestamps_ma, myList_fitnessValues_ma) plt.xlabel('Timestamps (seconds)') plt.ylabel('WATT - MSU Fitness Values (moving average)') plt.title('Evolutionary Optimization - Execution Time') plt.show()
Plotting a bar plot with seaborn
The data frame I am using: https://www.kaggle.com/mustiztemiz/diabetes I have the following column: Outcome - which has values 0 or 1. I want to plot a barplot which has Outcome on the x-axis and the it's count on y-axis. My code is as follows: sns.barplot(x='Outcome', y=diabetes['Outcome'].value_counts(), data=diabetes) It is returning the following plot The output I got is wrong as 1 should be 268 in count and 0 should be 500 in count. I don't know where I did the mistake. diabetes.csv Pregnancies,Glucose,BloodPressure,SkinThickness,Insulin,BMI,DiabetesPedigreeFunction,Age,Outcome 6,148,72,35,0,33.6,0.627,50,1 1,85,66,29,0,26.6,0.351,31,0 8,183,64,0,0,23.3,0.672,32,1 1,89,66,23,94,28.1,0.167,21,0 0,137,40,35,168,43.1,2.288,33,1 5,116,74,0,0,25.6,0.201,30,0 3,78,50,32,88,31.0,0.248,26,1 10,115,0,0,0,35.3,0.134,29,0 2,197,70,45,543,30.5,0.158,53,1 8,125,96,0,0,0.0,0.232,54,1 4,110,92,0,0,37.6,0.191,30,0 10,168,74,0,0,38.0,0.537,34,1 10,139,80,0,0,27.1,1.441,57,0 1,189,60,23,846,30.1,0.398,59,1 5,166,72,19,175,25.8,0.587,51,1 7,100,0,0,0,30.0,0.484,32,1 0,118,84,47,230,45.8,0.551,31,1 7,107,74,0,0,29.6,0.254,31,1 1,103,30,38,83,43.3,0.183,33,0 1,115,70,30,96,34.6,0.529,32,1 3,126,88,41,235,39.3,0.704,27,0 8,99,84,0,0,35.4,0.388,50,0 7,196,90,0,0,39.8,0.451,41,1 9,119,80,35,0,29.0,0.263,29,1 11,143,94,33,146,36.6,0.254,51,1 10,125,70,26,115,31.1,0.205,41,1 7,147,76,0,0,39.4,0.257,43,1 1,97,66,15,140,23.2,0.487,22,0 13,145,82,19,110,22.2,0.245,57,0 5,117,92,0,0,34.1,0.337,38,0 5,109,75,26,0,36.0,0.546,60,0 3,158,76,36,245,31.6,0.851,28,1 3,88,58,11,54,24.8,0.267,22,0 6,92,92,0,0,19.9,0.188,28,0 10,122,78,31,0,27.6,0.512,45,0 4,103,60,33,192,24.0,0.966,33,0 11,138,76,0,0,33.2,0.42,35,0 9,102,76,37,0,32.9,0.665,46,1 2,90,68,42,0,38.2,0.503,27,1 4,111,72,47,207,37.1,1.39,56,1 3,180,64,25,70,34.0,0.271,26,0 7,133,84,0,0,40.2,0.696,37,0 7,106,92,18,0,22.7,0.235,48,0 9,171,110,24,240,45.4,0.721,54,1 7,159,64,0,0,27.4,0.294,40,0 0,180,66,39,0,42.0,1.893,25,1 1,146,56,0,0,29.7,0.564,29,0 2,71,70,27,0,28.0,0.586,22,0 7,103,66,32,0,39.1,0.344,31,1 7,105,0,0,0,0.0,0.305,24,0 1,103,80,11,82,19.4,0.491,22,0 1,101,50,15,36,24.2,0.526,26,0 5,88,66,21,23,24.4,0.342,30,0 8,176,90,34,300,33.7,0.467,58,1 7,150,66,42,342,34.7,0.718,42,0 1,73,50,10,0,23.0,0.248,21,0 7,187,68,39,304,37.7,0.254,41,1 0,100,88,60,110,46.8,0.962,31,0 0,146,82,0,0,40.5,1.781,44,0 0,105,64,41,142,41.5,0.173,22,0 2,84,0,0,0,0.0,0.304,21,0 8,133,72,0,0,32.9,0.27,39,1 5,44,62,0,0,25.0,0.587,36,0 2,141,58,34,128,25.4,0.699,24,0 7,114,66,0,0,32.8,0.258,42,1 5,99,74,27,0,29.0,0.203,32,0 0,109,88,30,0,32.5,0.855,38,1 2,109,92,0,0,42.7,0.845,54,0 1,95,66,13,38,19.6,0.334,25,0 4,146,85,27,100,28.9,0.189,27,0 2,100,66,20,90,32.9,0.867,28,1 5,139,64,35,140,28.6,0.411,26,0 13,126,90,0,0,43.4,0.583,42,1 4,129,86,20,270,35.1,0.231,23,0 1,79,75,30,0,32.0,0.396,22,0 1,0,48,20,0,24.7,0.14,22,0 7,62,78,0,0,32.6,0.391,41,0 5,95,72,33,0,37.7,0.37,27,0 0,131,0,0,0,43.2,0.27,26,1 2,112,66,22,0,25.0,0.307,24,0 3,113,44,13,0,22.4,0.14,22,0 2,74,0,0,0,0.0,0.102,22,0 7,83,78,26,71,29.3,0.767,36,0 0,101,65,28,0,24.6,0.237,22,0 5,137,108,0,0,48.8,0.227,37,1 2,110,74,29,125,32.4,0.698,27,0 13,106,72,54,0,36.6,0.178,45,0 2,100,68,25,71,38.5,0.324,26,0 15,136,70,32,110,37.1,0.153,43,1 1,107,68,19,0,26.5,0.165,24,0 1,80,55,0,0,19.1,0.258,21,0 4,123,80,15,176,32.0,0.443,34,0 7,81,78,40,48,46.7,0.261,42,0 4,134,72,0,0,23.8,0.277,60,1 2,142,82,18,64,24.7,0.761,21,0 6,144,72,27,228,33.9,0.255,40,0 2,92,62,28,0,31.6,0.13,24,0 1,71,48,18,76,20.4,0.323,22,0 6,93,50,30,64,28.7,0.356,23,0 1,122,90,51,220,49.7,0.325,31,1 1,163,72,0,0,39.0,1.222,33,1 1,151,60,0,0,26.1,0.179,22,0 0,125,96,0,0,22.5,0.262,21,0 1,81,72,18,40,26.6,0.283,24,0 2,85,65,0,0,39.6,0.93,27,0 1,126,56,29,152,28.7,0.801,21,0 1,96,122,0,0,22.4,0.207,27,0 4,144,58,28,140,29.5,0.287,37,0 3,83,58,31,18,34.3,0.336,25,0 0,95,85,25,36,37.4,0.247,24,1 3,171,72,33,135,33.3,0.199,24,1 8,155,62,26,495,34.0,0.543,46,1 1,89,76,34,37,31.2,0.192,23,0 4,76,62,0,0,34.0,0.391,25,0 7,160,54,32,175,30.5,0.588,39,1 4,146,92,0,0,31.2,0.539,61,1 5,124,74,0,0,34.0,0.22,38,1 5,78,48,0,0,33.7,0.654,25,0 4,97,60,23,0,28.2,0.443,22,0 4,99,76,15,51,23.2,0.223,21,0 0,162,76,56,100,53.2,0.759,25,1 6,111,64,39,0,34.2,0.26,24,0 2,107,74,30,100,33.6,0.404,23,0 5,132,80,0,0,26.8,0.186,69,0 0,113,76,0,0,33.3,0.278,23,1 1,88,30,42,99,55.0,0.496,26,1 3,120,70,30,135,42.9,0.452,30,0 1,118,58,36,94,33.3,0.261,23,0 1,117,88,24,145,34.5,0.403,40,1 0,105,84,0,0,27.9,0.741,62,1 4,173,70,14,168,29.7,0.361,33,1 9,122,56,0,0,33.3,1.114,33,1 3,170,64,37,225,34.5,0.356,30,1 8,84,74,31,0,38.3,0.457,39,0 2,96,68,13,49,21.1,0.647,26,0 2,125,60,20,140,33.8,0.088,31,0 0,100,70,26,50,30.8,0.597,21,0 0,93,60,25,92,28.7,0.532,22,0 0,129,80,0,0,31.2,0.703,29,0 5,105,72,29,325,36.9,0.159,28,0 3,128,78,0,0,21.1,0.268,55,0 5,106,82,30,0,39.5,0.286,38,0 2,108,52,26,63,32.5,0.318,22,0 10,108,66,0,0,32.4,0.272,42,1 4,154,62,31,284,32.8,0.237,23,0 0,102,75,23,0,0.0,0.572,21,0 9,57,80,37,0,32.8,0.096,41,0 2,106,64,35,119,30.5,1.4,34,0 5,147,78,0,0,33.7,0.218,65,0 2,90,70,17,0,27.3,0.085,22,0 1,136,74,50,204,37.4,0.399,24,0 4,114,65,0,0,21.9,0.432,37,0 9,156,86,28,155,34.3,1.189,42,1 1,153,82,42,485,40.6,0.687,23,0 8,188,78,0,0,47.9,0.137,43,1 7,152,88,44,0,50.0,0.337,36,1 2,99,52,15,94,24.6,0.637,21,0 1,109,56,21,135,25.2,0.833,23,0 2,88,74,19,53,29.0,0.229,22,0 17,163,72,41,114,40.9,0.817,47,1 4,151,90,38,0,29.7,0.294,36,0 7,102,74,40,105,37.2,0.204,45,0 0,114,80,34,285,44.2,0.167,27,0 2,100,64,23,0,29.7,0.368,21,0 0,131,88,0,0,31.6,0.743,32,1 6,104,74,18,156,29.9,0.722,41,1 3,148,66,25,0,32.5,0.256,22,0 4,120,68,0,0,29.6,0.709,34,0 4,110,66,0,0,31.9,0.471,29,0 3,111,90,12,78,28.4,0.495,29,0 6,102,82,0,0,30.8,0.18,36,1 6,134,70,23,130,35.4,0.542,29,1 2,87,0,23,0,28.9,0.773,25,0 1,79,60,42,48,43.5,0.678,23,0 2,75,64,24,55,29.7,0.37,33,0 8,179,72,42,130,32.7,0.719,36,1 6,85,78,0,0,31.2,0.382,42,0 0,129,110,46,130,67.1,0.319,26,1 5,143,78,0,0,45.0,0.19,47,0 5,130,82,0,0,39.1,0.956,37,1 6,87,80,0,0,23.2,0.084,32,0 0,119,64,18,92,34.9,0.725,23,0 1,0,74,20,23,27.7,0.299,21,0 5,73,60,0,0,26.8,0.268,27,0 4,141,74,0,0,27.6,0.244,40,0 7,194,68,28,0,35.9,0.745,41,1 8,181,68,36,495,30.1,0.615,60,1 1,128,98,41,58,32.0,1.321,33,1 8,109,76,39,114,27.9,0.64,31,1 5,139,80,35,160,31.6,0.361,25,1 3,111,62,0,0,22.6,0.142,21,0 9,123,70,44,94,33.1,0.374,40,0 7,159,66,0,0,30.4,0.383,36,1 11,135,0,0,0,52.3,0.578,40,1 8,85,55,20,0,24.4,0.136,42,0 5,158,84,41,210,39.4,0.395,29,1 1,105,58,0,0,24.3,0.187,21,0 3,107,62,13,48,22.9,0.678,23,1 4,109,64,44,99,34.8,0.905,26,1 4,148,60,27,318,30.9,0.15,29,1 0,113,80,16,0,31.0,0.874,21,0 1,138,82,0,0,40.1,0.236,28,0 0,108,68,20,0,27.3,0.787,32,0 2,99,70,16,44,20.4,0.235,27,0 6,103,72,32,190,37.7,0.324,55,0 5,111,72,28,0,23.9,0.407,27,0 8,196,76,29,280,37.5,0.605,57,1 5,162,104,0,0,37.7,0.151,52,1 1,96,64,27,87,33.2,0.289,21,0 7,184,84,33,0,35.5,0.355,41,1 2,81,60,22,0,27.7,0.29,25,0 0,147,85,54,0,42.8,0.375,24,0 7,179,95,31,0,34.2,0.164,60,0 0,140,65,26,130,42.6,0.431,24,1 9,112,82,32,175,34.2,0.26,36,1 12,151,70,40,271,41.8,0.742,38,1 5,109,62,41,129,35.8,0.514,25,1 6,125,68,30,120,30.0,0.464,32,0 5,85,74,22,0,29.0,1.224,32,1 5,112,66,0,0,37.8,0.261,41,1 0,177,60,29,478,34.6,1.072,21,1 2,158,90,0,0,31.6,0.805,66,1 7,119,0,0,0,25.2,0.209,37,0 7,142,60,33,190,28.8,0.687,61,0 1,100,66,15,56,23.6,0.666,26,0 1,87,78,27,32,34.6,0.101,22,0 0,101,76,0,0,35.7,0.198,26,0 3,162,52,38,0,37.2,0.652,24,1 4,197,70,39,744,36.7,2.329,31,0 0,117,80,31,53,45.2,0.089,24,0 4,142,86,0,0,44.0,0.645,22,1 6,134,80,37,370,46.2,0.238,46,1 1,79,80,25,37,25.4,0.583,22,0 4,122,68,0,0,35.0,0.394,29,0 3,74,68,28,45,29.7,0.293,23,0 4,171,72,0,0,43.6,0.479,26,1 7,181,84,21,192,35.9,0.586,51,1 0,179,90,27,0,44.1,0.686,23,1 9,164,84,21,0,30.8,0.831,32,1 0,104,76,0,0,18.4,0.582,27,0 1,91,64,24,0,29.2,0.192,21,0 4,91,70,32,88,33.1,0.446,22,0 3,139,54,0,0,25.6,0.402,22,1 6,119,50,22,176,27.1,1.318,33,1 2,146,76,35,194,38.2,0.329,29,0 9,184,85,15,0,30.0,1.213,49,1 10,122,68,0,0,31.2,0.258,41,0 0,165,90,33,680,52.3,0.427,23,0 9,124,70,33,402,35.4,0.282,34,0 1,111,86,19,0,30.1,0.143,23,0 9,106,52,0,0,31.2,0.38,42,0 2,129,84,0,0,28.0,0.284,27,0 2,90,80,14,55,24.4,0.249,24,0 0,86,68,32,0,35.8,0.238,25,0 12,92,62,7,258,27.6,0.926,44,1 1,113,64,35,0,33.6,0.543,21,1 3,111,56,39,0,30.1,0.557,30,0 2,114,68,22,0,28.7,0.092,25,0 1,193,50,16,375,25.9,0.655,24,0 11,155,76,28,150,33.3,1.353,51,1 3,191,68,15,130,30.9,0.299,34,0 3,141,0,0,0,30.0,0.761,27,1 4,95,70,32,0,32.1,0.612,24,0 3,142,80,15,0,32.4,0.2,63,0 4,123,62,0,0,32.0,0.226,35,1 5,96,74,18,67,33.6,0.997,43,0 0,138,0,0,0,36.3,0.933,25,1 2,128,64,42,0,40.0,1.101,24,0 0,102,52,0,0,25.1,0.078,21,0 2,146,0,0,0,27.5,0.24,28,1 10,101,86,37,0,45.6,1.136,38,1 2,108,62,32,56,25.2,0.128,21,0 3,122,78,0,0,23.0,0.254,40,0 1,71,78,50,45,33.2,0.422,21,0 13,106,70,0,0,34.2,0.251,52,0 2,100,70,52,57,40.5,0.677,25,0 7,106,60,24,0,26.5,0.296,29,1 0,104,64,23,116,27.8,0.454,23,0 5,114,74,0,0,24.9,0.744,57,0 2,108,62,10,278,25.3,0.881,22,0 0,146,70,0,0,37.9,0.334,28,1 10,129,76,28,122,35.9,0.28,39,0 7,133,88,15,155,32.4,0.262,37,0 7,161,86,0,0,30.4,0.165,47,1 2,108,80,0,0,27.0,0.259,52,1 7,136,74,26,135,26.0,0.647,51,0 5,155,84,44,545,38.7,0.619,34,0 1,119,86,39,220,45.6,0.808,29,1 4,96,56,17,49,20.8,0.34,26,0 5,108,72,43,75,36.1,0.263,33,0 0,78,88,29,40,36.9,0.434,21,0 0,107,62,30,74,36.6,0.757,25,1 2,128,78,37,182,43.3,1.224,31,1 1,128,48,45,194,40.5,0.613,24,1 0,161,50,0,0,21.9,0.254,65,0 6,151,62,31,120,35.5,0.692,28,0 2,146,70,38,360,28.0,0.337,29,1 0,126,84,29,215,30.7,0.52,24,0 14,100,78,25,184,36.6,0.412,46,1 8,112,72,0,0,23.6,0.84,58,0 0,167,0,0,0,32.3,0.839,30,1 2,144,58,33,135,31.6,0.422,25,1 5,77,82,41,42,35.8,0.156,35,0 5,115,98,0,0,52.9,0.209,28,1 3,150,76,0,0,21.0,0.207,37,0 2,120,76,37,105,39.7,0.215,29,0 10,161,68,23,132,25.5,0.326,47,1 0,137,68,14,148,24.8,0.143,21,0 0,128,68,19,180,30.5,1.391,25,1 2,124,68,28,205,32.9,0.875,30,1 6,80,66,30,0,26.2,0.313,41,0 0,106,70,37,148,39.4,0.605,22,0 2,155,74,17,96,26.6,0.433,27,1 3,113,50,10,85,29.5,0.626,25,0 7,109,80,31,0,35.9,1.127,43,1 2,112,68,22,94,34.1,0.315,26,0 3,99,80,11,64,19.3,0.284,30,0 3,182,74,0,0,30.5,0.345,29,1 3,115,66,39,140,38.1,0.15,28,0 6,194,78,0,0,23.5,0.129,59,1 4,129,60,12,231,27.5,0.527,31,0 3,112,74,30,0,31.6,0.197,25,1 0,124,70,20,0,27.4,0.254,36,1 13,152,90,33,29,26.8,0.731,43,1 2,112,75,32,0,35.7,0.148,21,0 1,157,72,21,168,25.6,0.123,24,0 1,122,64,32,156,35.1,0.692,30,1 10,179,70,0,0,35.1,0.2,37,0 2,102,86,36,120,45.5,0.127,23,1 6,105,70,32,68,30.8,0.122,37,0 8,118,72,19,0,23.1,1.476,46,0 2,87,58,16,52,32.7,0.166,25,0 1,180,0,0,0,43.3,0.282,41,1 12,106,80,0,0,23.6,0.137,44,0 1,95,60,18,58,23.9,0.26,22,0 0,165,76,43,255,47.9,0.259,26,0 0,117,0,0,0,33.8,0.932,44,0 5,115,76,0,0,31.2,0.343,44,1 9,152,78,34,171,34.2,0.893,33,1 7,178,84,0,0,39.9,0.331,41,1 1,130,70,13,105,25.9,0.472,22,0 1,95,74,21,73,25.9,0.673,36,0 1,0,68,35,0,32.0,0.389,22,0 5,122,86,0,0,34.7,0.29,33,0 8,95,72,0,0,36.8,0.485,57,0 8,126,88,36,108,38.5,0.349,49,0 1,139,46,19,83,28.7,0.654,22,0 3,116,0,0,0,23.5,0.187,23,0 3,99,62,19,74,21.8,0.279,26,0 5,0,80,32,0,41.0,0.346,37,1 4,92,80,0,0,42.2,0.237,29,0 4,137,84,0,0,31.2,0.252,30,0 3,61,82,28,0,34.4,0.243,46,0 1,90,62,12,43,27.2,0.58,24,0 3,90,78,0,0,42.7,0.559,21,0 9,165,88,0,0,30.4,0.302,49,1 1,125,50,40,167,33.3,0.962,28,1 13,129,0,30,0,39.9,0.569,44,1 12,88,74,40,54,35.3,0.378,48,0 1,196,76,36,249,36.5,0.875,29,1 5,189,64,33,325,31.2,0.583,29,1 5,158,70,0,0,29.8,0.207,63,0 5,103,108,37,0,39.2,0.305,65,0 4,146,78,0,0,38.5,0.52,67,1 4,147,74,25,293,34.9,0.385,30,0 5,99,54,28,83,34.0,0.499,30,0 6,124,72,0,0,27.6,0.368,29,1 0,101,64,17,0,21.0,0.252,21,0 3,81,86,16,66,27.5,0.306,22,0 1,133,102,28,140,32.8,0.234,45,1 3,173,82,48,465,38.4,2.137,25,1 0,118,64,23,89,0.0,1.731,21,0 0,84,64,22,66,35.8,0.545,21,0 2,105,58,40,94,34.9,0.225,25,0 2,122,52,43,158,36.2,0.816,28,0 12,140,82,43,325,39.2,0.528,58,1 0,98,82,15,84,25.2,0.299,22,0 1,87,60,37,75,37.2,0.509,22,0 4,156,75,0,0,48.3,0.238,32,1 0,93,100,39,72,43.4,1.021,35,0 1,107,72,30,82,30.8,0.821,24,0 0,105,68,22,0,20.0,0.236,22,0 1,109,60,8,182,25.4,0.947,21,0 1,90,62,18,59,25.1,1.268,25,0 1,125,70,24,110,24.3,0.221,25,0 1,119,54,13,50,22.3,0.205,24,0 5,116,74,29,0,32.3,0.66,35,1 8,105,100,36,0,43.3,0.239,45,1 5,144,82,26,285,32.0,0.452,58,1 3,100,68,23,81,31.6,0.949,28,0 1,100,66,29,196,32.0,0.444,42,0 5,166,76,0,0,45.7,0.34,27,1 1,131,64,14,415,23.7,0.389,21,0 4,116,72,12,87,22.1,0.463,37,0 4,158,78,0,0,32.9,0.803,31,1 2,127,58,24,275,27.7,1.6,25,0 3,96,56,34,115,24.7,0.944,39,0 0,131,66,40,0,34.3,0.196,22,1 3,82,70,0,0,21.1,0.389,25,0 3,193,70,31,0,34.9,0.241,25,1 4,95,64,0,0,32.0,0.161,31,1 6,137,61,0,0,24.2,0.151,55,0 5,136,84,41,88,35.0,0.286,35,1 9,72,78,25,0,31.6,0.28,38,0 5,168,64,0,0,32.9,0.135,41,1 2,123,48,32,165,42.1,0.52,26,0 4,115,72,0,0,28.9,0.376,46,1 0,101,62,0,0,21.9,0.336,25,0 8,197,74,0,0,25.9,1.191,39,1 1,172,68,49,579,42.4,0.702,28,1 6,102,90,39,0,35.7,0.674,28,0 1,112,72,30,176,34.4,0.528,25,0 1,143,84,23,310,42.4,1.076,22,0 1,143,74,22,61,26.2,0.256,21,0 0,138,60,35,167,34.6,0.534,21,1 3,173,84,33,474,35.7,0.258,22,1 1,97,68,21,0,27.2,1.095,22,0 4,144,82,32,0,38.5,0.554,37,1 1,83,68,0,0,18.2,0.624,27,0 3,129,64,29,115,26.4,0.219,28,1 1,119,88,41,170,45.3,0.507,26,0 2,94,68,18,76,26.0,0.561,21,0 0,102,64,46,78,40.6,0.496,21,0 2,115,64,22,0,30.8,0.421,21,0 8,151,78,32,210,42.9,0.516,36,1 4,184,78,39,277,37.0,0.264,31,1 0,94,0,0,0,0.0,0.256,25,0 1,181,64,30,180,34.1,0.328,38,1 0,135,94,46,145,40.6,0.284,26,0 1,95,82,25,180,35.0,0.233,43,1 2,99,0,0,0,22.2,0.108,23,0 3,89,74,16,85,30.4,0.551,38,0 1,80,74,11,60,30.0,0.527,22,0 2,139,75,0,0,25.6,0.167,29,0 1,90,68,8,0,24.5,1.138,36,0 0,141,0,0,0,42.4,0.205,29,1 12,140,85,33,0,37.4,0.244,41,0 5,147,75,0,0,29.9,0.434,28,0 1,97,70,15,0,18.2,0.147,21,0 6,107,88,0,0,36.8,0.727,31,0 0,189,104,25,0,34.3,0.435,41,1 2,83,66,23,50,32.2,0.497,22,0 4,117,64,27,120,33.2,0.23,24,0 8,108,70,0,0,30.5,0.955,33,1 4,117,62,12,0,29.7,0.38,30,1 0,180,78,63,14,59.4,2.42,25,1 1,100,72,12,70,25.3,0.658,28,0 0,95,80,45,92,36.5,0.33,26,0 0,104,64,37,64,33.6,0.51,22,1 0,120,74,18,63,30.5,0.285,26,0 1,82,64,13,95,21.2,0.415,23,0 2,134,70,0,0,28.9,0.542,23,1 0,91,68,32,210,39.9,0.381,25,0 2,119,0,0,0,19.6,0.832,72,0 2,100,54,28,105,37.8,0.498,24,0 14,175,62,30,0,33.6,0.212,38,1 1,135,54,0,0,26.7,0.687,62,0 5,86,68,28,71,30.2,0.364,24,0 10,148,84,48,237,37.6,1.001,51,1 9,134,74,33,60,25.9,0.46,81,0 9,120,72,22,56,20.8,0.733,48,0 1,71,62,0,0,21.8,0.416,26,0 8,74,70,40,49,35.3,0.705,39,0 5,88,78,30,0,27.6,0.258,37,0 10,115,98,0,0,24.0,1.022,34,0 0,124,56,13,105,21.8,0.452,21,0 0,74,52,10,36,27.8,0.269,22,0 0,97,64,36,100,36.8,0.6,25,0 8,120,0,0,0,30.0,0.183,38,1 6,154,78,41,140,46.1,0.571,27,0 1,144,82,40,0,41.3,0.607,28,0 0,137,70,38,0,33.2,0.17,22,0 0,119,66,27,0,38.8,0.259,22,0 7,136,90,0,0,29.9,0.21,50,0 4,114,64,0,0,28.9,0.126,24,0 0,137,84,27,0,27.3,0.231,59,0 2,105,80,45,191,33.7,0.711,29,1 7,114,76,17,110,23.8,0.466,31,0 8,126,74,38,75,25.9,0.162,39,0 4,132,86,31,0,28.0,0.419,63,0 3,158,70,30,328,35.5,0.344,35,1 0,123,88,37,0,35.2,0.197,29,0 4,85,58,22,49,27.8,0.306,28,0 0,84,82,31,125,38.2,0.233,23,0 0,145,0,0,0,44.2,0.63,31,1 0,135,68,42,250,42.3,0.365,24,1 1,139,62,41,480,40.7,0.536,21,0 0,173,78,32,265,46.5,1.159,58,0 4,99,72,17,0,25.6,0.294,28,0 8,194,80,0,0,26.1,0.551,67,0 2,83,65,28,66,36.8,0.629,24,0 2,89,90,30,0,33.5,0.292,42,0 4,99,68,38,0,32.8,0.145,33,0 4,125,70,18,122,28.9,1.144,45,1 3,80,0,0,0,0.0,0.174,22,0 6,166,74,0,0,26.6,0.304,66,0 5,110,68,0,0,26.0,0.292,30,0 2,81,72,15,76,30.1,0.547,25,0 7,195,70,33,145,25.1,0.163,55,1 6,154,74,32,193,29.3,0.839,39,0 2,117,90,19,71,25.2,0.313,21,0 3,84,72,32,0,37.2,0.267,28,0 6,0,68,41,0,39.0,0.727,41,1 7,94,64,25,79,33.3,0.738,41,0 3,96,78,39,0,37.3,0.238,40,0 10,75,82,0,0,33.3,0.263,38,0 0,180,90,26,90,36.5,0.314,35,1 1,130,60,23,170,28.6,0.692,21,0 2,84,50,23,76,30.4,0.968,21,0 8,120,78,0,0,25.0,0.409,64,0 12,84,72,31,0,29.7,0.297,46,1 0,139,62,17,210,22.1,0.207,21,0 9,91,68,0,0,24.2,0.2,58,0 2,91,62,0,0,27.3,0.525,22,0 3,99,54,19,86,25.6,0.154,24,0 3,163,70,18,105,31.6,0.268,28,1 9,145,88,34,165,30.3,0.771,53,1 7,125,86,0,0,37.6,0.304,51,0 13,76,60,0,0,32.8,0.18,41,0 6,129,90,7,326,19.6,0.582,60,0 2,68,70,32,66,25.0,0.187,25,0 3,124,80,33,130,33.2,0.305,26,0 6,114,0,0,0,0.0,0.189,26,0 9,130,70,0,0,34.2,0.652,45,1 3,125,58,0,0,31.6,0.151,24,0 3,87,60,18,0,21.8,0.444,21,0 1,97,64,19,82,18.2,0.299,21,0 3,116,74,15,105,26.3,0.107,24,0 0,117,66,31,188,30.8,0.493,22,0 0,111,65,0,0,24.6,0.66,31,0 2,122,60,18,106,29.8,0.717,22,0 0,107,76,0,0,45.3,0.686,24,0 1,86,66,52,65,41.3,0.917,29,0 6,91,0,0,0,29.8,0.501,31,0 1,77,56,30,56,33.3,1.251,24,0 4,132,0,0,0,32.9,0.302,23,1 0,105,90,0,0,29.6,0.197,46,0 0,57,60,0,0,21.7,0.735,67,0 0,127,80,37,210,36.3,0.804,23,0 3,129,92,49,155,36.4,0.968,32,1 8,100,74,40,215,39.4,0.661,43,1 3,128,72,25,190,32.4,0.549,27,1 10,90,85,32,0,34.9,0.825,56,1 4,84,90,23,56,39.5,0.159,25,0 1,88,78,29,76,32.0,0.365,29,0 8,186,90,35,225,34.5,0.423,37,1 5,187,76,27,207,43.6,1.034,53,1 4,131,68,21,166,33.1,0.16,28,0 1,164,82,43,67,32.8,0.341,50,0 4,189,110,31,0,28.5,0.68,37,0 1,116,70,28,0,27.4,0.204,21,0 3,84,68,30,106,31.9,0.591,25,0 6,114,88,0,0,27.8,0.247,66,0 1,88,62,24,44,29.9,0.422,23,0 1,84,64,23,115,36.9,0.471,28,0 7,124,70,33,215,25.5,0.161,37,0 1,97,70,40,0,38.1,0.218,30,0 8,110,76,0,0,27.8,0.237,58,0 11,103,68,40,0,46.2,0.126,42,0 11,85,74,0,0,30.1,0.3,35,0 6,125,76,0,0,33.8,0.121,54,1 0,198,66,32,274,41.3,0.502,28,1 1,87,68,34,77,37.6,0.401,24,0 6,99,60,19,54,26.9,0.497,32,0 0,91,80,0,0,32.4,0.601,27,0 2,95,54,14,88,26.1,0.748,22,0 1,99,72,30,18,38.6,0.412,21,0 6,92,62,32,126,32.0,0.085,46,0 4,154,72,29,126,31.3,0.338,37,0 0,121,66,30,165,34.3,0.203,33,1 3,78,70,0,0,32.5,0.27,39,0 2,130,96,0,0,22.6,0.268,21,0 3,111,58,31,44,29.5,0.43,22,0 2,98,60,17,120,34.7,0.198,22,0 1,143,86,30,330,30.1,0.892,23,0 1,119,44,47,63,35.5,0.28,25,0 6,108,44,20,130,24.0,0.813,35,0 2,118,80,0,0,42.9,0.693,21,1 10,133,68,0,0,27.0,0.245,36,0 2,197,70,99,0,34.7,0.575,62,1 0,151,90,46,0,42.1,0.371,21,1 6,109,60,27,0,25.0,0.206,27,0 12,121,78,17,0,26.5,0.259,62,0 8,100,76,0,0,38.7,0.19,42,0 8,124,76,24,600,28.7,0.687,52,1 1,93,56,11,0,22.5,0.417,22,0 8,143,66,0,0,34.9,0.129,41,1 6,103,66,0,0,24.3,0.249,29,0 3,176,86,27,156,33.3,1.154,52,1 0,73,0,0,0,21.1,0.342,25,0 11,111,84,40,0,46.8,0.925,45,1 2,112,78,50,140,39.4,0.175,24,0 3,132,80,0,0,34.4,0.402,44,1 2,82,52,22,115,28.5,1.699,25,0 6,123,72,45,230,33.6,0.733,34,0 0,188,82,14,185,32.0,0.682,22,1 0,67,76,0,0,45.3,0.194,46,0 1,89,24,19,25,27.8,0.559,21,0 1,173,74,0,0,36.8,0.088,38,1 1,109,38,18,120,23.1,0.407,26,0 1,108,88,19,0,27.1,0.4,24,0 6,96,0,0,0,23.7,0.19,28,0 1,124,74,36,0,27.8,0.1,30,0 7,150,78,29,126,35.2,0.692,54,1 4,183,0,0,0,28.4,0.212,36,1 1,124,60,32,0,35.8,0.514,21,0 1,181,78,42,293,40.0,1.258,22,1 1,92,62,25,41,19.5,0.482,25,0 0,152,82,39,272,41.5,0.27,27,0 1,111,62,13,182,24.0,0.138,23,0 3,106,54,21,158,30.9,0.292,24,0 3,174,58,22,194,32.9,0.593,36,1 7,168,88,42,321,38.2,0.787,40,1 6,105,80,28,0,32.5,0.878,26,0 11,138,74,26,144,36.1,0.557,50,1 3,106,72,0,0,25.8,0.207,27,0 6,117,96,0,0,28.7,0.157,30,0 2,68,62,13,15,20.1,0.257,23,0 9,112,82,24,0,28.2,1.282,50,1 0,119,0,0,0,32.4,0.141,24,1 2,112,86,42,160,38.4,0.246,28,0 2,92,76,20,0,24.2,1.698,28,0 6,183,94,0,0,40.8,1.461,45,0 0,94,70,27,115,43.5,0.347,21,0 2,108,64,0,0,30.8,0.158,21,0 4,90,88,47,54,37.7,0.362,29,0 0,125,68,0,0,24.7,0.206,21,0 0,132,78,0,0,32.4,0.393,21,0 5,128,80,0,0,34.6,0.144,45,0 4,94,65,22,0,24.7,0.148,21,0 7,114,64,0,0,27.4,0.732,34,1 0,102,78,40,90,34.5,0.238,24,0 2,111,60,0,0,26.2,0.343,23,0 1,128,82,17,183,27.5,0.115,22,0 10,92,62,0,0,25.9,0.167,31,0 13,104,72,0,0,31.2,0.465,38,1 5,104,74,0,0,28.8,0.153,48,0 2,94,76,18,66,31.6,0.649,23,0 7,97,76,32,91,40.9,0.871,32,1 1,100,74,12,46,19.5,0.149,28,0 0,102,86,17,105,29.3,0.695,27,0 4,128,70,0,0,34.3,0.303,24,0 6,147,80,0,0,29.5,0.178,50,1 4,90,0,0,0,28.0,0.61,31,0 3,103,72,30,152,27.6,0.73,27,0 2,157,74,35,440,39.4,0.134,30,0 1,167,74,17,144,23.4,0.447,33,1 0,179,50,36,159,37.8,0.455,22,1 11,136,84,35,130,28.3,0.26,42,1 0,107,60,25,0,26.4,0.133,23,0 1,91,54,25,100,25.2,0.234,23,0 1,117,60,23,106,33.8,0.466,27,0 5,123,74,40,77,34.1,0.269,28,0 2,120,54,0,0,26.8,0.455,27,0 1,106,70,28,135,34.2,0.142,22,0 2,155,52,27,540,38.7,0.24,25,1 2,101,58,35,90,21.8,0.155,22,0 1,120,80,48,200,38.9,1.162,41,0 11,127,106,0,0,39.0,0.19,51,0 3,80,82,31,70,34.2,1.292,27,1 10,162,84,0,0,27.7,0.182,54,0 1,199,76,43,0,42.9,1.394,22,1 8,167,106,46,231,37.6,0.165,43,1 9,145,80,46,130,37.9,0.637,40,1 6,115,60,39,0,33.7,0.245,40,1 1,112,80,45,132,34.8,0.217,24,0 4,145,82,18,0,32.5,0.235,70,1 10,111,70,27,0,27.5,0.141,40,1 6,98,58,33,190,34.0,0.43,43,0 9,154,78,30,100,30.9,0.164,45,0 6,165,68,26,168,33.6,0.631,49,0 1,99,58,10,0,25.4,0.551,21,0 10,68,106,23,49,35.5,0.285,47,0 3,123,100,35,240,57.3,0.88,22,0 8,91,82,0,0,35.6,0.587,68,0 6,195,70,0,0,30.9,0.328,31,1 9,156,86,0,0,24.8,0.23,53,1 0,93,60,0,0,35.3,0.263,25,0 3,121,52,0,0,36.0,0.127,25,1 2,101,58,17,265,24.2,0.614,23,0 2,56,56,28,45,24.2,0.332,22,0 0,162,76,36,0,49.6,0.364,26,1 0,95,64,39,105,44.6,0.366,22,0 4,125,80,0,0,32.3,0.536,27,1 5,136,82,0,0,0.0,0.64,69,0 2,129,74,26,205,33.2,0.591,25,0 3,130,64,0,0,23.1,0.314,22,0 1,107,50,19,0,28.3,0.181,29,0 1,140,74,26,180,24.1,0.828,23,0 1,144,82,46,180,46.1,0.335,46,1 8,107,80,0,0,24.6,0.856,34,0 13,158,114,0,0,42.3,0.257,44,1 2,121,70,32,95,39.1,0.886,23,0 7,129,68,49,125,38.5,0.439,43,1 2,90,60,0,0,23.5,0.191,25,0 7,142,90,24,480,30.4,0.128,43,1 3,169,74,19,125,29.9,0.268,31,1 0,99,0,0,0,25.0,0.253,22,0 4,127,88,11,155,34.5,0.598,28,0 4,118,70,0,0,44.5,0.904,26,0 2,122,76,27,200,35.9,0.483,26,0 6,125,78,31,0,27.6,0.565,49,1 1,168,88,29,0,35.0,0.905,52,1 2,129,0,0,0,38.5,0.304,41,0 4,110,76,20,100,28.4,0.118,27,0 6,80,80,36,0,39.8,0.177,28,0 10,115,0,0,0,0.0,0.261,30,1 2,127,46,21,335,34.4,0.176,22,0 9,164,78,0,0,32.8,0.148,45,1 2,93,64,32,160,38.0,0.674,23,1 3,158,64,13,387,31.2,0.295,24,0 5,126,78,27,22,29.6,0.439,40,0 10,129,62,36,0,41.2,0.441,38,1 0,134,58,20,291,26.4,0.352,21,0 3,102,74,0,0,29.5,0.121,32,0 7,187,50,33,392,33.9,0.826,34,1 3,173,78,39,185,33.8,0.97,31,1 10,94,72,18,0,23.1,0.595,56,0 1,108,60,46,178,35.5,0.415,24,0 5,97,76,27,0,35.6,0.378,52,1 4,83,86,19,0,29.3,0.317,34,0 1,114,66,36,200,38.1,0.289,21,0 1,149,68,29,127,29.3,0.349,42,1 5,117,86,30,105,39.1,0.251,42,0 1,111,94,0,0,32.8,0.265,45,0 4,112,78,40,0,39.4,0.236,38,0 1,116,78,29,180,36.1,0.496,25,0 0,141,84,26,0,32.4,0.433,22,0 2,175,88,0,0,22.9,0.326,22,0 2,92,52,0,0,30.1,0.141,22,0 3,130,78,23,79,28.4,0.323,34,1 8,120,86,0,0,28.4,0.259,22,1 2,174,88,37,120,44.5,0.646,24,1 2,106,56,27,165,29.0,0.426,22,0 2,105,75,0,0,23.3,0.56,53,0 4,95,60,32,0,35.4,0.284,28,0 0,126,86,27,120,27.4,0.515,21,0 8,65,72,23,0,32.0,0.6,42,0 2,99,60,17,160,36.6,0.453,21,0 1,102,74,0,0,39.5,0.293,42,1 11,120,80,37,150,42.3,0.785,48,1 3,102,44,20,94,30.8,0.4,26,0 1,109,58,18,116,28.5,0.219,22,0 9,140,94,0,0,32.7,0.734,45,1 13,153,88,37,140,40.6,1.174,39,0 12,100,84,33,105,30.0,0.488,46,0 1,147,94,41,0,49.3,0.358,27,1 1,81,74,41,57,46.3,1.096,32,0 3,187,70,22,200,36.4,0.408,36,1 6,162,62,0,0,24.3,0.178,50,1 4,136,70,0,0,31.2,1.182,22,1 1,121,78,39,74,39.0,0.261,28,0 3,108,62,24,0,26.0,0.223,25,0 0,181,88,44,510,43.3,0.222,26,1 8,154,78,32,0,32.4,0.443,45,1 1,128,88,39,110,36.5,1.057,37,1 7,137,90,41,0,32.0,0.391,39,0 0,123,72,0,0,36.3,0.258,52,1 1,106,76,0,0,37.5,0.197,26,0 6,190,92,0,0,35.5,0.278,66,1 2,88,58,26,16,28.4,0.766,22,0 9,170,74,31,0,44.0,0.403,43,1 9,89,62,0,0,22.5,0.142,33,0 10,101,76,48,180,32.9,0.171,63,0 2,122,70,27,0,36.8,0.34,27,0 5,121,72,23,112,26.2,0.245,30,0 1,126,60,0,0,30.1,0.349,47,1 1,93,70,31,0,30.4,0.315,23,0
# encoding: utf-8 import pandas import matplotlib.pyplot as plt import seaborn as sns diabetes = pandas.read_csv('diabetes.csv') # solution one: data = diabetes['Outcome'].value_counts() sns.barplot(x=data.index, y=data.values) # solution two: sns.countplot(x='Outcome', data=diabetes)
Scatter plot looks good but line plot looks weird on non-monotonically increasing data set
I have a monotonically increasing data set as shown below. R,M 7.0868,1.8102943986273166 7.087,1.810312919954896 7.0872,1.8102755711577103 7.0875,1.8102573284176724 7.0876,1.810237664390435 7.0887,1.810218897273047 7.0891,1.8102001649403308 7.0893,1.810178092508343 7.0894,1.8101553469354064 7.0902,1.8101359159985828 7.0907,1.810114549302785 7.0913,1.81009305646246 7.0916,1.8100731291478405 7.0919,1.8100505894431602 7.0923,1.8100245482326576 7.0933,1.810004843857531 7.0941,1.809981589365771 7.0948,1.8099565489521152 7.0949,1.8099337348073137 7.0957,1.8099052572558645 7.096,1.8098801233168886 7.0963,1.8098547472451978 7.0968,1.8098277762241366 7.0976,1.8098018568760064 7.0988,1.8097719856008248 7.099,1.8097424026714641 7.0994,1.8097145467653863 7.1002,1.8096846260698558 7.1005,1.8096553317621344 7.1016,1.8096207945226712 7.1023000000000005,1.8095909693292185 7.1031,1.8095572406207299 7.1038,1.8095238119406782 7.1043,1.8094894673202357 7.1053,1.8094538233723965 7.1064,1.8094182142472666 7.1067,1.8093818127358254 7.1079,1.8093437811755255 7.1088000000000005,1.8093041362243816 7.1098,1.809264041823682 7.1107000000000005,1.8092243783159143 7.1112,1.8091814057573945 7.1126000000000005,1.8091391534332957 7.1136,1.809094359509292 7.1148,1.809048533354942 7.1158,1.8090036536620597 7.1169,1.8089557015211883 7.1181,1.8089046493876206 7.1193,1.8088552101687183 7.1204,1.8088020551150032 7.1219,1.808747338797958 7.1225000000000005,1.8086919257417675 7.1247,1.8086350956553856 7.1258,1.8085748348942912 7.1275,1.808514553392964 7.1291,1.8084534203833889 7.1306,1.8083867543300092 7.1325,1.8083196215972281 7.1338,1.80825088250088 7.136,1.808178483206244 7.1374,1.8081044657602499 7.1392,1.8080287144430973 7.1412,1.8079480881686774 7.1431000000000004,1.8078648303094877 7.1456,1.8077807725153732 7.1476,1.8076892427316402 7.1503000000000005,1.807599230113512 7.1525,1.8075034794947091 7.1552,1.8074049113668145 7.1578,1.8073014641377354 7.1612,1.8071891350684717 7.1637,1.8070785128831843 7.1675,1.80696372890561 7.1701,1.8068419878230761 7.1737,1.8067122501065405 7.1779,1.8065802344915192 7.1814,1.8064383616085946 7.1856,1.806293933093177 7.1896,1.806138911817485 7.1947,1.8059806108944794 7.1993,1.80580908721362 7.2053,1.8056328160830435 7.2107,1.8054479682161961 7.2173,1.8052525284387695 7.2237,1.8050465193576883 7.2309,1.8048296381956124 7.2392,1.8045988960975694 7.2474,1.8043595071215677 7.2564,1.8041082364687364 7.2666,1.8038382553758734 7.2781,1.8035594899544896 7.2901,1.8032661790541915 7.3036,1.8029587616930072 7.3192,1.8026419692687126 7.3365,1.802313214895432 7.3559,1.8019832998820766 7.3782000000000005,1.8016547858228427 7.4039,1.8013374225262055 7.434,1.8010610354808818 7.469,1.8008525385497174 7.4728,1.8008375055547212 7.4766,1.8008241798024116 7.4805,1.8008134283846535 7.485,1.8008014895962607 7.4889,1.8007906472467445 7.4931,1.8007836940234814 7.4974,1.8007772872833665 7.502,1.8007773636348627 7.5066,1.800777214492662 7.5111,1.800772599047411 7.5161,1.8007769259270974 7.5204,1.8007812794388944 7.5251,1.8007885071607819 7.5309,1.8007961396426069 7.5354,1.800809332665 7.5404,1.800828880377808 7.5456,1.800846702941447 7.5511,1.8008692674381197 7.5565,1.8008933437321841 7.5623000000000005,1.8009237058574081 7.5682,1.800958157045992 7.5744,1.8009948449267943 7.58,1.8010363488385235 7.5863000000000005,1.8010832972433193 7.5923,1.8011350711403118 7.5989,1.8011921478121384 7.6052,1.801254330745158 7.6122000000000005,1.8013200393645774 7.619,1.801396979723438 7.6262,1.801481231944994 7.6332,1.8015680286606623 7.6412,1.8016656871159082 7.6485,1.8017686065785499 7.6562,1.8018805264670845 7.664,1.8020043241836483 7.6723,1.8021374134198185 7.6806,1.802276358227313 7.689,1.802430876035706 7.698,1.8025962404854161 7.7073,1.802773424707928 7.7165,1.8029615206656595 7.7261,1.8031700727690376 7.7358,1.8033901306600841 7.746,1.8036245439350242 7.7569,1.8038801831608258 7.7674,1.8041511397011663 7.7785,1.8044409511998807 7.7895,1.804751063391503 7.8016000000000005,1.8050889378483397 7.8137,1.8054500843221957 7.8260000000000005,1.8058344798814248 7.839,1.8062497893213036 7.8523000000000005,1.8066916535420319 7.8660000000000005,1.807171119554773 7.8801000000000005,1.8076802794778468 7.8950000000000005,1.8082299359839067 7.91,1.808815338202358 7.9256,1.8094485033102967 7.9419,1.8101332152002367 7.9588,1.8108583555324504 7.9762,1.8116377906606793 7.9942,1.812480154325305 8.013300000000001,1.8133886252401064 8.0323,1.8143645477074526 8.0526,1.8154146330511043 8.073500000000001,1.8165442307174358 8.0957,1.8177698166402039 8.1182,1.819085725400004 8.1417,1.8205097465554974 8.1664,1.8220480025653125 8.192,1.8237072998986206 8.2188,1.8255111058560254 8.2468,1.827455350126501 8.2759,1.8295663029422389 8.3064,1.831861429607547 8.3383,1.8343455967834263 8.3716,1.837047237198313 8.4065,1.8399908757968044 8.4431,1.8431886841980547 8.4816,1.846678932529894 8.5218,1.8504805320192779 8.5642,1.8546328838729316 8.6085,1.859161369210759 8.655,1.8641143534208833 8.7039,1.8695256342139759 8.754900000000001,1.875446560741857 8.8087,1.881922204419208 8.8655,1.8890064461692662 8.9244,1.8967439742289458 8.9863,1.905188505881128 9.0511,1.9143851329920027 9.1186,1.924363320273434 9.188600000000001,1.9351143409915226 9.2613,1.9466051165466298 9.3348,1.9586922001685116 9.4098,1.970987602510523 9.4882,1.9833342806468837 9.5729,1.9958205973858019 9.6658,2.008306966070422 9.6757,2.0095470086686014 9.6853,2.0107829319774146 9.6956,2.0120161755240176 9.706,2.013246638357084 9.7155,2.0144724860531107 9.726,2.01569779646471 9.7361,2.01691593463459 9.7469,2.0181299858892676 9.7574,2.019339103824116 9.768,2.0205367574186544 9.7784,2.0217329512312534 9.789200000000001,2.022924537891196 9.8004,2.024103911848606 9.8115,2.0252755733660237 9.822700000000001,2.026442290408354 9.8339,2.027595562850575 9.8451,2.0287425260513627 9.8566,2.02987789695615 9.8683,2.031004255291417 9.8802,2.0321140981371753 9.8917,2.033211262029186 9.9039,2.03429873554374 9.9159,2.035370601551793 9.9284,2.036428080910105 9.9404,2.03746680777716 9.953100000000001,2.038486511766415 9.9657,2.039488307130752 9.9784,2.040471399292025 9.9911,2.0414350165353037 10.0042,2.0423773356028083 10.0178,2.043291283530465 10.030800000000001,2.0441838862321724 10.044500000000001,2.0450464474687147 10.0585,2.0458827447198584 10.0716,2.0466886270813385 10.0859,2.047468383690954 10.0998,2.0482043647433352 10.113900000000001,2.0489096859138938 10.1285,2.0495761215721746 10.1431,2.0501996224170225 10.158,2.0507863441183343 10.173,2.05132507354447 10.1883,2.0518124042758448 10.2033,2.052257120191798 10.2188,2.052637398387419 10.2344,2.0529609887501064 10.2505,2.053231208698309 10.266300000000001,2.053430956645957 10.2827,2.0535609020452807 10.2992,2.053618768726303 10.315900000000001,2.0535986346512063 10.3324,2.053499145209982 10.3495,2.0533064233065197 10.3668,2.0530215567767636 10.3844,2.0526369031524108 10.402000000000001,2.0521636845730233 10.42,2.0515392027607855 10.4381,2.0508116828399494 10.4563,2.0499535127064785 10.4748,2.0489576534963168 10.4937,2.0478138062588847 10.5128,2.046511793430433 10.532,2.0450378909729627 10.5515,2.043383966625784 10.5714,2.0415367556333575 10.591000000000001,2.039475707572078 10.6113,2.0371915999694594 10.6318,2.034681992486926 10.6523,2.031875344830552 10.6732,2.028806016957831 10.6943,2.0254302835993974 10.7156,2.021729410221098 10.737,2.0176679331240632 10.7585,2.0132226995271503 10.7804,2.0083569404787207 10.8025,2.003033377167351 10.8245,1.9972070467548615 10.8468,1.99084498211035 10.8693,1.9838848370723352 10.8916,1.976265341594595 10.913400000000001,1.9679245337116287 10.9359,1.9587753705415543 10.958,1.9487087547075432 10.9801,1.937613087921291 11.0016,1.925359737260557 11.0228,1.911811244861433 11.043700000000001,1.896814109152176 11.0641,1.880201767746232 11.0839,1.861791757645824 11.103,1.8413880752742964 11.1143,0.6798071334659402 11.1148,0.6620484741207461 11.115400000000001,0.7308628786759206 11.1163,0.643905710436412 11.1173,0.7471776126414391 11.1188,0.6253614804987849 11.119,0.7631699685933497 11.1209,1.8187639653487393 11.121,0.7788332436619917 11.1226,0.6064184938116979 11.1233,0.7941958537153351 11.1252,0.8092591741702967 11.1277,0.5870678163436467 11.1302,0.8385380585848173 11.1326,0.8527702605010601 11.135200000000001,0.5673102326921188 11.1377,0.8804746147417499 11.138300000000001,1.7936929573835567 11.1404,0.8939630164904495 11.142800000000001,0.9072161422501497 11.1443,0.5471696019139972 11.1457,0.920255663318353 11.148,0.933064576156273 11.1506,0.9456674682901905 11.152800000000001,0.958071445468564 11.1539,1.7659104790175046 11.1555,0.9702722709283456 11.1563,0.526626294457235 11.1578,0.982282581805736 11.16,0.994125843269314 11.1625,1.005758474384689 11.1651,1.0172259729870816 11.1667,1.0285290632922044 11.1681,1.7351407435690962 11.1694,1.0396641713997514 11.1708,1.0506369116951209 11.1715,0.5057129912122545 11.1728,1.06145775881892 11.1752,1.0721969265059947 11.177100000000001,1.0826438965199432 11.178700000000001,1.0930140692041797 11.1804,1.7010859834099117 11.180900000000001,1.1032438870571097 11.1824,1.113341990904366 11.184000000000001,1.123299806468843 11.1857,1.1331296145407677 11.1873,1.1428308979922694 11.1889,1.152401698215316 11.1903,1.161856869794937 11.1904,0.48445364974714356 11.1919,1.663399436215842 11.192,1.1711910394172824 11.1934,1.1804087961074725 11.1942,1.1895091584397912 11.195500000000001,1.1985002253694752 11.1974,1.2073817550934374 11.1981,1.2161518746407876 11.199300000000001,1.2248195347259854 11.2006,1.233382363999008 11.2012,1.6217221083677575 11.201600000000001,1.2418573170671454 11.2026,1.2502123181321048 11.2036,1.2584707455312942 11.2044,1.2666389953934527 11.205300000000001,1.2747462832375793 11.2059,1.282698337211604 11.2071,1.2905889671447655 11.2075,1.2983932387539374 11.208400000000001,1.5756312874271927 11.2089,1.3061289118283488 11.2093,1.3137413392392563 11.209900000000001,1.3212844363707013 11.2105,1.3287440211738633 11.2111,1.3361240786859585 11.2118,1.3434226680704695 11.2121,1.3506419841724973 11.2127,1.35780576619357 11.2131,1.3718370881026203 11.2135,1.5246558611202008 11.213700000000001,1.364846987030096 11.214,1.5138285906034126 11.2142,1.385586125420797 11.2144,1.5083287553910607 11.214500000000001,1.5027740924000998 11.2146,1.3990472473875148 11.2147,1.491494982843448 11.2148,1.4122266556473997 11.2149,1.4187122779735373 11.215,1.392352319217516 11.2151,1.4799814651383028 11.215200000000001,1.4682238422417109 11.215300000000001,1.4056725030722297 11.2154,1.4562337169860362 11.2155,1.4251295454595927 11.2156,1.4314822279446662 R,M 7.0868,1.8102943986273166 7.087,1.810312919954896 7.0872,1.8102755711577103 7.0875,1.8102573284176724 7.0876,1.810237664390435 7.0887,1.810218897273047 7.0891,1.8102001649403308 7.0893,1.810178092508343 7.0894,1.8101553469354064 7.0902,1.8101359159985828 7.0907,1.810114549302785 7.0913,1.81009305646246 7.0916,1.8100731291478405 7.0919,1.8100505894431602 7.0923,1.8100245482326576 7.0933,1.810004843857531 7.0941,1.809981589365771 7.0948,1.8099565489521152 7.0949,1.8099337348073137 7.0957,1.8099052572558645 7.096,1.8098801233168886 7.0963,1.8098547472451978 7.0968,1.8098277762241366 7.0976,1.8098018568760064 7.0988,1.8097719856008248 7.099,1.8097424026714641 7.0994,1.8097145467653863 7.1002,1.8096846260698558 7.1005,1.8096553317621344 7.1016,1.8096207945226712 7.1023000000000005,1.8095909693292185 7.1031,1.8095572406207299 7.1038,1.8095238119406782 7.1043,1.8094894673202357 7.1053,1.8094538233723965 7.1064,1.8094182142472666 7.1067,1.8093818127358254 7.1079,1.8093437811755255 7.1088000000000005,1.8093041362243816 7.1098,1.809264041823682 7.1107000000000005,1.8092243783159143 7.1112,1.8091814057573945 7.1126000000000005,1.8091391534332957 7.1136,1.809094359509292 7.1148,1.809048533354942 7.1158,1.8090036536620597 7.1169,1.8089557015211883 7.1181,1.8089046493876206 7.1193,1.8088552101687183 7.1204,1.8088020551150032 7.1219,1.808747338797958 7.1225000000000005,1.8086919257417675 7.1247,1.8086350956553856 7.1258,1.8085748348942912 7.1275,1.808514553392964 7.1291,1.8084534203833889 7.1306,1.8083867543300092 7.1325,1.8083196215972281 7.1338,1.80825088250088 7.136,1.808178483206244 7.1374,1.8081044657602499 7.1392,1.8080287144430973 7.1412,1.8079480881686774 7.1431000000000004,1.8078648303094877 7.1456,1.8077807725153732 7.1476,1.8076892427316402 7.1503000000000005,1.807599230113512 7.1525,1.8075034794947091 7.1552,1.8074049113668145 7.1578,1.8073014641377354 7.1612,1.8071891350684717 7.1637,1.8070785128831843 7.1675,1.80696372890561 7.1701,1.8068419878230761 7.1737,1.8067122501065405 7.1779,1.8065802344915192 7.1814,1.8064383616085946 7.1856,1.806293933093177 7.1896,1.806138911817485 7.1947,1.8059806108944794 7.1993,1.80580908721362 7.2053,1.8056328160830435 7.2107,1.8054479682161961 7.2173,1.8052525284387695 7.2237,1.8050465193576883 7.2309,1.8048296381956124 7.2392,1.8045988960975694 7.2474,1.8043595071215677 7.2564,1.8041082364687364 7.2666,1.8038382553758734 7.2781,1.8035594899544896 7.2901,1.8032661790541915 7.3036,1.8029587616930072 7.3192,1.8026419692687126 7.3365,1.802313214895432 7.3559,1.8019832998820766 7.3782000000000005,1.8016547858228427 7.4039,1.8013374225262055 7.434,1.8010610354808818 7.469,1.8008525385497174 7.4728,1.8008375055547212 7.4766,1.8008241798024116 7.4805,1.8008134283846535 7.485,1.8008014895962607 7.4889,1.8007906472467445 7.4931,1.8007836940234814 7.4974,1.8007772872833665 7.502,1.8007773636348627 7.5066,1.800777214492662 7.5111,1.800772599047411 7.5161,1.8007769259270974 7.5204,1.8007812794388944 7.5251,1.8007885071607819 7.5309,1.8007961396426069 7.5354,1.800809332665 7.5404,1.800828880377808 7.5456,1.800846702941447 7.5511,1.8008692674381197 7.5565,1.8008933437321841 7.5623000000000005,1.8009237058574081 7.5682,1.800958157045992 7.5744,1.8009948449267943 7.58,1.8010363488385235 7.5863000000000005,1.8010832972433193 7.5923,1.8011350711403118 7.5989,1.8011921478121384 7.6052,1.801254330745158 7.6122000000000005,1.8013200393645774 7.619,1.801396979723438 7.6262,1.801481231944994 7.6332,1.8015680286606623 7.6412,1.8016656871159082 7.6485,1.8017686065785499 7.6562,1.8018805264670845 7.664,1.8020043241836483 7.6723,1.8021374134198185 7.6806,1.802276358227313 7.689,1.802430876035706 7.698,1.8025962404854161 7.7073,1.802773424707928 7.7165,1.8029615206656595 7.7261,1.8031700727690376 7.7358,1.8033901306600841 7.746,1.8036245439350242 7.7569,1.8038801831608258 7.7674,1.8041511397011663 7.7785,1.8044409511998807 7.7895,1.804751063391503 7.8016000000000005,1.8050889378483397 7.8137,1.8054500843221957 7.8260000000000005,1.8058344798814248 7.839,1.8062497893213036 7.8523000000000005,1.8066916535420319 7.8660000000000005,1.807171119554773 7.8801000000000005,1.8076802794778468 7.8950000000000005,1.8082299359839067 7.91,1.808815338202358 7.9256,1.8094485033102967 7.9419,1.8101332152002367 7.9588,1.8108583555324504 7.9762,1.8116377906606793 7.9942,1.812480154325305 8.013300000000001,1.8133886252401064 8.0323,1.8143645477074526 8.0526,1.8154146330511043 8.073500000000001,1.8165442307174358 8.0957,1.8177698166402039 8.1182,1.819085725400004 8.1417,1.8205097465554974 8.1664,1.8220480025653125 8.192,1.8237072998986206 8.2188,1.8255111058560254 8.2468,1.827455350126501 8.2759,1.8295663029422389 8.3064,1.831861429607547 8.3383,1.8343455967834263 8.3716,1.837047237198313 8.4065,1.8399908757968044 8.4431,1.8431886841980547 8.4816,1.846678932529894 8.5218,1.8504805320192779 8.5642,1.8546328838729316 8.6085,1.859161369210759 8.655,1.8641143534208833 8.7039,1.8695256342139759 8.754900000000001,1.875446560741857 8.8087,1.881922204419208 8.8655,1.8890064461692662 8.9244,1.8967439742289458 8.9863,1.905188505881128 9.0511,1.9143851329920027 9.1186,1.924363320273434 9.188600000000001,1.9351143409915226 9.2613,1.9466051165466298 9.3348,1.9586922001685116 9.4098,1.970987602510523 9.4882,1.9833342806468837 9.5729,1.9958205973858019 9.6658,2.008306966070422 9.6757,2.0095470086686014 9.6853,2.0107829319774146 9.6956,2.0120161755240176 9.706,2.013246638357084 9.7155,2.0144724860531107 9.726,2.01569779646471 9.7361,2.01691593463459 9.7469,2.0181299858892676 9.7574,2.019339103824116 9.768,2.0205367574186544 9.7784,2.0217329512312534 9.789200000000001,2.022924537891196 9.8004,2.024103911848606 9.8115,2.0252755733660237 9.822700000000001,2.026442290408354 9.8339,2.027595562850575 9.8451,2.0287425260513627 9.8566,2.02987789695615 9.8683,2.031004255291417 9.8802,2.0321140981371753 9.8917,2.033211262029186 9.9039,2.03429873554374 9.9159,2.035370601551793 9.9284,2.036428080910105 9.9404,2.03746680777716 9.953100000000001,2.038486511766415 9.9657,2.039488307130752 9.9784,2.040471399292025 9.9911,2.0414350165353037 10.0042,2.0423773356028083 10.0178,2.043291283530465 10.030800000000001,2.0441838862321724 10.044500000000001,2.0450464474687147 10.0585,2.0458827447198584 10.0716,2.0466886270813385 10.0859,2.047468383690954 10.0998,2.0482043647433352 10.113900000000001,2.0489096859138938 10.1285,2.0495761215721746 10.1431,2.0501996224170225 10.158,2.0507863441183343 10.173,2.05132507354447 10.1883,2.0518124042758448 10.2033,2.052257120191798 10.2188,2.052637398387419 10.2344,2.0529609887501064 10.2505,2.053231208698309 10.266300000000001,2.053430956645957 10.2827,2.0535609020452807 10.2992,2.053618768726303 10.315900000000001,2.0535986346512063 10.3324,2.053499145209982 10.3495,2.0533064233065197 10.3668,2.0530215567767636 10.3844,2.0526369031524108 10.402000000000001,2.0521636845730233 10.42,2.0515392027607855 10.4381,2.0508116828399494 10.4563,2.0499535127064785 10.4748,2.0489576534963168 10.4937,2.0478138062588847 10.5128,2.046511793430433 10.532,2.0450378909729627 10.5515,2.043383966625784 10.5714,2.0415367556333575 10.591000000000001,2.039475707572078 10.6113,2.0371915999694594 10.6318,2.034681992486926 10.6523,2.031875344830552 10.6732,2.028806016957831 10.6943,2.0254302835993974 10.7156,2.021729410221098 10.737,2.0176679331240632 10.7585,2.0132226995271503 10.7804,2.0083569404787207 10.8025,2.003033377167351 10.8245,1.9972070467548615 10.8468,1.99084498211035 10.8693,1.9838848370723352 10.8916,1.976265341594595 10.913400000000001,1.9679245337116287 10.9359,1.9587753705415543 10.958,1.9487087547075432 10.9801,1.937613087921291 11.0016,1.925359737260557 11.0228,1.911811244861433 11.043700000000001,1.896814109152176 11.0641,1.880201767746232 11.0839,1.861791757645824 11.103,1.8413880752742964 11.1143,0.6798071334659402 11.1148,0.6620484741207461 11.115400000000001,0.7308628786759206 11.1163,0.643905710436412 11.1173,0.7471776126414391 11.1188,0.6253614804987849 11.119,0.7631699685933497 11.1209,1.8187639653487393 11.121,0.7788332436619917 11.1226,0.6064184938116979 11.1233,0.7941958537153351 11.1252,0.8092591741702967 11.1277,0.5870678163436467 11.1302,0.8385380585848173 11.1326,0.8527702605010601 11.135200000000001,0.5673102326921188 11.1377,0.8804746147417499 11.138300000000001,1.7936929573835567 11.1404,0.8939630164904495 11.142800000000001,0.9072161422501497 11.1443,0.5471696019139972 11.1457,0.920255663318353 11.148,0.933064576156273 11.1506,0.9456674682901905 11.152800000000001,0.958071445468564 11.1539,1.7659104790175046 11.1555,0.9702722709283456 11.1563,0.526626294457235 11.1578,0.982282581805736 11.16,0.994125843269314 11.1625,1.005758474384689 11.1651,1.0172259729870816 11.1667,1.0285290632922044 11.1681,1.7351407435690962 11.1694,1.0396641713997514 11.1708,1.0506369116951209 11.1715,0.5057129912122545 11.1728,1.06145775881892 11.1752,1.0721969265059947 11.177100000000001,1.0826438965199432 11.178700000000001,1.0930140692041797 11.1804,1.7010859834099117 11.180900000000001,1.1032438870571097 11.1824,1.113341990904366 11.184000000000001,1.123299806468843 11.1857,1.1331296145407677 11.1873,1.1428308979922694 11.1889,1.152401698215316 11.1903,1.161856869794937 11.1904,0.48445364974714356 11.1919,1.663399436215842 11.192,1.1711910394172824 11.1934,1.1804087961074725 11.1942,1.1895091584397912 11.195500000000001,1.1985002253694752 11.1974,1.2073817550934374 11.1981,1.2161518746407876 11.199300000000001,1.2248195347259854 11.2006,1.233382363999008 11.2012,1.6217221083677575 11.201600000000001,1.2418573170671454 11.2026,1.2502123181321048 11.2036,1.2584707455312942 11.2044,1.2666389953934527 11.205300000000001,1.2747462832375793 11.2059,1.282698337211604 11.2071,1.2905889671447655 11.2075,1.2983932387539374 11.208400000000001,1.5756312874271927 11.2089,1.3061289118283488 11.2093,1.3137413392392563 11.209900000000001,1.3212844363707013 11.2105,1.3287440211738633 11.2111,1.3361240786859585 11.2118,1.3434226680704695 11.2121,1.3506419841724973 11.2127,1.35780576619357 11.2131,1.3718370881026203 11.2135,1.5246558611202008 11.213700000000001,1.364846987030096 11.214,1.5138285906034126 11.2142,1.385586125420797 11.2144,1.5083287553910607 11.214500000000001,1.5027740924000998 11.2146,1.3990472473875148 11.2147,1.491494982843448 11.2148,1.4122266556473997 11.2149,1.4187122779735373 11.215,1.392352319217516 11.2151,1.4799814651383028 11.215200000000001,1.4682238422417109 11.215300000000001,1.4056725030722297 11.2154,1.4562337169860362 11.2155,1.4251295454595927 11.2156,1.4314822279446662 The data is imported using Pandas with the code below. import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('data.txt') df = df.sort_values(by=['R']) plt.plot(df['R'], df['M']) plt.gcf().set_size_inches(2.55*8,1*8) plt.xlabel(r'$r$ $(km)$') plt.ylabel(r'$M/M_\odot$') plt.show() exit() I've shorted data short by X ('R') and it look weird where Y is not monotonically increasing as picture below Also, if I short the data by Y ('M'), the plot doesn't look so well where X is not monotonically increasing. Scatter plot looks as shown below. I have no idea for an equation to fit this plot. Is there any method or package for connecting the point properly? Edit1: I've tried doing spline fit. The result is as below. import numpy as np tck = interpolate.splrep(df['R'], df['M'],) xnew= np.linspace(min(df['R'].to_numpy()),max(df['R'].to_numpy()),1000) ynew = interpolate.splev(xnew, tck) plt.plot(xnew, ynew)
I guess in this particular case a solution to get the data in the desired order is to sort them by the polar angle of the points in a cartesian plane. X = <your data> order = np.argsort(np.arctan2(X[:,1], X[:,0])) plt.plot(X[order,0], X[order,1]) plt.show()
How to set seaborn jointplot axis to log scale
How to set axis to logarithmic scale in a seaborn jointplot? I can't find any log arguments in seaborn.jointplot Notebook import seaborn as sns import pandas as pd df = pd.read_csv("https://storage.googleapis.com/mledu-datasets/california_housing_train.csv", sep=",") g = sns.jointplot(x="total_bedrooms", y="median_house_value", data = df, kind="reg", logx=True ) 300 rows of sample data of the relevant columns, incase the data link dies median_house_value,total_bedrooms 66900.0,1283.0 80100.0,1901.0 85700.0,174.0 73400.0,337.0 65500.0,326.0 74000.0,236.0 82400.0,680.0 48500.0,168.0 58400.0,1175.0 48100.0,309.0 86500.0,801.0 62000.0,483.0 48600.0,248.0 70400.0,464.0 45000.0,378.0 69100.0,587.0 94900.0,322.0 25000.0,33.0 44000.0,386.0 27500.0,24.0 44400.0,360.0 59200.0,243.0 50000.0,95.0 71300.0,129.0 53500.0,397.0 100000.0,139.0 71100.0,322.0 80900.0,270.0 68600.0,191.0 74300.0,294.0 65800.0,394.0 67500.0,262.0 146300.0,196.0 113800.0,171.0 95800.0,113.0 107800.0,220.0 40000.0,373.0 88500.0,246.0 91200.0,666.0 102800.0,104.0 64000.0,389.0 84700.0,440.0 70100.0,573.0 142500.0,72.0 88400.0,913.0 75500.0,492.0 43300.0,523.0 46700.0,218.0 63700.0,287.0 72700.0,610.0 42500.0,136.0 53400.0,283.0 60800.0,262.0 58600.0,382.0 66400.0,366.0 67500.0,387.0 79200.0,337.0 63100.0,275.0 67700.0,581.0 40000.0,199.0 62200.0,634.0 70700.0,340.0 60300.0,545.0 61200.0,325.0 69400.0,373.0 96000.0,268.0 60600.0,395.0 70800.0,454.0 60400.0,403.0 143000.0,365.0 80800.0,530.0 67500.0,316.0 61000.0,142.0 59600.0,221.0 53600.0,162.0 84300.0,606.0 107200.0,480.0 59400.0,416.0 63900.0,375.0 69400.0,328.0 62500.0,835.0 58300.0,438.0 70800.0,490.0 86200.0,202.0 76200.0,283.0 140300.0,217.0 62300.0,269.0 63500.0,256.0 61100.0,301.0 67500.0,289.0 93800.0,594.0 73600.0,208.0 97200.0,235.0 87500.0,279.0 71700.0,282.0 96300.0,143.0 87500.0,203.0 64400.0,507.0 110100.0,414.0 90800.0,274.0 159900.0,307.0 94400.0,177.0 72500.0,187.0 83200.0,317.0 62000.0,244.0 61200.0,231.0 125000.0,235.0 55200.0,340.0 87500.0,99.0 50000.0,238.0 30000.0,448.0 87500.0,103.0 93800.0,81.0 47500.0,18.0 68900.0,379.0 41000.0,1257.0 32500.0,49.0 62800.0,248.0 67500.0,95.0 67500.0,272.0 58800.0,43.0 53800.0,25.0 54400.0,81.0 53800.0,46.0 54300.0,536.0 51300.0,57.0 43900.0,280.0 66400.0,958.0 62800.0,515.0 94500.0,97.0 65600.0,65.0 81300.0,94.0 66900.0,290.0 66800.0,2331.0 76100.0,89.0 65600.0,1997.0 84700.0,354.0 100000.0,820.0 47800.0,1228.0 82600.0,705.0 112500.0,54.0 65400.0,499.0 61400.0,277.0 65900.0,800.0 47500.0,203.0 58600.0,512.0 155000.0,19.0 66700.0,654.0 67500.0,476.0 60600.0,625.0 96300.0,273.0 61800.0,409.0 68200.0,192.0 68900.0,714.0 82200.0,787.0 100000.0,176.0 100900.0,295.0 32900.0,386.0 42500.0,468.0 69400.0,858.0 68500.0,352.0 58800.0,258.0 124700.0,849.0 72100.0,221.0 76900.0,1326.0 90000.0,1349.0 104100.0,566.0 93400.0,1039.0 95000.0,2224.0 67500.0,187.0 50000.0,91.0 92900.0,444.0 382400.0,1222.0 83700.0,284.0 65800.0,109.0 199300.0,2555.0 167400.0,760.0 137500.0,481.0 55400.0,556.0 93400.0,410.0 91800.0,851.0 98000.0,831.0 54200.0,487.0 81000.0,861.0 100000.0,367.0 57400.0,411.0 158500.0,3923.0 353100.0,2000.0 176400.0,514.0 62300.0,406.0 110700.0,606.0 78500.0,3098.0 121300.0,1859.0 318100.0,1542.0 98700.0,1152.0 65000.0,1238.0 116300.0,348.0 194500.0,3479.0 134500.0,2405.0 258100.0,2460.0 73300.0,1149.0 74400.0,2257.0 128000.0,1618.0 238800.0,2007.0 78000.0,1089.0 97800.0,872.0 259200.0,500.0 168800.0,476.0 177800.0,893.0 285000.0,1260.0 341700.0,2837.0 138300.0,782.0 103100.0,48.0 84000.0,1296.0 115100.0,1343.0 500001.0,438.0 98100.0,361.0 72400.0,1303.0 88400.0,1266.0 97500.0,1110.0 403300.0,249.0 99100.0,1206.0 134600.0,992.0 127100.0,643.0 104200.0,920.0 83000.0,745.0 65300.0,1234.0 85200.0,471.0 142500.0,1512.0 90900.0,2481.0 113600.0,441.0 81000.0,913.0 145200.0,2020.0 115300.0,272.0 65900.0,636.0 148900.0,1875.0 146400.0,868.0 66600.0,1882.0 87500.0,85.0 94800.0,1229.0 248100.0,1074.0 64700.0,713.0 51300.0,2634.0 61100.0,1395.0 66000.0,780.0 61000.0,306.0 89600.0,754.0 112500.0,1444.0 130400.0,859.0 145200.0,2315.0 189900.0,852.0 68200.0,648.0 125200.0,763.0 110900.0,2186.0 159000.0,1839.0 220500.0,463.0 124100.0,1714.0 199400.0,1217.0 183900.0,1387.0 235600.0,1780.0 500001.0,562.0 69600.0,1529.0 321900.0,399.0 148200.0,361.0 22500.0,1743.0 76600.0,67.0 50000.0,166.0 230200.0,1652.0 345500.0,82.0 116500.0,876.0 113500.0,827.0 172900.0,365.0 198100.0,538.0 67400.0,1719.0 169100.0,847.0 240600.0,157.0 193800.0,74.0 161100.0,711.0 156300.0,374.0 66300.0,109.0 81700.0,875.0 122900.0,682.0 214300.0,661.0 158200.0,946.0 143400.0,1070.0 217400.0,845.0 308600.0,481.0 111400.0,849.0 42500.0,10.0 173400.0,268.0 187200.0,702.0 214500.0,751.0 63000.0,525.0 221000.0,1946.0 90000.0,68.0 231800.0,786.0 206100.0,520.0 100000.0,63.0 274600.0,565.0 84700.0,1527.0
After you create the plot, you can set the axes to be log scale, using matplotlib's ax.set_xscale('log') and ax.set_yscale('log'). In this case, we need to get the axis from the JointGrid created by jointplot. If you catch the JointGrid returned as g, then the joint axis is g.ax_joint. For example: g = sns.jointplot(x="predictions", y="targets", data = calibration_data, kind="reg", logx=True, ) g.ax_joint.set_xscale('log') g.ax_joint.set_yscale('log')
pyplot: how to explicitly number an axis in a human-readable way
Pyplot has a strange feature where, for large numbers, the axis are scaled by non-base ten numbers, making it nearly impossible to read numeric values: x = [49856280.352, 49860580.25, 49861011.77, 49861103.034, 49861191.295, 49862295.297, 49862311.928, 49862755.161, 49863005.142, 49863331.328, 49863795.672, 49863892.911, 49864078.203, 49864455.172, 49864628.486, 49865539.345, 49865562.414, 49865652.025, 49865860.79, 49866049.199, 49866559.841, 49866709.259, 49866976.163, 49867118.158, 49867184.515, 49867228.03, 49867703.98, 49868191.475, 49868264.993, 49868402.682, 49868547.472, 49868849.941, 49869167.486, 49869233.011, 49869388.16, 49869462.118, 49869947.616, 49869976.177, 49870146.971, 49870441.068, 49870858.267, 49870898.339, 49870966.598, 49871065.408, 49871113.361, 49871268.792, 49871332.292, 49872008.637, 49872014.321, 49872128.757, 49872276.278, 49872296.18, 49872322.098, 49872366.707, 49872370.336, 49872537.099, 49872909.555, 49872917.363, 49873131.438, 49873230.402, 49873252.129, 49873289.302, 49873382.584, 49873429.968, 49873440.124, 49873444.505, 49873507.617, 49873835.836, 49873905.902, 49873965.72, 49874080.127, 49874101.966, 49874166.944, 49874359.819, 49874388.385, 49874412.152, 49874421.629, 49874584.264, 49874755.328, 49874798.936, 49874833.007, 49875145.279, 49875310.799, 49875391.973, 49875484.389, 49875615.09, 49875616.889, 49875773.568, 49875776.696, 49875892.137, 49875953.749, 49875954.395, 49876161.776, 49876220.899, 49876321.362, 49876380.343, 49876496.107, 49876595.953, 49876644.428, 49876655.041, 49876714.369, 49876770.925, 49876788.46, 49876932.063, 49876952.641, 49877075.874, 49877105.142, 49877220.934, 49877288.062, 49877294.256, 49877308.79, 49877551.764, 49877586.774, 49877620.658, 49877666.194, 49877842.635, 49878091.505, 49878171.278, 49878181.791, 49878229.777, 49878244.476, 49878483.22, 49878541.483, 49878602.181, 49878612.309, 49878615.488, 49878677.558, 49878683.807, 49878703.616, 49878785.269, 49878793.774, 49878922.532, 49878933.228, 49878981.748, 49879041.296, 49879060.17, 49879263.424, 49879355.213, 49879449.193, 49879455.009, 49879471.561, 49879508.752, 49879538.815, 49879597.852, 49879683.744, 49879727.257, 49879751.962, 49879895.858, 49879960.524, 49880178.136, 49880196.753, 49880217.788, 49880336.479, 49880370.356, 49880396.479, 49880422.808, 49880539.652, 49880559.579, 49880624.786, 49880704.456, 49880739.891, 49880836.13, 49880886.385, 49880938.998, 49881169.02, 49881288.366, 49881305.161, 49881426.038, 49881427.956, 49881463.834, 49881617.346, 49881730.679, 49881881.14, 49881894.675, 49881979.949, 49882096.47, 49882112.031, 49882131.716, 49882159.639, 49882190.252, 49882483.949, 49882538.07, 49882583.816, 49882597.938, 49882602.861, 49882611.359, 49882648.24, 49882684.267, 49882706.434, 49882835.084, 49883043.946, 49883084.906, 49883109.752, 49883228.104, 49883288.07, 49883382.503, 49883401.475, 49883491.927, 49883574.922, 49883654.813, 49883702.522, 49883801.5, 49883814.683, 49883826.244, 49883846.713, 49883855.077, 49883978.159, 49884046.234, 49884064.489, 49884112.738, 49884138.818, 49884220.732, 49884251.195, 49884255.97, 49884361.999, 49884397.955, 49884416.274, 49884498.095, 49884516.764, 49884548.794, 49884580.933, 49884597.752, 49884624.897, 49884634.323, 49884670.05, 49884676.813, 49884733.419, 49884751.203, 49884834.288, 49884888.879, 49884902.225, 49885004.171, 49885153.972, 49885157.866, 49885173.615, 49885174.386, 49885219.196, 49885273.781, 49885347.517, 49885364.666, 49885380.826, 49885427.356, 49885509.155, 49885541.137, 49885578.287, 49885595.473, 49885612.014, 49885710.601, 49885740.394, 49885741.348, 49885841.454, 49885952.568, 49885988.633, 49886053.94, 49886058.886, 49886076.628, 49886095.714, 49886147.686, 49886164.4, 49886179.103, 49886201.971, 49886279.139, 49886312.282, 49886312.8, 49886324.598, 49886408.542, 49886481.161, 49886548.747, 49886641.616, 49886642.093, 49886668.221, 49886675.982, 49886725.046, 49886741.706, 49886821.745, 49886833.46, 49886840.54, 49886850.264, 49886873.972, 49887005.587, 49887042.942, 49887073.685, 49887076.296, 49887091.248, 49887105.67, 49887148.602, 49887159.267, 49887271.173, 49887285.866, 49887303.534, 49887369.19, 49887382.49, 49887454.943, 49887479.589, 49887498.203, 49887616.744, 49887721.935, 49887747.864, 49887786.036, 49887803.228, 49887858.683, 49887943.768, 49888058.328, 49888058.963, 49888148.314, 49888200.419, 49888346.257, 49888362.013, 49888366.362, 49888406.004, 49888450.807, 49888497.044, 49888614.062, 49888622.199, 49888628.315, 49888717.575, 49888731.575, 49888736.902, 49888765.916, 49888803.98, 49888875.799, 49888892.348, 49888934.101, 49888967.728, 49888974.393, 49888981.908, 49889075.143, 49889221.983, 49889255.367, 49889277.661, 49889298.851, 49889319.147, 49889320.207, 49889407.915, 49889413.481, 49889429.941, 49889469.243, 49889487.959, 49889532.295, 49889539.477, 49889552.03, 49889572.229, 49889585.375, 49889602.118, 49889668.329, 49889683.014, 49889697.206, 49889772.868, 49889806.44, 49889881.148, 49889916.157, 49889961.726, 49889989.911, 49889997.299, 49890021.069, 49890092.985, 49890123.557, 49890137.558, 49890249.033, 49890337.341, 49890363.69, 49890412.835, 49890438.527, 49890455.844, 49890457.272, 49890540.923, 49890552.792, 49890571.653, 49890656.799, 49890657.446, 49890771.402, 49890893.014, 49890940.859, 49891117.607, 49891188.608, 49891197.473, 49891204.319, 49891260.746, 49891286.509, 49891329.619, 49891369.244, 49891373.448, 49891400.609, 49891594.308, 49891664.373, 49891769.784, 49891812.789, 49891878.95, 49891889.874, 49891924.49, 49891962.647, 49891972.677, 49892086.585, 49892096.15, 49892131.411, 49892145.241, 49892147.07, 49892186.586, 49892221.814, 49892257.429, 49892295.906, 49892366.592, 49892414.483, 49892486.488, 49892505.361, 49892571.789, 49892614.344, 49892775.098, 49892807.812, 49892832.242, 49892837.597, 49892858.141, 49892894.853, 49892896.347, 49893017.939, 49893029.177, 49893118.449, 49893168.059, 49893232.781, 49893235.78, 49893287.331, 49893326.778, 49893406.653, 49893471.93, 49893495.472, 49893510.31, 49893593.136, 49893668.36, 49893690.138, 49893717.478, 49893841.341, 49893849.407, 49893918.451, 49893929.304, 49893965.073, 49893995.907, 49894105.083, 49894113.528, 49894207.766, 49894220.283, 49894229.309, 49894287.256, 49894296.334, 49894321.153, 49894394.072, 49894410.075, 49894426.245, 49894429.549, 49894486.508, 49894569.593, 49894596.175, 49894646.893, 49894684.32, 49894706.127, 49894730.259, 49894814.007, 49894846.182, 49894921.957, 49895075.836, 49895134.196, 49895411.552, 49895467.919, 49895581.219, 49895643.126, 49895681.785, 49895715.833, 49895717.103, 49895732.304, 49895747.613, 49895775.574, 49895797.26, 49895801.342, 49895905.897, 49895914.703, 49895933.794, 49895949.521, 49895999.669, 49896017.596, 49896189.338, 49896213.562, 49896231.62, 49896310.695, 49896462.188, 49896483.7, 49896508.985, 49896602.682, 49896631.951, 49896719.268, 49896806.399, 49896806.913, 49896872.332, 49897018.727, 49897124.196, 49897134.793, 49897213.913, 49897270.838, 49897284.028, 49897315.792, 49897330.168] plt.hist(x) plt.show() In my example, the axis should be scaled by 1e7 or 1e8, or displayed as rgular numbers--not 4.986e7. Why would anyone want this setting? How can I make the x axis numbers human-readable?
How to prevent numbers being changed to exponential form in Python matplotlib figure ax = plt.gca() ax.get_xaxis().get_major_formatter().set_useOffset(False) ax.get_xaxis().get_major_formatter().set_scientific(False) plt.draw()