For input values, i. e. x, y, z, n, I wanted to print all combinations as list comprehesion, where 0<=i<=x, 0<=j<=y, 0<=k<=z, where i+j+k != n.
How to do this? I was thinking about using itertools.permutations() but I don't know how. How to input these x, y, z, n in appropriate format?
Using itertools.product to get the cartesian product of all the ranges:
[triple for triple in itertools.product(range(x+1), range(y+1), range(z+1)) if sum(triple) != n]
[(i,j,k) for i in range(x+1) for j in range(y+1) for k in range(z+1) if i+j+k!=n]
Some timeit consideration. With x=10, y=8, z=6, n=10
This method (let's call it "triple for method") : 3.27 (sec for 50000 runs on my machine)
Barmar's method ("product/sum method) : 3.56
So, we all loose, since the best method (so far) is a compromise between those 2:
# Fastest so far
[(i,j,k) for i,j,k in itertools.product(range(x+1),range(y+1),range(z+1)) if i+j+k!=n]
So, the main idea is Barmar's one (using itertools.product). What makes their solution slower, is just the call to "sum", I think. Not that it is expansive, but compared to i+j+k...
So this 3rd solution avoid the triple for (well, not really. under the hood ".product" also have this triple for. But the difference is that my triple for is in interpreted python, while itertools.product is probably in compiled C code), and also avoid the call to sum. To the cost of handling 3 variables, but apparently it worth it. Timeit:
itertools/i+j+k method: 2.94
Generally speaking, for strictly identical task, one should favor itertools, because it is faster than real python for loops (well, compound list are not really for loops neither. But, still).
In this case, since computation is very fast anyway, a usually negligible difference (sum vs +) was sufficient to reverse the ranking. But we can get rid of it
Related
Closed. This question is opinion-based. It is not currently accepting answers.
Closed 4 years ago.
Locked. This question and its answers are locked because the question is off-topic but has historical significance. It is not currently accepting new answers or interactions.
Python has a built in function sum, which is effectively equivalent to:
def sum2(iterable, start=0):
return start + reduce(operator.add, iterable)
for all types of parameters except strings. It works for numbers and lists, for example:
sum([1,2,3], 0) = sum2([1,2,3],0) = 6 #Note: 0 is the default value for start, but I include it for clarity
sum({888:1}, 0) = sum2({888:1},0) = 888
Why were strings specially left out?
sum( ['foo','bar'], '') # TypeError: sum() can't sum strings [use ''.join(seq) instead]
sum2(['foo','bar'], '') = 'foobar'
I seem to remember discussions in the Python list for the reason, so an explanation or a link to a thread explaining it would be fine.
Edit: I am aware that the standard way is to do "".join. My question is why the option of using sum for strings was banned, and no banning was there for, say, lists.
Edit 2: Although I believe this is not needed given all the good answers I got, the question is: Why does sum work on an iterable containing numbers or an iterable containing lists but not an iterable containing strings?
Python tries to discourage you from "summing" strings. You're supposed to join them:
"".join(list_of_strings)
It's a lot faster, and uses much less memory.
A quick benchmark:
$ python -m timeit -s 'import operator; strings = ["a"]*10000' 'r = reduce(operator.add, strings)'
100 loops, best of 3: 8.46 msec per loop
$ python -m timeit -s 'import operator; strings = ["a"]*10000' 'r = "".join(strings)'
1000 loops, best of 3: 296 usec per loop
Edit (to answer OP's edit): As to why strings were apparently "singled out", I believe it's simply a matter of optimizing for a common case, as well as of enforcing best practice: you can join strings much faster with ''.join, so explicitly forbidding strings on sum will point this out to newbies.
BTW, this restriction has been in place "forever", i.e., since the sum was added as a built-in function (rev. 32347)
You can in fact use sum(..) to concatenate strings, if you use the appropriate starting object! Of course, if you go this far you have already understood enough to use "".join(..) anyway..
>>> class ZeroObject(object):
... def __add__(self, other):
... return other
...
>>> sum(["hi", "there"], ZeroObject())
'hithere'
Here's the source: http://svn.python.org/view/python/trunk/Python/bltinmodule.c?revision=81029&view=markup
In the builtin_sum function we have this bit of code:
/* reject string values for 'start' parameter */
if (PyObject_TypeCheck(result, &PyBaseString_Type)) {
PyErr_SetString(PyExc_TypeError,
"sum() can't sum strings [use ''.join(seq) instead]");
Py_DECREF(iter);
return NULL;
}
Py_INCREF(result);
}
So.. that's your answer.
It's explicitly checked in the code and rejected.
From the docs:
The preferred, fast way to concatenate a
sequence of strings is by calling
''.join(sequence).
By making sum refuse to operate on strings, Python has encouraged you to use the correct method.
Short answer: Efficiency.
Long answer: The sum function has to create an object for each partial sum.
Assume that the amount of time required to create an object is directly proportional to the size of its data. Let N denote the number of elements in the sequence to sum.
doubles are always the same size, which makes sum's running time O(1)×N = O(N).
int (formerly known as long) is arbitary-length. Let M denote the absolute value of the largest sequence element. Then sum's worst-case running time is lg(M) + lg(2M) + lg(3M) + ... + lg(NM) = N×lg(M) + lg(N!) = O(N log N).
For str (where M = the length of the longest string), the worst-case running time is M + 2M + 3M + ... + NM = M×(1 + 2 + ... + N) = O(N²).
Thus, summing strings would be much slower than summing numbers.
str.join does not allocate any intermediate objects. It preallocates a buffer large enough to hold the joined strings, and copies the string data. It runs in O(N) time, much faster than sum.
The Reason Why
#dan04 has an excellent explanation for the costs of using sum on large lists of strings.
The missing piece as to why str is not allowed for sum is that many, many people were trying to use sum for strings, and not many use sum for lists and tuples and other O(n**2) data structures. The trap is that sum works just fine for short lists of strings, but then gets put in production where the lists can be huge, and the performance slows to a crawl. This was such a common trap that the decision was made to ignore duck-typing in this instance, and not allow strings to be used with sum.
Edit: Moved the parts about immutability to history.
Basically, its a question of preallocation. When you use a statement such as
sum(["a", "b", "c", ..., ])
and expect it to work similar to a reduce statement, the code generated looks something like
v1 = "" + "a" # must allocate v1 and set its size to len("") + len("a")
v2 = v1 + "b" # must allocate v2 and set its size to len("a") + len("b")
...
res = v10000 + "$" # must allocate res and set its size to len(v9999) + len("$")
In each of these steps a new string is created, which for one might give some copying overhead as the strings are getting longer and longer. But that’s maybe not the point here. What’s more important, is that every new string on each line must be allocated to it’s specific size (which. I don’t know it it must allocate in every iteration of the reduce statement, there might be some obvious heuristics to use and Python might allocate a bit more here and there for reuse – but at several points the new string will be large enough that this won’t help anymore and Python must allocate again, which is rather expensive.
A dedicated method like join, however has the job to figure out the real size of the string before it starts and would therefore in theory only allocate once, at the beginning and then just fill that new string, which is much cheaper than the other solution.
I dont know why, but this works!
import operator
def sum_of_strings(list_of_strings):
return reduce(operator.add, list_of_strings)
Closed. This question is opinion-based. It is not currently accepting answers.
Closed 4 years ago.
Locked. This question and its answers are locked because the question is off-topic but has historical significance. It is not currently accepting new answers or interactions.
Python has a built in function sum, which is effectively equivalent to:
def sum2(iterable, start=0):
return start + reduce(operator.add, iterable)
for all types of parameters except strings. It works for numbers and lists, for example:
sum([1,2,3], 0) = sum2([1,2,3],0) = 6 #Note: 0 is the default value for start, but I include it for clarity
sum({888:1}, 0) = sum2({888:1},0) = 888
Why were strings specially left out?
sum( ['foo','bar'], '') # TypeError: sum() can't sum strings [use ''.join(seq) instead]
sum2(['foo','bar'], '') = 'foobar'
I seem to remember discussions in the Python list for the reason, so an explanation or a link to a thread explaining it would be fine.
Edit: I am aware that the standard way is to do "".join. My question is why the option of using sum for strings was banned, and no banning was there for, say, lists.
Edit 2: Although I believe this is not needed given all the good answers I got, the question is: Why does sum work on an iterable containing numbers or an iterable containing lists but not an iterable containing strings?
Python tries to discourage you from "summing" strings. You're supposed to join them:
"".join(list_of_strings)
It's a lot faster, and uses much less memory.
A quick benchmark:
$ python -m timeit -s 'import operator; strings = ["a"]*10000' 'r = reduce(operator.add, strings)'
100 loops, best of 3: 8.46 msec per loop
$ python -m timeit -s 'import operator; strings = ["a"]*10000' 'r = "".join(strings)'
1000 loops, best of 3: 296 usec per loop
Edit (to answer OP's edit): As to why strings were apparently "singled out", I believe it's simply a matter of optimizing for a common case, as well as of enforcing best practice: you can join strings much faster with ''.join, so explicitly forbidding strings on sum will point this out to newbies.
BTW, this restriction has been in place "forever", i.e., since the sum was added as a built-in function (rev. 32347)
You can in fact use sum(..) to concatenate strings, if you use the appropriate starting object! Of course, if you go this far you have already understood enough to use "".join(..) anyway..
>>> class ZeroObject(object):
... def __add__(self, other):
... return other
...
>>> sum(["hi", "there"], ZeroObject())
'hithere'
Here's the source: http://svn.python.org/view/python/trunk/Python/bltinmodule.c?revision=81029&view=markup
In the builtin_sum function we have this bit of code:
/* reject string values for 'start' parameter */
if (PyObject_TypeCheck(result, &PyBaseString_Type)) {
PyErr_SetString(PyExc_TypeError,
"sum() can't sum strings [use ''.join(seq) instead]");
Py_DECREF(iter);
return NULL;
}
Py_INCREF(result);
}
So.. that's your answer.
It's explicitly checked in the code and rejected.
From the docs:
The preferred, fast way to concatenate a
sequence of strings is by calling
''.join(sequence).
By making sum refuse to operate on strings, Python has encouraged you to use the correct method.
Short answer: Efficiency.
Long answer: The sum function has to create an object for each partial sum.
Assume that the amount of time required to create an object is directly proportional to the size of its data. Let N denote the number of elements in the sequence to sum.
doubles are always the same size, which makes sum's running time O(1)×N = O(N).
int (formerly known as long) is arbitary-length. Let M denote the absolute value of the largest sequence element. Then sum's worst-case running time is lg(M) + lg(2M) + lg(3M) + ... + lg(NM) = N×lg(M) + lg(N!) = O(N log N).
For str (where M = the length of the longest string), the worst-case running time is M + 2M + 3M + ... + NM = M×(1 + 2 + ... + N) = O(N²).
Thus, summing strings would be much slower than summing numbers.
str.join does not allocate any intermediate objects. It preallocates a buffer large enough to hold the joined strings, and copies the string data. It runs in O(N) time, much faster than sum.
The Reason Why
#dan04 has an excellent explanation for the costs of using sum on large lists of strings.
The missing piece as to why str is not allowed for sum is that many, many people were trying to use sum for strings, and not many use sum for lists and tuples and other O(n**2) data structures. The trap is that sum works just fine for short lists of strings, but then gets put in production where the lists can be huge, and the performance slows to a crawl. This was such a common trap that the decision was made to ignore duck-typing in this instance, and not allow strings to be used with sum.
Edit: Moved the parts about immutability to history.
Basically, its a question of preallocation. When you use a statement such as
sum(["a", "b", "c", ..., ])
and expect it to work similar to a reduce statement, the code generated looks something like
v1 = "" + "a" # must allocate v1 and set its size to len("") + len("a")
v2 = v1 + "b" # must allocate v2 and set its size to len("a") + len("b")
...
res = v10000 + "$" # must allocate res and set its size to len(v9999) + len("$")
In each of these steps a new string is created, which for one might give some copying overhead as the strings are getting longer and longer. But that’s maybe not the point here. What’s more important, is that every new string on each line must be allocated to it’s specific size (which. I don’t know it it must allocate in every iteration of the reduce statement, there might be some obvious heuristics to use and Python might allocate a bit more here and there for reuse – but at several points the new string will be large enough that this won’t help anymore and Python must allocate again, which is rather expensive.
A dedicated method like join, however has the job to figure out the real size of the string before it starts and would therefore in theory only allocate once, at the beginning and then just fill that new string, which is much cheaper than the other solution.
I dont know why, but this works!
import operator
def sum_of_strings(list_of_strings):
return reduce(operator.add, list_of_strings)
I have been browsing through the questions, and could find some help, but I prefer having confirmation by asking it directly. So here is my problem.
I have an (numpy) array u of dimension N, from which I want to build a square matrix k of dimension N^2. Basically, each matrix element k(i,j) is defined as k(i,j)=exp(-|u_i-u_j|^2).
My first naive way to do it was like this, which is, I believe, Fortran-like:
for i in range(N):
for j in range(N):
k[i][j]=np.exp(np.sum(-(u[i]-u[j])**2))
However, this is extremely slow. For N=1000, for example, it is taking around 15 seconds.
My other way to proceed is the following (inspired by other questions/answers):
i, j = np.ogrid[:N,:N]
k = np.exp(np.sum(-(u[i]-u[j])**2,axis=2))
This is way faster, as for N=1000, the result is almost instantaneous.
So I have two questions.
1) Why is the first method so slow, and why is the second one so fast ?
2) Is there a faster way to do it ? For N=10000, it is starting to take quite some time already, so I really don't know if this was the "right" way to do it.
Thank you in advance !
P.S: the matrix is symmetric, so there must also be a way to make the process faster by calculating only the upper half of the matrix, but my question was more related to the way to manipulate arrays, etc.
First, a small remark, there is no need to use np.sum if u can be re-written as u = np.arange(N). Which seems to be the case since you wrote that it is of dimension N.
1) First question:
Accessing indices in Python is slow, so best is to not use [] if there is a way to not use it. Plus you call multiple times np.exp and np.sum, whereas they can be called for vectors and matrices. So, your second proposal is better since you compute your k all in once, instead of elements by elements.
2) Second question:
Yes there is. You should consider using only numpy functions and not using indices (around 3 times faster):
k = np.exp(-np.power(np.subtract.outer(u,u),2))
(NB: You can keep **2 instead of np.power, which is a bit faster but has smaller precision)
edit (Take into account that u is an array of tuples)
With tuple data, it's a bit more complicated:
ma = np.subtract.outer(u[:,0],u[:,0])**2
mb = np.subtract.outer(u[:,1],u[:,1])**2
k = np.exp(-np.add(ma, mb))
You'll have to use twice np.substract.outer since it will return a 4 dimensions array if you do it in one time (and compute lots of useless data), whereas u[i]-u[j] returns a 3 dimensions array.
I used np.add instead of np.sum since it keep the array dimensions.
NB: I checked with
N = 10000
u = np.random.random_sample((N,2))
I returns the same as your proposals. (But 1.7 times faster)
Closed. This question is opinion-based. It is not currently accepting answers.
Closed 4 years ago.
Locked. This question and its answers are locked because the question is off-topic but has historical significance. It is not currently accepting new answers or interactions.
Python has a built in function sum, which is effectively equivalent to:
def sum2(iterable, start=0):
return start + reduce(operator.add, iterable)
for all types of parameters except strings. It works for numbers and lists, for example:
sum([1,2,3], 0) = sum2([1,2,3],0) = 6 #Note: 0 is the default value for start, but I include it for clarity
sum({888:1}, 0) = sum2({888:1},0) = 888
Why were strings specially left out?
sum( ['foo','bar'], '') # TypeError: sum() can't sum strings [use ''.join(seq) instead]
sum2(['foo','bar'], '') = 'foobar'
I seem to remember discussions in the Python list for the reason, so an explanation or a link to a thread explaining it would be fine.
Edit: I am aware that the standard way is to do "".join. My question is why the option of using sum for strings was banned, and no banning was there for, say, lists.
Edit 2: Although I believe this is not needed given all the good answers I got, the question is: Why does sum work on an iterable containing numbers or an iterable containing lists but not an iterable containing strings?
Python tries to discourage you from "summing" strings. You're supposed to join them:
"".join(list_of_strings)
It's a lot faster, and uses much less memory.
A quick benchmark:
$ python -m timeit -s 'import operator; strings = ["a"]*10000' 'r = reduce(operator.add, strings)'
100 loops, best of 3: 8.46 msec per loop
$ python -m timeit -s 'import operator; strings = ["a"]*10000' 'r = "".join(strings)'
1000 loops, best of 3: 296 usec per loop
Edit (to answer OP's edit): As to why strings were apparently "singled out", I believe it's simply a matter of optimizing for a common case, as well as of enforcing best practice: you can join strings much faster with ''.join, so explicitly forbidding strings on sum will point this out to newbies.
BTW, this restriction has been in place "forever", i.e., since the sum was added as a built-in function (rev. 32347)
You can in fact use sum(..) to concatenate strings, if you use the appropriate starting object! Of course, if you go this far you have already understood enough to use "".join(..) anyway..
>>> class ZeroObject(object):
... def __add__(self, other):
... return other
...
>>> sum(["hi", "there"], ZeroObject())
'hithere'
Here's the source: http://svn.python.org/view/python/trunk/Python/bltinmodule.c?revision=81029&view=markup
In the builtin_sum function we have this bit of code:
/* reject string values for 'start' parameter */
if (PyObject_TypeCheck(result, &PyBaseString_Type)) {
PyErr_SetString(PyExc_TypeError,
"sum() can't sum strings [use ''.join(seq) instead]");
Py_DECREF(iter);
return NULL;
}
Py_INCREF(result);
}
So.. that's your answer.
It's explicitly checked in the code and rejected.
From the docs:
The preferred, fast way to concatenate a
sequence of strings is by calling
''.join(sequence).
By making sum refuse to operate on strings, Python has encouraged you to use the correct method.
Short answer: Efficiency.
Long answer: The sum function has to create an object for each partial sum.
Assume that the amount of time required to create an object is directly proportional to the size of its data. Let N denote the number of elements in the sequence to sum.
doubles are always the same size, which makes sum's running time O(1)×N = O(N).
int (formerly known as long) is arbitary-length. Let M denote the absolute value of the largest sequence element. Then sum's worst-case running time is lg(M) + lg(2M) + lg(3M) + ... + lg(NM) = N×lg(M) + lg(N!) = O(N log N).
For str (where M = the length of the longest string), the worst-case running time is M + 2M + 3M + ... + NM = M×(1 + 2 + ... + N) = O(N²).
Thus, summing strings would be much slower than summing numbers.
str.join does not allocate any intermediate objects. It preallocates a buffer large enough to hold the joined strings, and copies the string data. It runs in O(N) time, much faster than sum.
The Reason Why
#dan04 has an excellent explanation for the costs of using sum on large lists of strings.
The missing piece as to why str is not allowed for sum is that many, many people were trying to use sum for strings, and not many use sum for lists and tuples and other O(n**2) data structures. The trap is that sum works just fine for short lists of strings, but then gets put in production where the lists can be huge, and the performance slows to a crawl. This was such a common trap that the decision was made to ignore duck-typing in this instance, and not allow strings to be used with sum.
Edit: Moved the parts about immutability to history.
Basically, its a question of preallocation. When you use a statement such as
sum(["a", "b", "c", ..., ])
and expect it to work similar to a reduce statement, the code generated looks something like
v1 = "" + "a" # must allocate v1 and set its size to len("") + len("a")
v2 = v1 + "b" # must allocate v2 and set its size to len("a") + len("b")
...
res = v10000 + "$" # must allocate res and set its size to len(v9999) + len("$")
In each of these steps a new string is created, which for one might give some copying overhead as the strings are getting longer and longer. But that’s maybe not the point here. What’s more important, is that every new string on each line must be allocated to it’s specific size (which. I don’t know it it must allocate in every iteration of the reduce statement, there might be some obvious heuristics to use and Python might allocate a bit more here and there for reuse – but at several points the new string will be large enough that this won’t help anymore and Python must allocate again, which is rather expensive.
A dedicated method like join, however has the job to figure out the real size of the string before it starts and would therefore in theory only allocate once, at the beginning and then just fill that new string, which is much cheaper than the other solution.
I dont know why, but this works!
import operator
def sum_of_strings(list_of_strings):
return reduce(operator.add, list_of_strings)
I have an iterator of numbers, for example a file object:
f = open("datafile.dat")
now I want to compute:
mean = get_mean(f)
sigma = get_sigma(f, mean)
What is the best implementation? Suppose that the file is big and I would like to avoid to read it twice.
If you want to iterate once, you can write your sum function:
def mysum(l):
s2 = 0
s = 0
for e in l:
s += e
s2 += e * e
return (s, s2)
and use the result in your sigma function.
Edit: now you can calculate the variance like this: (s2 - (s*s) / N) / N
By taking account of #Adam Bowen's comment,
keep in mind that if we use mathematical tricks and transform the original formulas
we may degrade the results.
I think Nick D has the correct answer.
Assuming you want to compute both mean and variance in one sweep of the file (and you don't really want two functions that have to be called one after the other), you can collect the sum of the values and of their squares and them use such sums (toghether with the number of read elements) to compute at the same time mean and variance.
There are some numerical stability issues, but the idea in
http://en.wikipedia.org/wiki/Computational_formula_for_the_variance
is the basic ingredient you need. Some more details are at
http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
where I suggest you to read the "Naïve algorithm".
Hope this helps,
Massimo
You can compute both in one pass. See:
http://www.johndcook.com/standard_deviation.html
Make a list from the iterable, or use itertools.tee().
I am not sure there is much choice.
You will have to iterate your numbers twice in any case as the standard deviation will require the mean information on each value.
If you have enough memory, you can gain on the I/O access by loading your file in memory during the first iteration but that is about it IMO.
As I feel that there are good elements scattered in multiple answers, I would like to summarize:
If your file is too big to conveniently fit in memory, and if you want a good precision in the variance, you do need to read the file twice (with one pass, the variance is the difference between two large numbers, which is not precise because of floating point limitations). Note that your operating system is likely to provide some automatic speed-up for the second file reading, as it may still be in RAM during the second pass.
If you do not care for the precision of the variance, you can simply iterate once over the file and calculate the quantities suggested by Nick D, with the details provided in the comment by Adam Bowen.
You have two solutions
Make a list out of your iterator and loop it as many time as you wish. Drawback is everything will be in memory, so not suitable if your file is big. Simple use of itertools.tee also will not save you
There is no other solution , unless , you do not need to pass output of get_mean to get_sigma, because in that case they can only be in series, but if you remove this restriction then you can run both functions in parallel using threads, and use itertools.tee to have two iterators from one
You can use map reduce in an elegant fashion way
sample is the list you want to get its variance
sample = [a,b,c, ...]
mean = float(reduce(lambda x,y : x+y, sample)) / len(sample)
variance = reduce(lambda x,y: x+y, map(lambda xi: (xi-mean)**2, sample))/ len(sample)
In a succinct line of code:
variance = reduce(lambda x,y: x+y, map(lambda xi: (xi-(float(reduce(lambda x,y : x+y, sample)) / len(sample)))**2, sample))/ len(sample)