I saved one data set(200 double data values) from Keil, it turns to be a .hex file with IntelHex format, I installed IntelHex in python and load it. Now the problem is I do not know how to interpret it, for example, this post
tells you to use dict, but it does not work for hex file including double data. my code:
from intelhex import IntelHex
ih = IntelHex() # create empty object
ih.loadhex('output.hex')
ihdict = ih.todict()
datastr = ""
startAddress = 536871952
while ihdict.get(startAddress) != None:
datastr += str("%0.2X" %ihdict.get(startAddress))
startAddress += 1
the file output.hex:
:020000042000DA
:0802A8003FB7809F5BC03F409F
:1002B000DFB56EEF5AB73F407F717CBF38BE3F401D
:1002C000DFD369EFE9B43F407F717CBF38BE3F4068
:1002D0003F895E9F44AF3F401F706A0F38B53F4073
:1002E0009F20584F10AC3F405F5F72AF2FB93F4027
:1002F000DFB56EEF5AB73F40DF5B7DEFADBE3F40ED
:10030000BFA364DF51B23F40DF62676FB1B33F40CC
:100310001F9E8C0F4FC63F405F0C6B2F86B53F4032
:10032000BF7542DF3AA13F403F4D689F26B43F4032
:100330009F2742CF13A13F40DF2D5BEF96AD3F409B
:100340009F915ACF48AD3F40DF874CEF43A63F40D7
:100350007FD2573FE9AB3F40FD721E7F398F3F4050
:10036000FF892FFFC4973F409D5311CFA9883F407D
:100370001F706A0F38B53F407F78663F3CB33F40FF
:100380001DFD148F7E8A3F401F954F8FCAA73F40A7
:100390005FC04D2FE0A63F401F0D3C8F069E3F40A3
:1003A0007F4A443F25A23F40DFE13DEFF09E3F40C2
:1003B0003F185C1F0CAE3F403F79379FBC9B3F40CE
:1003C000FF2F3EFF179F3F40DFBC586F5EAC3F40A2
:1003D000FD36287F1B943F403F3D419F9EA03F40FC
:1003E000FFFA317FFD983F409FF2354FF99A3F4029
:1003F0007D0511BF82883F40DF703B6FB89D3F4055
:10040000FF1143FF88A13F40DD60146F308A3F40F9
:100410001F49328F24993F407D230CBF11863F40F6
:100420009DBD29CFDE943F40BFED2EDF76973F4044
:10043000DDBA056FDD823F407D58183F2C8C3F4070
:100440007F3333BF99993F40DD9C0A6F4E853F4013
:100450007F3333BF99993F403DBC171FDE8B3F4030
:10046000BDF4185F7A8C3F403D16091F8B843F40D6
:100470003DE1FC9E707E3F40DD0D0DEF86863F40E6
:100480003F1F469F0FA33F403DFFF79EFF7B3F402E
:10049000DD42196FA18C3F40BDC6F65E637B3F40D5
:1004A0009D5AFB4EAD7D3F40FD4BE6FE25733F4020
:1004B0001D12D30E89693F403D8EF51EC77A3F401D
:1004C0003DBC171FDE8B3F409D7FE0CE3F703F401D
:1004D000BD6C055FB6823F40DD4903EFA4813F401C
:1004E000DD14F76E8A7B3F40DDF6FB6EFB7D3F40FF
:1004F000BD20E85E10743F40DD6EE86E37743F400B
:100500001DB1F78ED87B3F407DFCD33EFE693F4056
:100510009D4C274FA6933F407DD7EEBE6B773F4063
:10052000DDAADE6E556F3F401D55B38EAA593F4080
:100530009DF7CCCE7B663F40DDCFC3EEE7613F4009
:10054000BDF2C55EF9623F40BD7AD95EBD6C3F40E9
:100550005D90D82E486C3F40BD7AD95EBD6C3F405F
:100560003D67BD9EB35E3F403D0DCC9E06663F405D
:10057000BD88AD5EC4563F40BDA6A85E53543F4003
:10058000BDD4CA5E6A653F40FD95B0FE4A583F4003
:100590003DA3B39ED1593F405DF89D2EFC4E3F4098
:1005A000FD69E1FEB4703F40FD59BAFE2C5D3F404D
:1005B000BD63C8DE31643F407DB0B63E585B3F400E
:1005C0001DCD9F8EE64F3F405DEAC92EF5643F404A
:1005D000FD4993FEA4493F405D8E852EC7423F40B2
:1005E0007D4D88BE26443F401D3EA20E1F513F4018
:1005F0003D938C9E49463F40FD7E9F7EBF4F3F40CE
:10060000DDB1C8EE58643F40BD7F70DE3F383F40EB
:100610005DBCA72EDE533F409D4197CEA04B3F408F
:100620003D0B799E853C3F403D0B799E853C3F408C
:10063000BD7F70DE3F383F407D6B83BEB5413F409C
:10064000FD32827E19413F409D2A864E15433F4030
:10065000FDEFA1FEF7503F401DC4620E62313F40E6
:100660003D476F9EA3373F401D98930ECC493F40B6
:100670001D53608E29303F403DF4671EFA333F40E2
:100680003D048F1E82473F407D726D3EB9363F402C
:10069000FDF68B7EFB453F40FD5767FEAB333F4089
:1006A0005D7774AE3B3A3F40BD2C695E96343F4067
:1006B0009DF579CEFA3C3F40DD4C476EA6233F4086
:1006C0001D1E540E0F2A3F407DE36FBEF1373F40A1
:1006D000FD7C4C7E3E263F40DD8153EEC0293F40ED
:1006E0009D034ECE01273F409D1375CE893A3F4072
:1006F000DDC4336EE2193F407D444B3EA2253F40AE
:100700005DD84F2EEC273F407D0F3FBE871F3F40F7
:100710007DF143BEF8213F40BDE04B5EF0253F40F8
:100720005D8548AE42243F405DD84F2EEC273F40C8
:100730007D5B5CBE2D2E3F40FD40567E202B3F4012
:10074000BD514EDE28273F40FD2945FE94223F4003
:100750001DD9208E6C103F409DE552CE72293F403E
:100760003D91399EC81C3F407D16293E8B143F4069
:100770007D6930BE34183F409D9935CECC1A3F403C
:100780005DFD34AE7E1A3F409DB730CE5B183F40D2
:100790003DAF349E571A3F405D8C322E46193F4084
:1007A0003D81129E40093F405DC8282E64143F40A1
:1007B0007D34243E1A123F405DC13EAE601F3F4073
:1007C0003D2E0B1E97053F405D6E372EB71B3F40F9
:1007D0003D09269E04133F403DCD2F9EE6173F4026
:1007E000BD6F49DEB7243F403D5C2D1EAE163F4035
:1007F0001DE00A0E70053F403DBD089E5E043F406F
:100800009D890ECE44073F401D86190EC30C3F4004
:10081000BDD70EDE6B073F401DBB258EDD123F406E
:100820001DBB258EDD123F407D06023E03013F4089
:10083000BDD0245E68123F40FDA81B7ED40D3F4012
:100840005D14462E0A233F40FD12347E091A3F40B4
:100850009D180C4E0C063F401D681E0E340F3F4085
:100860001D510D8EA8063F403DD4191EEA0C3F4095
:100870001B94ED0DCAF63E405D40152EA00A3F4088
:100880009D64294EB2143F407DF82D3EFC163F403A
:100890001DD9208E6C103F405DE6232EF3113F40A2
:1008A0007DA526BE52133F40BDB913DEDC093F4093
:1008B0005D2904AE14023F40BBE5E2DD72F13E402B
:1008C0009D180C4E0C063F40BD84075EC2033F409E
:1008D0005D221A2E110D3F40FDC6167E630B3F4070
:0108E0009D7A
:00000001FF
Assuming the data represents a list of 64-bit floating point numbers that you want to decode, the process is to collect the appropriate number of octets and decode them as a double.
Reusing the structure you presented:
from intelhex import IntelHex
import struct
ih = IntelHex()
ih.loadhex('output.hex')
ihdict = ih.todict()
# Read all the data into a long list of int octets
data = []
startAddress = 536871952
while ihdict.get(startAddress) is not None:
data.append(ihdict.get(startAddress))
startAddress += 1
# slice the list into 8-byte bytearrays
bin_arr = [bytearray(data[n:n+8]) for n in range(0, len(data), 8)]
# unpack each bytearray as a double
# Filter for 8 byte arrays because len(data) is not divisible by 8.
# Is the data properly aligned?
doubles_list = [struct.unpack('d', b) for b in bin_arr if len(b) == 8]
print(doubles_list)
It may be worth mentioning that the above assumes a big endian byte ordering. I believe you can use < as part of the format definition to assume a little endian ordering. More information is available in the struct.unpack docs.
I am very new at using Python and very rusty with C, so I apologize in advance for how dumb and/or lost I sound.
I have function in C that creates a .dat file containing data. I am opening the file using Python to read the file. One of the things I need to read are a struct that was created in the C function and printed in binary. In my Python code I am at the appropriate line of the file to read in the struct. I have tried both unpacking the stuct item by item and as a whole without success. Most of the items in the struct were declared 'real' in the C code. I am working on this code with someone else and the main source code is his and has declared the variables as 'real'. I need to put this in a loop because I want to read all of the files in the directory that end in '.dat'. To start the loop I have:
for files in os.listdir(path):
if files.endswith(".dat"):
part = open(path + files, "rb")
for line in part:
Which then I read all of the lines previous to the one containing the struct. Then I get to that line and have:
part_struct = part.readline()
r = struct.unpack('<d8', part_struct[0])
I'm trying to just read the first thing stored in the struct. I saw an example of this somewhere on here. And when I try this I'm getting an error that reads:
struct.error: repeat count given without format specifier
I will take any and all tips someone can give me. I have been stuck on this for a few days and have tried many different things. To be honest, I think I don't understand the struct module but I've read as much as I could on it.
Thanks!
You could use ctypes.Structure or struct.Struct to specify format of the file. To read structures from the file produced by C code in #perreal's answer:
"""
struct { double v; int t; char c;};
"""
from ctypes import *
class YourStruct(Structure):
_fields_ = [('v', c_double),
('t', c_int),
('c', c_char)]
with open('c_structs.bin', 'rb') as file:
result = []
x = YourStruct()
while file.readinto(x) == sizeof(x):
result.append((x.v, x.t, x.c))
print(result)
# -> [(12.100000381469727, 17, 's'), (12.100000381469727, 17, 's'), ...]
See io.BufferedIOBase.readinto(). It is supported in Python 3 but it is undocumented in Python 2.7 for a default file object.
struct.Struct requires to specify padding bytes (x) explicitly:
"""
struct { double v; int t; char c;};
"""
from struct import Struct
x = Struct('dicxxx')
with open('c_structs.bin', 'rb') as file:
result = []
while True:
buf = file.read(x.size)
if len(buf) != x.size:
break
result.append(x.unpack_from(buf))
print(result)
It produces the same output.
To avoid unnecessary copying Array.from_buffer(mmap_file) could be used to get an array of structs from a file:
import mmap # Unix, Windows
from contextlib import closing
with open('c_structs.bin', 'rb') as file:
with closing(mmap.mmap(file.fileno(), 0, access=mmap.ACCESS_COPY)) as mm:
result = (YourStruct * 3).from_buffer(mm) # without copying
print("\n".join(map("{0.v} {0.t} {0.c}".format, result)))
Some C code:
#include <stdio.h>
typedef struct { double v; int t; char c;} save_type;
int main() {
save_type s = { 12.1f, 17, 's'};
FILE *f = fopen("output", "w");
fwrite(&s, sizeof(save_type), 1, f);
fwrite(&s, sizeof(save_type), 1, f);
fwrite(&s, sizeof(save_type), 1, f);
fclose(f);
return 0;
}
Some Python code:
import struct
with open('output', 'rb') as f:
chunk = f.read(16)
while chunk != "":
print len(chunk)
print struct.unpack('dicccc', chunk)
chunk = f.read(16)
Output:
(12.100000381469727, 17, 's', '\x00', '\x00', '\x00')
(12.100000381469727, 17, 's', '\x00', '\x00', '\x00')
(12.100000381469727, 17, 's', '\x00', '\x00', '\x00')
but there is also the padding issue. The padded size of save_type is 16, so we read 3 more characters and ignore them.
A number in the format specifier means a repeat count, but it has to go before the letter, like '<8d'. However you said you just want to read one element of the struct. I guess you just want '<d'. I guess you are trying to specify the number of bytes to read as 8, but you don't need to do that. d assumes that.
I also noticed you are using readline. That seems wrong for reading binary data. It will read until the next carriage return / line feed, which will occur randomly in binary data. What you want to do is use read(size), like this:
part_struct = part.read(8)
r = struct.unpack('<d', part_struct)
Actually, you should be careful, as read can return less data than you request. You need to repeat it if it does.
part_struct = b''
while len(part_struct) < 8:
data = part.read(8 - len(part_struct))
if not data: raise IOException("unexpected end of file")
part_struct += data
r = struct.unpack('<d', part_struct)
I had same problem recently, so I had made module for the task, stored here: http://pastebin.com/XJyZMyHX
example code:
MY_STRUCT="""typedef struct __attribute__ ((__packed__)){
uint8_t u8;
uint16_t u16;
uint32_t u32;
uint64_t u64;
int8_t i8;
int16_t i16;
int32_t i32;
int64_t i64;
long long int lli;
float flt;
double dbl;
char string[12];
uint64_t array[5];
} debugInfo;"""
PACKED_STRUCT='\x01\x00\x01\x00\x00\x01\x00\x00\x00\x00\x00\x01\x00\x00\x00\xff\x00\xff\x00\x00\xff\xff\x00\x00\x00\x00\xff\xff\xff\xff*\x00\x00\x00\x00\x00\x00\x00ff\x06#\x14\xaeG\xe1z\x14\x08#testString\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x05\x00\x00\x00\x00\x00\x00\x00'
if __name__ == '__main__':
print "String:"
print depack_bytearray_to_str(PACKED_STRUCT,MY_STRUCT,"<" )
print "Bytes in Stuct:"+str(structSize(MY_STRUCT))
nt=depack_bytearray_to_namedtuple(PACKED_STRUCT,MY_STRUCT,"<" )
print "Named tuple nt:"
print nt
print "nt.string="+nt.string
The result should be:
String:
u8:1
u16:256
u32:65536
u64:4294967296
i8:-1
i16:-256
i32:-65536
i64:-4294967296
lli:42
flt:2.09999990463
dbl:3.01
string:u'testString\x00\x00'
array:(1, 2, 3, 4, 5)
Bytes in Stuct:102
Named tuple nt:
CStruct(u8=1, u16=256, u32=65536, u64=4294967296L, i8=-1, i16=-256, i32=-65536, i64=-4294967296L, lli=42, flt=2.0999999046325684, dbl=3.01, string="u'testString\\x00\\x00'", array=(1, 2, 3, 4, 5))
nt.string=u'testString\x00\x00'
Numpy can be used to read/write binary data. You just need to define a custom np.dtype instance that defines the memory layout of your c-struct.
For example, here is some C++ code defining a struct (should work just as well for C structs, though I'm not a C expert):
struct MyStruct {
uint16_t FieldA;
uint16_t pad16[3];
uint32_t FieldB;
uint32_t pad32[2];
char FieldC[4];
uint64_t FieldD;
uint64_t FieldE;
};
void write_struct(const std::string& fname, MyStruct h) {
// This function serializes a MyStruct instance and
// writes the binary data to disk.
std::ofstream ofp(fname, std::ios::out | std::ios::binary);
ofp.write(reinterpret_cast<const char*>(&h), sizeof(h));
}
Based on the advice I found at stackoverflow.com/a/5397638, I've included some padding in the struct (the pad16 and pad32 fields) so that serialization will happen in a more predictable way. I think that this is a C++ thing; it might not be necessary when using plain ol' C structs.
Now, in python, we create a numpy.dtype object describing the memory-layout of MyStruct:
import numpy as np
my_struct_dtype = np.dtype([
("FieldA" , np.uint16 , ),
("pad16" , np.uint16 , (3,) ),
("FieldB" , np.uint32 ),
("pad32" , np.uint32 , (2,) ),
("FieldC" , np.byte , (4,) ),
("FieldD" , np.uint64 ),
("FieldE" , np.uint64 ),
])
Then use numpy's fromfile to read the binary file where you've saved your c-struct:
# read data
struct_data = np.fromfile(fpath, dtype=my_struct_dtype, count=1)[0]
FieldA = struct_data["FieldA"]
FieldB = struct_data["FieldB"]
FieldC = struct_data["FieldC"]
FieldD = struct_data["FieldD"]
FieldE = struct_data["FieldE"]
if FieldA != expected_value_A:
raise ValueError("Bad FieldA, got %d" % FieldA)
if FieldB != expected_value_B:
raise ValueError("Bad FieldB, got %d" % FieldB)
if FieldC.tobytes() != b"expc":
raise ValueError("Bad FieldC, got %s" % FieldC.tobytes().decode())
...
The count=1 argument in the above call np.fromfile(..., count=1) is so that the returned array will have only one element; this means "read the first struct instance from the file". Note that I am indexing [0] to get that element out of the array.
If you have appended the data from many c-structs to the same file, you can use fromfile(..., count=n) to read n struct instances into a numpy array of shape (n,). Setting count=-1, which is the default for the np.fromfile and np.frombuffer functions, means "read all of the data", resulting in a 1-dimensional array of shape (number_of_struct_instances,).
You can also use the offset keyword argument to np.fromfile to control where in the file the data read will begin.
To conclude, here are some numpy functions that will be useful once your custom dtype has been defined:
Reading binary data as a numpy array:
np.frombuffer(bytes_data, dtype=...):
Interpret the given binary data (e.g. a python bytes instance)
as a numpy array of the given dtype. You can define a custom
dtype that describes the memory layout of your c struct.
np.fromfile(filename, dtype=...):
Read binary data from filename. Should be the same result as
np.frombuffer(open(filename, "rb").read(), dtype=...).
Writing a numpy array as binary data:
ndarray.tobytes():
Construct a python bytes instance containing
raw data from the given numpy array. If the array's data has dtype
corresponding to a c-struct, then the bytes coming from
ndarray.tobytes can be deserialized
by c/c++ and interpreted as an (array of) instances of that c-struct.
ndarray.tofile(filename):
Binary data from the array is written to filename.
This data could then be deserialized by c/c++.
Equivalent to open("filename", "wb").write(a.tobytes()).
I want to build a small formatter in python giving me back the numeric
values embedded in lines of hex strings.
It is a central part of my formatter and should be reasonable fast to
format more than 100 lines/sec (each line about ~100 chars).
The code below should give an example where I'm currently blocked.
'data_string_in_orig' shows the given input format. It has to be
byte swapped for each word. The swap from 'data_string_in_orig' to
'data_string_in_swapped' is needed. In the end I need the structure
access as shown. The expected result is within the comment.
Thanks in advance
Wolfgang R
#!/usr/bin/python
import binascii
import struct
## 'uint32 double'
data_string_in_orig = 'b62e000052e366667a66408d'
data_string_in_swapped = '2eb60000e3526666667a8d40'
print data_string_in_orig
packed_data = binascii.unhexlify(data_string_in_swapped)
s = struct.Struct('<Id')
unpacked_data = s.unpack_from(packed_data, 0)
print 'Unpacked Values:', unpacked_data
## Unpacked Values: (46638, 943.29999999943209)
exit(0)
array.arrays have a byteswap method:
import binascii
import struct
import array
x = binascii.unhexlify('b62e000052e366667a66408d')
y = array.array('h', x)
y.byteswap()
s = struct.Struct('<Id')
print(s.unpack_from(y))
# (46638, 943.2999999994321)
The h in array.array('h', x) was chosen because it tells array.array to regard the data in x as an array of 2-byte shorts. The important thing is that each item be regarded as being 2-bytes long. H, which signifies 2-byte unsigned short, works just as well.
This should do exactly what unutbu's version does, but might be slightly easier to follow for some...
from binascii import unhexlify
from struct import pack, unpack
orig = unhexlify('b62e000052e366667a66408d')
swapped = pack('<6h', *unpack('>6h', orig))
print unpack('<Id', swapped)
# (46638, 943.2999999994321)
Basically, unpack 6 shorts big-endian, repack as 6 shorts little-endian.
Again, same thing that unutbu's code does, and you should use his.
edit Just realized I get to use my favorite Python idiom for this... Don't do this either:
orig = 'b62e000052e366667a66408d'
swap =''.join(sum([(c,d,a,b) for a,b,c,d in zip(*[iter(orig)]*4)], ()))
# '2eb60000e3526666667a8d40'
The swap from 'data_string_in_orig' to 'data_string_in_swapped' may also be done with comprehensions without using any imports:
>>> d = 'b62e000052e366667a66408d'
>>> "".join([m[2:4]+m[0:2] for m in [d[i:i+4] for i in range(0,len(d),4)]])
'2eb60000e3526666667a8d40'
The comprehension works for swapping byte order in hex strings representing 16-bit words. Modifying it for a different word-length is trivial. We can make a general hex digit order swap function also:
def swap_order(d, wsz=4, gsz=2 ):
return "".join(["".join([m[i:i+gsz] for i in range(wsz-gsz,-gsz,-gsz)]) for m in [d[i:i+wsz] for i in range(0,len(d),wsz)]])
The input params are:
d : the input hex string
wsz: the word-size in nibbles (e.g for 16-bit words wsz=4, for 32-bit words wsz=8)
gsz: the number of nibbles which stay together (e.g for reordering bytes gsz=2, for reordering 16-bit words gsz = 4)
import binascii, tkinter, array
from tkinter import *
infile_read = filedialog.askopenfilename()
with open(infile, 'rb') as infile_:
infile_read = infile_.read()
x = (infile_read)
y = array.array('l', x)
y.byteswap()
swapped = (binascii.hexlify(y))
This is a 32 bit unsigned short swap i achieved with code very much the same as "unutbu's" answer just a little bit easier to understand. And technically binascii is not needed for the swap. Only array.byteswap is needed.
I need a python program to use a TCP connection(to another program) to retrieve sets of 9 bytes.
The first of the nine bytes represents a char, and the rest represent a double.
How can I extract this information from a python socket? Will I have to do the maths manually to convert the stream data or is there a better way?
Take a look at python struct
http://docs.python.org/library/struct.html
So something like
from struct import unpack
unpack('cd',socket_read_buffer)
--> ('c', 3.1415)
Be careful of Endianness.
If both client and server are written in python, I'd suggest you use pickle. It lets you convert python variables to bytes and then back to python variables with their original type.
#SENDER
import pickle, struct
#convert the variable to bytes with pickle
bytes = pickle.dumps(original_variable)
#convert its size to a 4 bytes int (in bytes)
#I: 4 bytes unsigned int
#!: network (= big-endian)
length = struct.pack("!I", len(bytes))
a_socket.sendall(length)
a_socket.sendall(bytes)
#RECEIVER
import pickle, struct
#This function lets you receive a given number of bytes and regroup them
def recvall(socket, count):
buf = b""
while count > 0:
newbuf = socket.recv(count)
if not newbuf: return None
buf += newbuf
count -= len(newbuf)
return buf
length, = struct.unpack("!I", recvall(socket, 4)) #we know the first reception is 4 bytes
original_variable = pickle.loads(recval(socket, length))
I'm writing a client for a P2P application at the minute and the spec for the protocol says that the header for each packet should have each field with a particular byte length like so:
Version: 1 Byte
Type: 1 Byte
Length: 2 Bytes
And then the data
I've got the way of packing and unpacking the header fields (I think) like this:
packed = struct.pack('cch' , '1' , '1' , 26)
This constructs a header for a packet with a data length of 26, but when it comes to unpacking the data I'm unsure how to go about getting the rest of the data afterwards. To unpack we need to know the size of all the fields, unless I'm missing something? I guess to pack the data I'd use a format indicator 'cch26s' meaning:
1 Byte char
1 Byte char
2 Byte short
26 Byte char array
But how do I unpack the data when I don't know how much data will be included in the packet first?
The way you're describing the protocol, you should unpack the first four bytes first, and extract Length (a 16-bit int). This tells you how many bytes to unpack in a second step.
version, type, length = struct.unpack("cch", packed[:4])
content, = struct.unpack("%ds" % length, packed[4:])
This is if everything checks out. unpack() requires that the packed buffer contain exactly as much data as you unpack. Also, check whether the 4 header bytes are included in the length count.
You can surmise the number of characters to unpack by inspecting len(data).
Here is a helper function which does this for you:
def unpack(fmt, astr):
"""
Return struct.unpack(fmt, astr) with the optional single * in fmt replaced with
the appropriate number, given the length of astr.
"""
# http://stackoverflow.com/a/7867892/190597
try:
return struct.unpack(fmt, astr)
except struct.error:
flen = struct.calcsize(fmt.replace('*', ''))
alen = len(astr)
idx = fmt.find('*')
before_char = fmt[idx-1]
n = (alen-flen)/struct.calcsize(before_char)+1
fmt = ''.join((fmt[:idx-1], str(n), before_char, fmt[idx+1:]))
return struct.unpack(fmt, astr)
You can use it like this:
unpack('cchs*', data)