How does dot operator relate to Namespaces? - python

As i was going through python basics and introduction one thing that really confuses me is namespaces. I cant seem to understand how they work.
For instance in Cs50 course they brush over the concept but i wanted to get clearer understanding of it if possible because it seems very important to grasp. For example this code:
import cs50
x = get_int("x: ")
y = get_int("y: ")
print(x + y)
Causes this error:
python calculator.py
Traceback (most recent call last):
File "/workspaces/20377622/calculator.py", line 3, in
x = get_int("x: ")
NameError: name 'get_int' is not defined
What is wonder is why when cs50.get_int() is written instead interpreter doesn't throw an error? Is it because cs50 library is seen as its own namespace structure and . goes into that structure to get_int location? What does . operator do exactly here in terms of namespaces ?

You import cs50, so you have a name "cs50", you can use
cs50.get_int()
but namespaces has no name get_int.
You can use from cs50 import get_int to import name "get_int"

To answer this question, let's talk about modules.
In Python, "module" is used to refer to two things. First, a piece of code, usually a .py file. Second, the object that is created for the namespace of that code when it is run.
When you do import foo, a couple of things happen.
Python checks if foo has already been imported. If so, it skips to the last step.
Python looks up where it can find foo, for example if there is a foo.py in the right place.
Python creates a fresh namespace object and stores a reference to it in sys.modules['foo']
Python runs the code that it found, using that namespace object as its "global" namespace.
Python goes back to the importing module, and adds a global variable foo in the namespace of importing module that points to sys.modules['foo'].
You can then access any global variable bar that was created in the foo.py module by using foo.bar.
You could also use from cs50 import get_int which works like this:
import cs50
get_int = cs50.get_int
... except that the name cs50 is not assigned to.
If you're asking why it works that way: this way different modules can define the same name for classes, functions or constants, and they won't conflict with each other.
Now, if you know you're only using get_int from cs50, and you don't have any other get_int either in your main module or that you imported, the from ... import syntax is very useful to not have to write cs50.get_int every time you want to use it.

Related

List not defined when importing a function

I made two modules in Python. The other one is a sentinel-controlled loop that asks for the data and the other module contains the functions needed for computation. When I import Module 2 (module with functions), I get a Name Error.
NameError: name 'x' is not defined
where x is the argument of my function
convert(x)
but x is a defined list in Module 1 (sentinel-controlled loop) where I store data. I can't figure out why the imported module does not consider it.
I imported the other module as
import ModuleName
What could be the problem?
Disclaimer: I'm a beginner in Python so I'm not really very familiar with it.
It has to do with the way you import. There are a couple of ways to resolve this.
In the example below, you import module_name and then call function x in the proper namespace.
import module_name
module_name.x()
Another way would be to explicitly import function x from module_name.
from module_name import x
x()
I highly advise you to do some reading on how importing works in python, w3schools is always a good starting point.

accessing and changing module level variable [duplicate]

I've run into a bit of a wall importing modules in a Python script. I'll do my best to describe the error, why I run into it, and why I'm tying this particular approach to solve my problem (which I will describe in a second):
Let's suppose I have a module in which I've defined some utility functions/classes, which refer to entities defined in the namespace into which this auxiliary module will be imported (let "a" be such an entity):
module1:
def f():
print a
And then I have the main program, where "a" is defined, into which I want to import those utilities:
import module1
a=3
module1.f()
Executing the program will trigger the following error:
Traceback (most recent call last):
File "Z:\Python\main.py", line 10, in <module>
module1.f()
File "Z:\Python\module1.py", line 3, in f
print a
NameError: global name 'a' is not defined
Similar questions have been asked in the past (two days ago, d'uh) and several solutions have been suggested, however I don't really think these fit my requirements. Here's my particular context:
I'm trying to make a Python program which connects to a MySQL database server and displays/modifies data with a GUI. For cleanliness sake, I've defined the bunch of auxiliary/utility MySQL-related functions in a separate file. However they all have a common variable, which I had originally defined inside the utilities module, and which is the cursor object from MySQLdb module.
I later realised that the cursor object (which is used to communicate with the db server) should be defined in the main module, so that both the main module and anything that is imported into it can access that object.
End result would be something like this:
utilities_module.py:
def utility_1(args):
code which references a variable named "cur"
def utility_n(args):
etcetera
And my main module:
program.py:
import MySQLdb, Tkinter
db=MySQLdb.connect(#blahblah) ; cur=db.cursor() #cur is defined!
from utilities_module import *
And then, as soon as I try to call any of the utilities functions, it triggers the aforementioned "global name not defined" error.
A particular suggestion was to have a "from program import cur" statement in the utilities file, such as this:
utilities_module.py:
from program import cur
#rest of function definitions
program.py:
import Tkinter, MySQLdb
db=MySQLdb.connect(#blahblah) ; cur=db.cursor() #cur is defined!
from utilities_module import *
But that's cyclic import or something like that and, bottom line, it crashes too. So my question is:
How in hell can I make the "cur" object, defined in the main module, visible to those auxiliary functions which are imported into it?
Thanks for your time and my deepest apologies if the solution has been posted elsewhere. I just can't find the answer myself and I've got no more tricks in my book.
Globals in Python are global to a module, not across all modules. (Many people are confused by this, because in, say, C, a global is the same across all implementation files unless you explicitly make it static.)
There are different ways to solve this, depending on your actual use case.
Before even going down this path, ask yourself whether this really needs to be global. Maybe you really want a class, with f as an instance method, rather than just a free function? Then you could do something like this:
import module1
thingy1 = module1.Thingy(a=3)
thingy1.f()
If you really do want a global, but it's just there to be used by module1, set it in that module.
import module1
module1.a=3
module1.f()
On the other hand, if a is shared by a whole lot of modules, put it somewhere else, and have everyone import it:
import shared_stuff
import module1
shared_stuff.a = 3
module1.f()
… and, in module1.py:
import shared_stuff
def f():
print shared_stuff.a
Don't use a from import unless the variable is intended to be a constant. from shared_stuff import a would create a new a variable initialized to whatever shared_stuff.a referred to at the time of the import, and this new a variable would not be affected by assignments to shared_stuff.a.
Or, in the rare case that you really do need it to be truly global everywhere, like a builtin, add it to the builtin module. The exact details differ between Python 2.x and 3.x. In 3.x, it works like this:
import builtins
import module1
builtins.a = 3
module1.f()
As a workaround, you could consider setting environment variables in the outer layer, like this.
main.py:
import os
os.environ['MYVAL'] = str(myintvariable)
mymodule.py:
import os
myval = None
if 'MYVAL' in os.environ:
myval = os.environ['MYVAL']
As an extra precaution, handle the case when MYVAL is not defined inside the module.
This post is just an observation for Python behaviour I encountered. Maybe the advices you read above don't work for you if you made the same thing I did below.
Namely, I have a module which contains global/shared variables (as suggested above):
#sharedstuff.py
globaltimes_randomnode=[]
globalist_randomnode=[]
Then I had the main module which imports the shared stuff with:
import sharedstuff as shared
and some other modules that actually populated these arrays. These are called by the main module. When exiting these other modules I can clearly see that the arrays are populated. But when reading them back in the main module, they were empty. This was rather strange for me (well, I am new to Python). However, when I change the way I import the sharedstuff.py in the main module to:
from globals import *
it worked (the arrays were populated).
Just sayin'
A function uses the globals of the module it's defined in. Instead of setting a = 3, for example, you should be setting module1.a = 3. So, if you want cur available as a global in utilities_module, set utilities_module.cur.
A better solution: don't use globals. Pass the variables you need into the functions that need it, or create a class to bundle all the data together, and pass it when initializing the instance.
The easiest solution to this particular problem would have been to add another function within the module that would have stored the cursor in a variable global to the module. Then all the other functions could use it as well.
module1:
cursor = None
def setCursor(cur):
global cursor
cursor = cur
def method(some, args):
global cursor
do_stuff(cursor, some, args)
main program:
import module1
cursor = get_a_cursor()
module1.setCursor(cursor)
module1.method()
Since globals are module specific, you can add the following function to all imported modules, and then use it to:
Add singular variables (in dictionary format) as globals for those
Transfer your main module globals to it
.
addglobals = lambda x: globals().update(x)
Then all you need to pass on current globals is:
import module
module.addglobals(globals())
Since I haven't seen it in the answers above, I thought I would add my simple workaround, which is just to add a global_dict argument to the function requiring the calling module's globals, and then pass the dict into the function when calling; e.g:
# external_module
def imported_function(global_dict=None):
print(global_dict["a"])
# calling_module
a = 12
from external_module import imported_function
imported_function(global_dict=globals())
>>> 12
The OOP way of doing this would be to make your module a class instead of a set of unbound methods. Then you could use __init__ or a setter method to set the variables from the caller for use in the module methods.
Update
To test the theory, I created a module and put it on pypi. It all worked perfectly.
pip install superglobals
Short answer
This works fine in Python 2 or 3:
import inspect
def superglobals():
_globals = dict(inspect.getmembers(
inspect.stack()[len(inspect.stack()) - 1][0]))["f_globals"]
return _globals
save as superglobals.py and employ in another module thusly:
from superglobals import *
superglobals()['var'] = value
Extended Answer
You can add some extra functions to make things more attractive.
def superglobals():
_globals = dict(inspect.getmembers(
inspect.stack()[len(inspect.stack()) - 1][0]))["f_globals"]
return _globals
def getglobal(key, default=None):
"""
getglobal(key[, default]) -> value
Return the value for key if key is in the global dictionary, else default.
"""
_globals = dict(inspect.getmembers(
inspect.stack()[len(inspect.stack()) - 1][0]))["f_globals"]
return _globals.get(key, default)
def setglobal(key, value):
_globals = superglobals()
_globals[key] = value
def defaultglobal(key, value):
"""
defaultglobal(key, value)
Set the value of global variable `key` if it is not otherwise st
"""
_globals = superglobals()
if key not in _globals:
_globals[key] = value
Then use thusly:
from superglobals import *
setglobal('test', 123)
defaultglobal('test', 456)
assert(getglobal('test') == 123)
Justification
The "python purity league" answers that litter this question are perfectly correct, but in some environments (such as IDAPython) which is basically single threaded with a large globally instantiated API, it just doesn't matter as much.
It's still bad form and a bad practice to encourage, but sometimes it's just easier. Especially when the code you are writing isn't going to have a very long life.

How does importing a function from a module work in Python?

I have a module some_module.py which contains the following code:
def testf():
print(os.listdir())
Now, in a file named test.py, I have this code:
import os
from some_module import testf
testf()
But executing test.py gives me NameError: name 'os' is not defined. I've already imported os in test.py, and testf is in the namespace of test.py. So why does this error occur?
import is not the same as including the content of the file as if you had typed it directly in place of the import statement. You might think it works this way if you're coming from a C background, where the #include preprocessor directive does this, but Python is different.
The import statement in Python reads the content of the file being imported and evaluates it in its own separate context - so, in your example, the code in some_module.py has no access to or knowledge of anything that exists in test.py or any other file. It starts with a "blank slate", so to speak. If some_module.py's code wants to access the os module, you have to import it at the top of some_module.py.
When a module is imported in Python, it becomes an object. That is, when you write
import some_module
one of the first things Python does is to create a new object of type module to represent the module being imported. As the interpreter goes through the code in some_module.py, it assigns any variables, functions, classes, etc. that are defined in that file to be attributes of this new module object. So in your example, the module object will have one attribute, testf. When the code in the function testf wants to access the variable os, it looks in the function itself (local scope) and sees that os is not defined there, so it then looks at the attributes of the module object which testf belongs to (this is the "global" scope, although it's not truly global). In your example, it will not see os there, so you get an error. If you add
import os
to some_module.py, then that will create an attribute of the module under the name os, and your code will find what it needs to.
You may also be interested in some other answers I've written that may help you understand Python's import statement:
Why import when you need to use the full name?
Does Python import statement also import dependencies automatically?
The name testf is in the namespace of test. The contents of the testf function are still in some_module, and don't have access to anything in test.
If you have code that needs a module, you need to import that module in the same file where that code is. Importing a module only imports it into the one file where you import it. (Multiple imports of the same module, in different files, won't incur a meaningful performance penalty; the actual loading of the module only happens once, and later imports of the same module just get a reference to the already-imported module.)
Importing a module adds its name as an attribute of the current scope. Since different modules have independent scopes, any code in some_module cannot use names in __main__ (the executed script) without having imported it first.

Importing class from another file in python - I know the fix, but why doesn't the original work?

I can make this code work, but I am still confused why it won't work the first way I tried.
I am practicing python because my thesis is going to be coded in it (doing some cool things with Arduino and PC interfaces). I'm trying to import a class from another file into my main program so that I can create objects. Both files are in the same directory. It's probably easier if you have a look at the code at this point.
#from ArduinoBot import *
#from ArduinoBot import ArduinoBot
import ArduinoBot
# Create ArduinoBot object
bot1 = ArduinoBot()
# Call toString inside bot1 object
bot1.toString()
input("Press enter to end.")
Here is the very basic ArduinoBot class
class ArduinoBot:
def toString(self):
print ("ArduinoBot toString")
Either of the first two commented out import statements will make this work, but not the last one, which to me seems the most intuitive and general. There's not a lot of code for stuff to go wrong here, it's a bit frustrating to be hitting these kind of finicky language specific quirks when I had heard some many good things about Python. Anyway I must be doing something wrong, but why doesn't the simple 'import ClassName' or 'import FileName' work?
Thank you for your help.
consider a file (example.py):
class foo(object):
pass
class bar(object):
pass
class example(object):
pass
Now in your main program, if you do:
import example
what should be imported from the file example.py? Just the class example? should the class foo come along too? The meaning would be too ambiguous if import module pulled the whole module's namespace directly into your current namespace.
The idea is that namespaces are wonderful. They let you know where the class/function/data came from. They also let you group related things together (or equivalently, they help you keep unrelated things separate!). A module sets up a namespace and you tell python exactly how you want to bring that namespace into the current context (namespace) by the way you use import.
from ... import * says -- bring everything in that module directly into my namespace.
from ... import ... as ... says, bring only the thing that I specify directly into my namespace, but give it a new name here.
Finally, import ... simply says bring that module into the current namespace, but keep it separate. This is the most common form in production code because of (at least) 2 reasons.
It prevents name clashes. You can have a local class named foo which won't conflict with the foo in example.py -- You get access to that via example.foo
It makes it easy to trace down which module a class came from for debugging.
consider:
from foo import *
from bar import *
a = AClass() #did this come from foo? bar? ... Hmmm...
In this case, to get access to the class example from example.py, you could also do:
import example
example_instance = example.example()
but you can also get foo:
foo_instance = example.foo()
The simple answer is that modules are things in Python. A module has its own status as a container for classes, functions, and other objects. When you do import ArduinoBot, you import the module. If you want things in that module -- classes, functions, etc. -- you have to explicitly say that you want them. You can either import them directly with from ArduinoBot import ..., or access them via the module with import ArduinoBot and then ArduinoBot.ArduinoBot.
Instead of working against this, you should leverage the container-ness of modules to allow you to group related stuff into a module. It may seem annoying when you only have one class in a file, but when you start putting multiple classes and functions in one file, you'll see that you don't actually want all that stuff being automatically imported when you do import module, because then everything from all modules would conflict with other things. The modules serve a useful function in separating different functionality.
For your example, the question you should ask yourself is: if the code is so simple and compact, why didn't you put it all in one file?
Import doesn't work quite the you think it does. It does work the way it is documented to work, so there's a very simple remedy for your problem, but nonetheless:
import ArduinoBot
This looks for a module (or package) on the import path, executes the module's code in a new namespace, and then binds the module object itself to the name ArduinoBot in the current namespace. This means a module global variable named ArduinoBot in the ArduinoBot module would now be accessible in the importing namespace as ArduinoBot.ArduinoBot.
from ArduinoBot import ArduinoBot
This loads and executes the module as above, but does not bind the module object to the name ArduinoBot. Instead, it looks for a module global variable ArduinoBot within the module, and binds whatever object that referred to the name ArduinoBot in the current namespace.
from ArduinoBot import *
Similarly to the above, this loads and executes a module without binding the module object to any name in the current namespace. It then looks for all module global variables, and binds them all to the same name in the current namespace.
This last form is very convenient for interactive work in the python shell, but generally considered bad style in actual development, because it's not clear what names it actually binds. Considering it imports everything global in the imported module, including any names that it imported at global scope, it very quickly becomes extremely difficult to know what names are in scope or where they came from if you use this style pervasively.
The module itself is an object. The last approach does in fact work, if you access your class as a member of the module. Either if the following will work, and either may be appropriate, depending on what else you need from the imported items:
from my_module import MyClass
foo = MyClass()
or
import my_module
foo = my_module.MyClass()
As mentioned in the comments, your module and class usually don't have the same name in python. That's more a Java thing, and can sometimes lead to a little confusion here.

python: is there a disadvantage to from package import * besides namespace collision

I'm creating a class to extend a package, and prior to class instantiation I don't know which subset of the package's namespace I need. I've been careful about avoiding namespace conflicts in my code, so, does
from package import *
create problems besides name conflicts?
Is it better to examine the class's input and import only the names I need (at runtime) in the __init__ ??
Can python import from a set [] ?
does
for name in [namespace,namespace]:
from package import name
make any sense?
I hope this question doesn't seem like unnecessary hand-ringing, i'm just super new to python and don't want to do the one thing every 'beginnger's guide' says not to do (from pkg import * ) unless I'm sure there's no alternative.
thoughts, advice welcome.
In order:
It does not create other problems - however, name conflicts can be much more of a problem than you'd expect.
Definitely defer your imports if you can. Even though Python variable scoping is simplistic, you also gain the benefit of not having to import the module if the functionality that needs it never gets called.
I don't know what you mean. Square brackets are used to make lists, not sets. You can import multiple names from a module in one line - just use a comma-delimited list:
from awesome_module import spam, ham, eggs, baked_beans
# awesome_module defines lots of other names, but they aren't pulled in.
No, that won't do what you want - name is an identifier, and as such, each time through the loop the code will attempt to import the name name, and not the name that corresponds to the string referred to by the name variable.
However, you can get this kind of "dynamic import" effect, using the __import__ function. Consult the documentation for more information, and make sure you have a real reason for using it first. We get into some pretty advanced uses of the language here pretty quickly, and it usually isn't as necessary as it first appears. Don't get too clever. We hates them tricksy hobbitses.
When importing * you get everything in the module dumped straight into your namespace. This is not always a good thing as you could accentually overwrite something like;
from time import *
sleep = None
This would render the time.sleep function useless...
The other way of taking functions, variables and classes from a module would be saying
from time import sleep
This is a nicer way but often the best way is to just import the module and reference the module directly like
import time
time.sleep(3)
you can import like from PIL import Image, ImageDraw
what is imported by from x import * is limited to the list __all__ in x if it exists
importing at runtime if the module name isn't know or fixed in the code must be done with __import__ but you shouldn't have to do that
This syntax constructions help you to avoid any name collision:
from package import somename as another_name
import package as another_package_name

Categories