I want to build a model that classifies and predicts words from the users lips. With adverb a total of 142657 images that have been preproccessed using the dataset of videos of individual speakers but I get this error when running the model and doesnt even get past the first epoch
heres my code
import os
from silence_tensorflow import silence_tensorflow
silence_tensorflow()
import tensorflow as tf
from tensorflow.keras.layers import Dense, Activation, Dropout, Input, Conv2D, \
MaxPooling2D, Flatten, BatchNormalization
from tensorflow.keras.models import Sequential
from tensorflow.keras.preprocessing.image import ImageDataGenerator
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
tf.autograph.set_verbosity(0)
tf.get_logger().setLevel('ERROR')
class AdverbNet(object):
def __init__(self):
self.Model = Sequential()
self.build()
def build(self):
self.Model.add(Input(name='the_input', shape=(224, 224, 1), batch_size=16, dtype='float32'))
self.Model.add(Conv2D(32, (3, 3), activation='sigmoid', name='convo2'))
self.Model.add(MaxPooling2D(pool_size=(2, 2)))
self.Model.add(Conv2D(32, (3, 3), activation='sigmoid', name='convo3'))
self.Model.add(MaxPooling2D(pool_size=(2, 2)))
self.Model.add(Conv2D(64, (3, 3), activation='relu', name='convo4'))
self.Model.add(MaxPooling2D(pool_size=(2, 2)))
self.Model.add(Flatten())
self.Model.add(Dense(512))
self.Model.add(Dropout(0.5))
self.Model.add(BatchNormalization(scale=False))
self.Model.add(Activation('relu'))
self.Model.add(Dropout(0.5))
self.Model.add(Dense(4, activation='softmax'))
def summary(self):
self.Model.summary()
if __name__ == "__main__":
common_path = 'C:/Users/Loide/Desktop/Liphy/'
C = AdverbNet()
C.Model.compile(optimizer="Adam", loss='categorical_crossentropy', metrics=['accuracy'])
C.Model.summary()
with tf.device('/device:GPU:0')
batch_size = 16
epochs = 32
train_dir = common_path + 'Images/Adverb/'
test_dir = common_path + 'Images/Adverb/'
checkpoint_path = common_path + 'SavedModels/Adverb/'
train_image_generator = ImageDataGenerator(rescale=1. / 255) # Generator for training data generate training anD test set
train_data_gen = train_image_generator.flow_from_directory(batch_size=batch_size,
directory=train_dir,
shuffle=True,
target_size=(224, 224),
class_mode='categorical',
color_mode='grayscale')
test_image_generator = ImageDataGenerator(rescale=1. / 255) # Generator for test data
test_data_gen = test_image_generator.flow_from_directory(batch_size=batch_size,
directory=test_dir,
shuffle=False,
target_size=(224, 224),
class_mode='categorical',
color_mode='grayscale')
callback = tf.keras.callbacks.EarlyStopping(monitor='val_accuracy',
patience=10,
restore_best_weights=True,
baseline=0.45)
history = C.Model.fit(train_data_gen,
steps_per_epoch=8916, # Number of images // Batch size
epochs=epochs,
verbose=1,
validation_data=test_data_gen,
validation_steps=187,
callbacks=[callback])
C.Model.save(checkpoint_path, save_format='tf')
**and I get the following error **
[Matrix size-incompatible: In[0]: [1,43264], In[1]: [16,512]
[[{{node gradient_tape/sequential/dense/MatMul/MatMul_1}}]] [Op:__inference_train_function_1179]
Seems like you have two matrices (one 1x43265 and one 16x512). You try to multiply them but its product is mathematically not defined. You need one matrix to be a (a x b) matrix and the other to be a (b x c) matrix. Thats why your program can't run. If your images are a test dataset try to follow the instructions step by step. If not, your preprocessing is probably bad.
Related
I am using Tensorflow's flow_from_directory to collect a large image dataset and then train on it. I want to use Keras Tuner but when I run
tuner.search(test_data_gen, epochs=50,
validation_split=0.2, callbacks=[stop_early])
It throws the following error,
ValueError: `validation_split` is only supported for Tensors or NumPy arrays, found following types in the input: [<class 'tensorflow.python.keras.preprocessing.image.DirectoryIterator'>]
I don't know much about converting between data types in AI so any help is truly appreciated.
Here is the rest of my code:
import tensorflow as tf
from tensorflow import keras
import numpy as np
import matplotlib.pyplot as plt
import IPython.display as display
from PIL import Image, ImageSequence
import os
import pathlib
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Conv2D, Flatten, Dropout, MaxPooling2D
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import cv2
import datetime
import kerastuner as kt
tf.compat.v1.enable_eager_execution()
epochs = 50
steps_per_epoch = 10
batch_size = 20
IMG_HEIGHT = 200
IMG_WIDTH = 200
train_dir = "Data/Train"
test_dir = "Data/Val"
train_image_generator = ImageDataGenerator(rescale=1. / 255)
test_image_generator = ImageDataGenerator(rescale=1. / 255)
train_data_gen = train_image_generator.flow_from_directory(batch_size=batch_size,
directory=train_dir,
shuffle=True,
target_size=(IMG_HEIGHT, IMG_WIDTH),
class_mode='sparse')
test_data_gen = test_image_generator.flow_from_directory(batch_size=batch_size,
directory=test_dir,
shuffle=True,
target_size=(IMG_HEIGHT, IMG_WIDTH),
class_mode='sparse')
def model_builder(hp):
model = keras.Sequential()
model.add(Conv2D(265, 3, padding='same', activation='relu', input_shape=(IMG_HEIGHT, IMG_WIDTH ,3)))
model.add(MaxPooling2D())
model.add(Conv2D(64, 3, padding='same', activation='relu'))
model.add(MaxPooling2D())
model.add(Conv2D(32, 3, padding='same', activation='relu'))
model.add(MaxPooling2D())
model.add(Flatten())
model.add(keras.layers.Dense(256, activation="relu"))
hp_units = hp.Int('units', min_value=32, max_value=512, step=32)
model.add(keras.layers.Dense(hp_units, activation="relu"))
model.add(keras.layers.Dense(80, activation="softmax"))
hp_learning_rate = hp.Choice('learning_rate', values=[1e-2, 1e-3, 1e-4])
model.compile(optimizer=keras.optimizers.Adam(learning_rate=hp_learning_rate),
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['top_k_categorical_accuracy'])
return model
tuner = kt.Hyperband(model_builder,
objective='val_accuracy',
max_epochs=30,
factor=3,
directory='Hypertuner_Dir',
project_name='AIOS')
stop_early = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=5)
and start searching with tuner
tuner.search(train_data_gen, epochs=50, validation_split=0.2, callbacks=[stop_early])
# Get the optimal hyperparameters
best_hps=tuner.get_best_hyperparameters(num_trials=1)[0]
print(f"""
The hyperparameter search is complete. The optimal number of units in the first densely-connected
layer is {best_hps.get('units')} and the optimal learning rate for the optimizer
is {best_hps.get('learning_rate')}.
""")
model = tuner.hypermodel.build(best_hps)
model.summary()
tf.keras.utils.plot_model(model, to_file="model.png", show_shapes=True, show_layer_names=True, rankdir='TB')
checkpoint_path = "training/cp.ckpt"
checkpoint_dir = os.path.dirname(checkpoint_path)
cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_path,
save_weights_only=True,
verbose=1)
os.system("rm -r logs")
log_dir = "logs/fit/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir, histogram_freq=1)
#history = model.fit(train_data_gen,steps_per_epoch=steps_per_epoch,epochs=epochs,validation_data=test_data_gen,validation_steps=10,callbacks=[cp_callback, tensorboard_callback])
history = model.fit(train_data_gen,steps_per_epoch=steps_per_epoch,epochs=epochs,validation_split=0.2,validation_steps=10,callbacks=[cp_callback, tensorboard_callback])
model.load_weights(tf.train.latest_checkpoint(checkpoint_dir))
model.save('model.h5', include_optimizer=True)
test_loss, test_acc = model.evaluate(test_data_gen)
print("Tested Acc: ", test_acc)
print("Tested Acc: ", test_acc*100, "%")
val_acc_per_epoch = history.history['val_accuracy']
best_epoch = val_acc_per_epoch.index(max(val_acc_per_epoch)) + 1
print('Best epoch: %d' % (best_epoch,))
===================================EDIT====================================
According to the doc about validation_split:
validation_split: Float between 0 and 1. Fraction of the training data to be used as validation data. The model will set apart this fraction of the training data, will not train on it, and will evaluate the loss and any model metrics on this data at the end of each epoch. The validation data is selected from the last samples in the x and y data provided, before shuffling. This argument is not supported when x is a dataset, generator or keras.utils.Sequence instance.
Now, as you've generator, try as follows, reference
tuner.search(train_data_gen,
epochs=50,
validation_data=test_data_gen,
callbacks=[stop_early])
Also, ensure that each of your generators properly generates the valid batches.
Unfortunately doing a validation_split=0.2 does not work in this case, because this argument assumes that the data is a Tensor or a NumPy array. Since you have the data stored as a generator (which is a good idea), you can't simply split it.
You'll need to create a validation generator, just like you did with test_data_gen, and change validation_split=0.2 to validation_data=val_data_gen.
hiya i followed a guide on how to make an image classifier from here https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html and this categorizes it into only 2 categories these code gives me the F1 score and confusion matrix is there a way to make a multiple category image classifier using these codes my data sets right now are types of mushroom
import numpy
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense
from keras import backend as K
import matplotlib.pyplot as plt
# dimensions of our images.
img_width, img_height = 150, 150
train_data_dir = r'C:\Users\Acer\imagerec\Mushrooms\TRAIN'
validation_data_dir = r'C:\Users\Acer\imagerec\Mushrooms\VAL'
nb_train_samples = 7025
nb_validation_samples = 6262
epochs = 50
batch_size = 16
if K.image_data_format() == 'channels_first':
input_shape = (3, img_width, img_height)
else:
input_shape = (img_width, img_height, 3)
model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape=input_shape))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(1))
model.add(Activation('sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
# this is the augmentation configuration we will use for training
train_datagen = ImageDataGenerator(
rescale=1. / 255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
# this is the augmentation configuration we will use for testing:
# only rescaling
test_datagen = ImageDataGenerator(rescale=1. / 255)
train_generator = train_datagen.flow_from_directory(
train_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='binary')
validation_generator = test_datagen.flow_from_directory(
validation_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='binary')
model.fit_generator(
train_generator,
steps_per_epoch=nb_train_samples // batch_size,
epochs=epochs,
validation_data=validation_generator,
validation_steps=nb_validation_samples // batch_size)
model.save_weights('first_try.h5')
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
import seaborn as sns
test_steps_per_epoch = numpy.math.ceil(validation_generator.samples / validation_generator.batch_size)
predictions = model.predict_generator(validation_generator, steps=test_steps_per_epoch)
# Get most likely class
predicted_classes = numpy.argmax(predictions, axis=1)
true_classes = validation_generator.classes
class_labels = list(validation_generator.class_indices.keys())
report = classification_report(true_classes, predicted_classes, target_names=class_labels)
print(report)
cm=confusion_matrix(true_classes,predicted_classes)
sns.heatmap(cm, annot=True)
print(cm)
plt.show()
You clearly defined a binary classification in your code. To turn it to a multi-class task, let's say to N class, you need to change your last layer from 1 Dense to N Dense, and for the activation, you should change it from sigmoid to softmax.
Last but not least, you should change your loss function from binary_crossentropy to categorical_crossentropy if your classes are already hot-encoded. Otherwise, you might want to go with sparse_categorical_crossentropy
That part of your code should seems something like this after applying the changes:
model.add(Dense(N))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
Where N is the number of different classes you have.
Edit: you also need to go from "binary" to "categorical" for class_mode in your generators. You should also check how to generate the labels (one-hot-encoded)
I've created a CNN model to try to predict if the image is either a dog or a cat, but on the output I don't know what it predicted. See below:
import pandas as pd
from keras.models import Sequential
from keras.preprocessing.image import ImageDataGenerator
from keras.layers import Dense, Flatten, Conv2D, Dropout, MaxPooling2D
from scipy import misc
import numpy as np
def build_classifier():
# Model based on 'https://www.researchgate.net/profile/Le_Lu/publication/277335071/figure/fig8/AS:294249976352779#1447166069905/Figure-8-The-proposed-CNN-model-architecture-is-composed-of-five-convolutional-layers.png'
#It's smarter to add layer without creating variables because of the processing, but as a small dataset it doesn't matter a lot.
classifier = Sequential()
conv1 = Conv2D(filters=64, kernel_size=(2,2), activation='relu', input_shape=(64,64,3))
conv2 = Conv2D(filters=192, kernel_size=(2,2), activation='relu')
conv3 = Conv2D(filters=384, kernel_size=(2,2), activation='relu')
conv4 = Conv2D(filters=256, kernel_size=(2,2), activation='relu')
conv5 = Conv2D(filters=256, kernel_size=(2,2), activation='relu')
pooling1 = MaxPooling2D(pool_size=(2,2))
pooling2 = MaxPooling2D(pool_size=(2,2))
pooling3 = MaxPooling2D(pool_size=(2,2))
fcl1 = Dense(1024, activation='relu')
fcl2 = Dense(1024, activation='relu')
fcl3 = Dense(2, activation='softmax')
dropout1= Dropout(0.5)
dropout2 = Dropout(0.5)
flatten = Flatten()
layers = [conv1, pooling1, conv2, pooling2, conv3, conv4, conv5,
pooling3, flatten, fcl1, dropout1, fcl2, dropout2, fcl3]
for l in layers:
classifier.add(l)
return classifier
model = build_classifier()
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
train_datagen = ImageDataGenerator(
rescale=1./255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
test_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
'dataset/training_set',
target_size=(64, 64),
batch_size=32,
class_mode='categorical')
validation_generator = test_datagen.flow_from_directory(
'dataset/test_set',
target_size=(64, 64),
batch_size=32,
class_mode='categorical')
model.fit_generator(
train_generator,
steps_per_epoch=200,
epochs=32,
validation_data=validation_generator,
validation_steps=100)
model.save('model.h5')
model.save_weights('model_weights.h5')
I opened my saved model in another file:
from keras.models import load_model
from scipy import misc
import numpy as np
def single_pred(filepath, model):
classifier = load_model(model)
img = misc.imread(filepath)
img = misc.imresize(img, (64,64,3))
img = np.expand_dims(img, 0)
print(classifier.predict(img))
if __name__ == '__main__':
single_pred('/home/leonardo/Desktop/Help/dataset/single_prediction/cat_or_dog_2.jpg', 'model.h5')
As output I get this:
Using TensorFlow backend.
2017-10-09 14:06:25.520018: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
2017-10-09 14:06:25.520054: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
[[ 0. 1.]]
But how can I know if the prediction says that it is a dog or a cat? Having this result in hands I still don't know if the image is a dog or a cat.
Unless you specify the labels, your generator will automatically create the categorical labels for you. You can inspect those using train_generator.class_indices
The order of the class labels is alphanumeric, so cats=0 dogs=1
I trained a model to classify images from 2 classes and saved it using model.save(). Here is the code I used:
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense
from keras import backend as K
# dimensions of our images.
img_width, img_height = 320, 240
train_data_dir = 'data/train'
validation_data_dir = 'data/validation'
nb_train_samples = 200 #total
nb_validation_samples = 10 # total
epochs = 6
batch_size = 10
if K.image_data_format() == 'channels_first':
input_shape = (3, img_width, img_height)
else:
input_shape = (img_width, img_height, 3)
model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape=input_shape))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(1))
model.add(Activation('sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
# this is the augmentation configuration we will use for training
train_datagen = ImageDataGenerator(
rescale=1. / 255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
# this is the augmentation configuration we will use for testing:
# only rescaling
test_datagen = ImageDataGenerator(rescale=1. / 255)
train_generator = train_datagen.flow_from_directory(
train_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='binary')
validation_generator = test_datagen.flow_from_directory(
validation_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='binary')
model.fit_generator(
train_generator,
steps_per_epoch=nb_train_samples // batch_size,
epochs=epochs,
validation_data=validation_generator,
validation_steps=5)
model.save('model.h5')
It successfully trained with 0.98 accuracy which is pretty good. To load and test this model on new images, I used the below code:
from keras.models import load_model
import cv2
import numpy as np
model = load_model('model.h5')
model.compile(loss='binary_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
img = cv2.imread('test.jpg')
img = cv2.resize(img,(320,240))
img = np.reshape(img,[1,320,240,3])
classes = model.predict_classes(img)
print classes
It outputs:
[[0]]
Why wouldn't it give out the actual name of the class and why [[0]]?
If someone is still struggling to make predictions on images, here is the optimized code to load the saved model and make predictions:
# Modify 'test1.jpg' and 'test2.jpg' to the images you want to predict on
from keras.models import load_model
from keras.preprocessing import image
import numpy as np
# dimensions of our images
img_width, img_height = 320, 240
# load the model we saved
model = load_model('model.h5')
model.compile(loss='binary_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
# predicting images
img = image.load_img('test1.jpg', target_size=(img_width, img_height))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
images = np.vstack([x])
classes = model.predict_classes(images, batch_size=10)
print classes
# predicting multiple images at once
img = image.load_img('test2.jpg', target_size=(img_width, img_height))
y = image.img_to_array(img)
y = np.expand_dims(y, axis=0)
# pass the list of multiple images np.vstack()
images = np.vstack([x, y])
classes = model.predict_classes(images, batch_size=10)
# print the classes, the images belong to
print classes
print classes[0]
print classes[0][0]
You can use model.predict() to predict the class of a single image as follows [doc]:
# load_model_sample.py
from keras.models import load_model
from keras.preprocessing import image
import matplotlib.pyplot as plt
import numpy as np
import os
def load_image(img_path, show=False):
img = image.load_img(img_path, target_size=(150, 150))
img_tensor = image.img_to_array(img) # (height, width, channels)
img_tensor = np.expand_dims(img_tensor, axis=0) # (1, height, width, channels), add a dimension because the model expects this shape: (batch_size, height, width, channels)
img_tensor /= 255. # imshow expects values in the range [0, 1]
if show:
plt.imshow(img_tensor[0])
plt.axis('off')
plt.show()
return img_tensor
if __name__ == "__main__":
# load model
model = load_model("model_aug.h5")
# image path
img_path = '/media/data/dogscats/test1/3867.jpg' # dog
#img_path = '/media/data/dogscats/test1/19.jpg' # cat
# load a single image
new_image = load_image(img_path)
# check prediction
pred = model.predict(new_image)
In this example, a image is loaded as a numpy array with shape (1, height, width, channels). Then, we load it into the model and predict its class, returned as a real value in the range [0, 1] (binary classification in this example).
keras predict_classes (docs) outputs A numpy array of class predictions. Which in your model case, the index of neuron of highest activation from your last(softmax) layer. [[0]] means that your model predicted that your test data is class 0. (usually you will be passing multiple image, and the result will look like [[0], [1], [1], [0]] )
You must convert your actual label (e.g. 'cancer', 'not cancer') into binary encoding (0 for 'cancer', 1 for 'not cancer') for binary classification. Then you will interpret your sequence output of [[0]] as having class label 'cancer'
That's because you're getting the numeric value associated with the class. For example if you have two classes cats and dogs, Keras will associate them numeric values 0 and 1. To get the mapping between your classes and their associated numeric value, you can use
>>> classes = train_generator.class_indices
>>> print(classes)
{'cats': 0, 'dogs': 1}
Now you know the mapping between your classes and indices. So now what you can do is
if classes[0][0] == 1:
prediction = 'dog'
else:
prediction = 'cat'
Forwarding the example by #ritiek, I'm a beginner in ML too, maybe this kind of formatting will help see the name instead of just class number.
images = np.vstack([x, y])
prediction = model.predict(images)
print(prediction)
i = 1
for things in prediction:
if(things == 0):
print('%d.It is cancer'%(i))
else:
print('%d.Not cancer'%(i))
i = i + 1
I am trying to solve the Cats vs Dogs problem using Keras. Here is the model I am using.
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense
from keras import backend as K
from keras import regularizers
from keras.utils import plot_model
img_width, img_height = 150, 150
train_data_dir = 'kateVSdoge/train'
validation_data_dir = 'kateVSdoge/validation'
nb_train_samples = 2000
nb_validation_samples = 800
epochs = 50
batch_size = 16
if K.image_data_format() == 'channels_first':
input_shape = (3, img_width, img_height)
else:
input_shape = (img_width, img_height, 3)
model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape=input_shape))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(1,kernel_regularizer=regularizers.l2(0.01),
activity_regularizer=regularizers.l1(0.01)))
model.add(Activation('sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
train_datagen = ImageDataGenerator(
rescale=1. / 255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
test_datagen = ImageDataGenerator(rescale=1. / 255)
train_generator = train_datagen.flow_from_directory(
train_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='binary')
validation_generator = test_datagen.flow_from_directory(
validation_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='binary',
)
xm=model.fit_generator(
train_generator,
steps_per_epoch=nb_train_samples // batch_size,
epochs=epochs,
validation_data=validation_generator,
validation_steps=nb_validation_samples // batch_size)
model.save_weights('first_try3.h5')
model_json=model.to_json()
with open("model3.json","w+") as json_file:
json_file.write(model_json)
plot_model(model,to_file="model.jpeg")
The model trains well accuracy at the end is 0.79-0.80. But when I try to load the model in a predictor script and predict using the model.predict_generator() I seem to be doing something wrong as I cant get the class names in the prediction. I have tried .predict() and .predict_proba() without any success.
Here is the predictor script:
from keras.models import Sequential, model_from_json
from keras.preprocessing import image
from keras.preprocessing.image import ImageDataGenerator
import numpy as np
p_model = Sequential();
jsonfile = open('model3.json','r')
model_json = jsonfile.read()
p_model = model_from_json(model_json)
p_model.load_weights('first_try3.h5')
p_model.compile(loss='binary_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
img = image.load_img('do.jpg', target_size=(150,150))
x=image.img_to_array(img)
x=x.reshape((1,)+x.shape)
test_datagen = ImageDataGenerator(rescale=1. /255)
m=test_datagen.flow(x,batch_size=1)
preds = p_model.predict_generator(m,1,verbose=1)
print preds
Also I observed an Interesting thing , The image doesn't seem to rescale.
I printed out x and m.x , both the matrices seem to be equal and the values don't transform to be between 0 and 1.
Here is the output for a cat and a dog's picture respectively.
(myenv)link#zero-VirtualBox:~/myenv/keras_app$ python predictor.py
Using Theano backend.
1/1 [==============================] - 0s
[[ 0.29857877]]
(myenv)link#zero-VirtualBox:~/myenv/keras_app$ python predictor.py
Using Theano backend.
1/1 [==============================] - 0s
[[ 0.77536112]]
I have used the advice given here https://stackoverflow.com/a/41833076/4159447 to introduce regularizers and rescale.
What am I doing wrong? All I want is to get the cat and dog labels against their scores.
The only wrong thing is to expect class names from a classifier. The classifier doesn't know the class names, that is a post-processing step, something like:
preds = p_model.predict_generator(m,1,verbose=1)[0]
if preds > 0.5:
output = "cat"
else:
output = "dog"
Note that 0.5 might not be the best threshold, you can also take the class with biggest probability (p vs 1 - p).