Count frequency of item in tuple with kwargs** - python

This is what I wrote:
def count_passes(**kwargs)
count = 0 #Complete this function to count the number of passes
for pas in kwargs:
if pas == mark:
count = count + 1
return
result = count_passes(math="Fail", science="Fail", history="Pass", english="Pass")
print(f'The number of passes: {count_occurrence(result, "Pass")}')
How do I make it to count how often 'Pass' is in kwargs?

You seem to be missing some code from the question, but here is how you can do the count:
def count_occurrences(mark, **kwargs):
count = 0 # Complete this function to count the number of passes
for key, value in kwargs.items():
if value == mark:
print(f"Passed {key}")
count = count + 1
return count
kwargs is a dict so you need to address it's items() or values() when iterating. Otherwise you're just going through the keywords. Also the return statement should be after the loop and actually return the count as a value.
In case you wanted to improve on the implementation, here is a lighter way to do the same thing:
def count_occurrences_simpler(mark, **kwargs):
return sum(1 for v in kwargs.values() if v == mark)
Then just call the function and print the result like you were doing
result = count_occurrences("Pass", math="Fail", science="Fail", history="Pass", english="Pass")
print(f'The number of passes: {result}')

kwargs is a dictionary of values:
{"math":"Fail", "science":"Fail", "history":"Pass", "english":"Pass"}
in your example.
When you iterate over that dictionary, your are only getting the keys: "math", "science", etc.
To get the value associated with that key, you need to get it from the original dict: kwargs[pas] in your case.
Also, notice that in your code, you are not returning any value, so you are dropping all the work your function is doing to compute count.
Finally, you are returning in your for loop, right after you've started it, so you need to return at the end of the loop
However, in your case you can use kwargs.items() to get both the key and the values for instance, or even kwargs.values(), since you don't actually use the key in your code:
mark = "Pass"
def count_passes(**kwargs)
count = 0 #Complete this function to count the number of passes
for pas in kwargs.values():
if pas == mark:
count = count + 1
return count
result = count_passes(math="Fail", science="Fail", history="Pass", english="Pass")
print(f'The number of passes: {count_occurrence(result, "Pass")}')

kwargs is a dictionary, so you need to check the values. One option is to convert the values to a list and use the count function
def count_passes(**kwargs):
return list(kwargs.values()).count('Pass')

Related

Can we return one dataframe and one variable from a function in python? [duplicate]

I would like to return two values from a function in two separate variables.
For example:
def select_choice():
loop = 1
row = 0
while loop == 1:
print('''Choose from the following options?:
1. Row 1
2. Row 2
3. Row 3''')
row = int(input("Which row would you like to move the card from?: "))
if row == 1:
i = 2
card = list_a[-1]
elif row == 2:
i = 1
card = list_b[-1]
elif row == 3:
i = 0
card = list_c[-1]
return i
return card
And I want to be able to use these values separately. When I tried to use return i, card, it returns a tuple and this is not what I want.
You cannot return two values, but you can return a tuple or a list and unpack it after the call:
def select_choice():
...
return i, card # or [i, card]
my_i, my_card = select_choice()
On line return i, card i, card means creating a tuple. You can also use parenthesis like return (i, card), but tuples are created by comma, so parens are not mandatory. But you can use parens to make your code more readable or to split the tuple over multiple lines. The same applies to line my_i, my_card = select_choice().
If you want to return more than two values, consider using a named tuple. It will allow the caller of the function to access fields of the returned value by name, which is more readable. You can still access items of the tuple by index. For example in Schema.loads method Marshmallow framework returns a UnmarshalResult which is a namedtuple. So you can do:
data, errors = MySchema.loads(request.json())
if errors:
...
or
result = MySchema.loads(request.json())
if result.errors:
...
else:
# use `result.data`
In other cases you may return a dict from your function:
def select_choice():
...
return {'i': i, 'card': card, 'other_field': other_field, ...}
But you might want consider to return an instance of a utility class (or a Pydantic/dataclass model instance), which wraps your data:
class ChoiceData():
def __init__(self, i, card, other_field, ...):
# you can put here some validation logic
self.i = i
self.card = card
self.other_field = other_field
...
def select_choice():
...
return ChoiceData(i, card, other_field, ...)
choice_data = select_choice()
print(choice_data.i, choice_data.card)
I would like to return two values from a function in two separate variables.
What would you expect it to look like on the calling end? You can't write a = select_choice(); b = select_choice() because that would call the function twice.
Values aren't returned "in variables"; that's not how Python works. A function returns values (objects). A variable is just a name for a value in a given context. When you call a function and assign the return value somewhere, what you're doing is giving the received value a name in the calling context. The function doesn't put the value "into a variable" for you, the assignment does (never mind that the variable isn't "storage" for the value, but again, just a name).
When i tried to to use return i, card, it returns a tuple and this is not what i want.
Actually, it's exactly what you want. All you have to do is take the tuple apart again.
And i want to be able to use these values separately.
So just grab the values out of the tuple.
The easiest way to do this is by unpacking:
a, b = select_choice()
I think you what you want is a tuple. If you use return (i, card), you can get these two results by:
i, card = select_choice()
def test():
....
return r1, r2, r3, ....
>> ret_val = test()
>> print ret_val
(r1, r2, r3, ....)
now you can do everything you like with your tuple.
def test():
r1 = 1
r2 = 2
r3 = 3
return r1, r2, r3
x,y,z = test()
print x
print y
print z
> test.py
1
2
3
And this is an alternative.If you are returning as list then it is simple to get the values.
def select_choice():
...
return [i, card]
values = select_choice()
print values[0]
print values[1]
you can try this
class select_choice():
return x, y
a, b = test()
You can return more than one value using list also. Check the code below
def newFn(): #your function
result = [] #defining blank list which is to be return
r1 = 'return1' #first value
r2 = 'return2' #second value
result.append(r1) #adding first value in list
result.append(r2) #adding second value in list
return result #returning your list
ret_val1 = newFn()[1] #you can get any desired result from it
print ret_val1 #print/manipulate your your result

Variable location in recursion

The problem is my code keeps reflecting a variable as zero and this is caused by the fact that the variable is assigned at the start of my function, so each time I call the function the value evaluates to zero. However I need this variable assignment for the code to work and placing it within the elif statements still evaluates to zero and placing the the variable outside the function causes the function not work.
The aim of the program is to count pairs of consecutive letters in a string using recursion with no for/while loops in the code.
def countpairs(s):
pairs=0
if len(s)<2:
return 0 #base case
elif s[0].lower() == s[1].lower(): #recursion
pairs=+1
return countpairs(s[1:])
else: #recursion
pairs=+0
return countpairs(s[1:])
print(countpairs('Hello Salaam'))
This code is supposed to evaluate to 2 because of "ll" and "aa".
You need to wrap your head a little around what the recursion will do: it will call the function recursively to count the pairs from that point on, then (it should) add the pair, if any, found by this instance.
So your function needs to do something with the result of the recursive call, not just return it unchanged. For example, instead of this
elif s[0].lower() == s[1].lower():
pairs = +1
return countpairs(s[1:])
you might write this:
elif s[0].lower() == s[1].lower():
return countpairs(s[1:]) + 1
Something along these lines. You'll need to do a bit more work to get it just right, but I hope you get the idea.
The problems is that the variable pairs resets every recursive call...
When using counting recursive algorithms you don't need a variable that counts, that's the beauty
Instead, try to think how to recursive call can help you count.
def countpairs(s):
if len(s)<2:
return 0
elif s[0].lower() == s[1].lower():
return countpairs(s[1:])+1
else:
return countpairs(s[1:])
print(countpairs('Hello Salaam'))
There you go, in the recursive call the "counter" gets bigger every time it should be, think of the counter as a part of the function stack (or something like that).
You need to fix the syntax: pairs=+1 should be pairs+=1, same for pairs=+0. And you can pass the total into the next level.
def countpairs(s, pairs=0):
if len(s)<2:
return pairs #base case
elif s[0].lower() == s[1].lower(): #recursion
pairs+=1
return countpairs(s[1:], pairs)
else: #recursion
pairs+=0
return countpairs(s[1:], pairs)
print(countpairs('Hello Salaam')) # 2
You can do it by creating a recursive nested function and defining pairs in the outer function. Here's what I mean (with fixes for other issues encountered):
def countpairs(s):
pairs = 0
def _countpairs(s):
nonlocal pairs # Since it's not local nor global.
if len(s) < 2: # base case
return pairs
elif s[0].lower() == s[1].lower():
pairs += 1
return _countpairs(s[1:]) # recursion
else:
return _countpairs(s[1:]) # recursion
return _countpairs(s)
print(countpairs('Hello Salaam')) # -> 2
The code will always evaluate to zero because the last recursion will always have the length of s being less than 2. Instead use the global keyword to be able to grab the value of pairs.
numberOfPairs = 0
pairsList = []
def countpairs(s):
global numberOfPairs
if len(s)<2:
print("doing nothing")
return 0 #base case
elif s[0].lower() == s[1].lower(): #recursion
numberOfPairs+=1
newString = f"{s[0]} is equal to {s[1]}"
print(newString)
pairsList.append(newString)
return countpairs(s[1:])
else:
print(f"nothing happened: {s[0]}") #recursion
return countpairs(s[1:])
print(f"\nThe returned value of countpairs is: {countpairs('Hello Salaam')}")
print(f"Number of pairs: {numberOfPairs}")
print(pairsList)

Trying to understand the function of reduce in python

I recently received an answer from the stackoverflow fellow on my previous question and I tried to inquire more in order to understand the function but somehow no response so I wish to ask it here.
I wanted to know what is the k and v that used in the lambda represent? I thought it was representing like this......
k = dictionary ?
v = string ? # Did I understand it correctly?
dictionary = {"test":"1", "card":"2"}
string = "There istest at the cardboards"
from functools import reduce
res = reduce(lambda k, v: k.replace(v, dictionary[v]), dictionary, string)
since we use lambda then it loop each of the element within both of these variables. But why k.replace? Isnt that a dictionary? Should It be v.replace? Somehow this method works. I wish someone could explain to me how this work and please more details if possible. Thank you!
reduce is equivalent to repeatedly calling a function.
The function in this case is a lambda, but a lambda is just an anonymous function:
def f(k, v):
return k.replace(v, dictionary[v])
The definition of reduce itself is (almost—the None default here is not quite right, nor the len test):
def reduce(func, seq, initial=None):
if initial is not None:
ret = initial
for i in seq:
ret = func(ret, i)
return ret
# initial not supplied, so sequence must be non-empty
if len(seq) == 0:
raise TypeError("reduce() of empty sequence with no initial value")
first = True
for i in seq:
if first:
ret = i
first = False
else:
ret = func(ret, i)
return ret
So, ask yourself what this would do when called on your lambda function. The:
for i in dictionary
loop will iterate over each key in the dictionary. It will pass that key, along with the stored ret (or the initial argument for the first call), to your function. So you'll get each key, plus the string value that's initially "There istest at the cardboards", as your v (key from dictionary, called i in the expansion of reduce) and k (long string, called ret in the expansion of reduce) arguments.
Note that k is the full text string, not the string used as the key in the dictionary, while v is the word that is the key in the dictionary. I've used the variable names k and v here only because you did too. As noted in a comment, text and word might be better variable names in either the expanded def f(...) or the original lambda function.
Trace your code execution
Try the same code, except that instead of just:
def f(k, v):
return k.replace(v, dictionary[v])
you write it as:
def f(text, word):
print("f(text={!r}, word={!r})".format(text, word))
replacement = dictionary[word]
print(" I will now replace {!r} with {!r}".format(word, replacement))
result = text.replace(word, replacement)
print(" I got: {!r}".format(result))
return result
Run the functools.reduce function over function f with dictionary and string as the other two arguments and observe the output.

How to find two items of a list with the same return value of a function on their attribute?

Given a basic class Item:
class Item(object):
def __init__(self, val):
self.val = val
a list of objects of this class (the number of items can be much larger):
items = [ Item(0), Item(11), Item(25), Item(16), Item(31) ]
and a function compute that process and return a value.
How to find two items of this list for which the function compute return the same value when using the attribute val? If nothing is found, an exception should be raised. If there are more than two items that match, simple return any two of them.
For example, let's define compute:
def compute( x ):
return x % 10
The excepted pair would be: (Item(11), Item(31)).
You can check the length of the set of resulting values:
class Item(object):
def __init__(self, val):
self.val = val
def __repr__(self):
return f'Item({self.val})'
def compute(x):
return x%10
items = [ Item(0), Item(11), Item(25), Item(16), Item(31)]
c = list(map(lambda x:compute(x.val), items))
if len(set(c)) == len(c): #no two or more equal values exist in the list
raise Exception("All elements have unique computational results")
To find values with similar computational results, a dictionary can be used:
from collections import Counter
new_d = {i:compute(i.val) for i in items}
d = Counter(new_d.values())
multiple = [a for a, b in new_d.items() if d[b] > 1]
Output:
[Item(11), Item(31)]
A slightly more efficient way to find if multiple objects of the same computational value exist is to use any, requiring a single pass over the Counter object, whereas using a set with len requires several iterations:
if all(b == 1 for b in d.values()):
raise Exception("All elements have unique computational results")
Assuming the values returned by compute are hashable (e.g., float values), you can use a dict to store results.
And you don't need to do anything fancy, like a multidict storing all items that produce a result. As soon as you see a duplicate, you're done. Besides being simpler, this also means we short-circuit the search as soon as we find a match, without even calling compute on the rest of the elements.
def find_pair(items, compute):
results = {}
for item in items:
result = compute(item.val)
if result in results:
return results[result], item
results[result] = item
raise ValueError('No pair of items')
A dictionary val_to_it that contains Items keyed by computed val can be used:
val_to_it = {}
for it in items:
computed_val = compute(it.val)
# Check if an Item in val_to_it has the same computed val
dict_it = val_to_it.get(computed_val)
if dict_it is None:
# If not, add it to val_to_it so it can be referred to
val_to_it[computed_val] = it
else:
# We found the two elements!
res = [dict_it, it]
break
else:
raise Exception( "Can't find two items" )
The for block can be rewrite to handle n number of elements:
for it in items:
computed_val = compute(it.val)
dict_lit = val_to_it.get(computed_val)
if dict_lit is None:
val_to_it[computed_val] = [it]
else:
dict_lit.append(it)
# Check if we have the expected number of elements
if len(dict_lit) == n:
# Found n elements!
res = dict_lit
break

How to count the number of letters in a string with a list of sample?

value = 'bcdjbcdscv'
value = 'bcdvfdvdfvvdfvv'
value = 'bcvfdvdfvcdjbcdscv'
def count_letters(word, char):
count = 0
for c in word:
if char == c:
count += 1
return count
How to count the number of letters in a string with a list of sample? I get nothing in my python shell when I wrote the above code in my python file.
There is a built-in method for this:
value.count('c')
functions need to be called, and the return values need to be printed to the stdout:
In [984]: value = 'bcvfdvdfvcdjbcdscv'
In [985]: count_letters(value, 'b')
Out[985]: 2
In [987]: ds=count_letters(value, 'd') #if you assign the return value to some variable, print it out:
In [988]: print ds
4
EDIT:
On calculating the length of the string, use python builtin function len:
In [1024]: s='abcdefghij'
In [1025]: len(s)
Out[1025]: 10
You'd better google it with some keywords like "python get length of a string" before you ask on SO, it's much time saving :)
EDIT2:
How to calculate the length of several strings with one function call?
use var-positional parameter *args, which accepts an arbitrary sequence of positional arguments:
In [1048]: def get_lengths(*args):
...: return [len(i) for i in args]
In [1049]: get_lengths('abcd', 'efg', '1234567')
Out[1049]: [4, 3, 7]
First you should probably look at correct indenting and only send in value. Also value is being overwritten so the last one will be the actual reference.
Second you need to call the function that you have defined.
#value = 'bcdjbcdscv'
#value = 'bcdvfdvdfvvdfvv'
value = 'bcvfdvdfvcdjbcdscv'
def count_letters(word, char):
count = 0
for c in word:
if char == c:
count += 1
return count
x = count_letters(value, 'b')
print x
# 2
This should produce the result you are looking for. You could also just call:
print value.count('b')
# 2
In python, there is a built-in method to do this. Simply type:
value = 'bcdjbcdscv'
value.count('c')

Categories