Scrapping NSE 52 week high Table using Python - python

I'm relatively new to web scrapping , I used Selenium and beautiful soup to srcape data however I'm unable to, Can someone help get the table data from the following link or any way to download the CSV file in Python please?
'''
print("Start")
from nsetools import Nse
import pandas as pd
import requests
from urllib.request import urlopen
from bs4 import BeautifulSoup
import time
import urllib.request
nse_web = "https://www.nseindia.com/market-data/new-52-week-high-low-equity-market"
req = urllib.request.Request(
nse_web,
data=None,
headers={'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/105.0.0.0 Safari/537.36'}
)
#f = urllib.request.urlopen(req)
#nse_web = "https://www.nseindia.com/market-data/new-52-week-high-low-equity-market"
time.sleep(5)
html = urlopen(req)
print("open URL")
time.sleep(10)
bsObj = BeautifulSoup(html, features="lxml")
print("before_table")
time.sleep(15)
data = []
table = soup.find('table', attrs={'class':'common_table customHeight-table tableScroll alt_row w-100'})
print(table)
table_body = table.find('tbody')
print(table_body)
rows = table_body.find_all('tr')
Print(rows)
for row in rows:
cols = row.find_all('td')
cols = [ele.text.strip() for ele in cols]
data.append([ele for ele in cols if ele]) # Get rid of empty values
print(data)
print("process complete")
'''

It seems that you are able to get the data from the table as a list of rows. To make a csv file you need to use python csv module.
import csv
with open('result.csv', 'wb') as csv_file:
csv_obj = csv.writer(csv_file)
for row in data:
csv_obj.writerow(row)
you can obtain your results.csv file in your current directory.

Related

Looping through the page numbers with Python BeautifulSoup

Attempting to update my script so that it searches through not only the url provided but all of the pages in range (1-3) and adds them to the CSV. Can anyone spot why my current code would not be working? The addition to pages following 1 are in the following format: page-2
from bs4 import BeautifulSoup
import requests
from csv import writer
from random import randint
from time import sleep
#example of second page url: https://www.propertypal.com/property-for-sale/ballymena-area/page-2
url= "https://www.propertypal.com/property-for-sale/ballymena-area/"
headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/106.0.0.0 Safari/537.36'}
for page in range(1, 4):
req = requests.get(url + 'page-' + str(page), headers=headers)
# print(page)
soup = BeautifulSoup(req.content, 'html.parser')
lists = soup.find_all('li', class_="pp-property-box")
with open('ballymena.csv', 'w', encoding='utf8', newline='') as f:
thewriter = writer(f)
header = ['Address', 'Price']
thewriter.writerow(header)
for list in lists:
title = list.find('h2').text
price = list.find('p', class_="pp-property-price").text
info = [title, price]
thewriter.writerow(info)
sleep(randint(2,10))
You are overwrite req multiple times and end up only analyzing the results of page 2. Put everything inside your loop.
edit: Also the upper limit in range() is not included, so you probably want to do for page in range(1, 4): to get the first three pages.
edit full example:
from bs4 import BeautifulSoup
import requests
from csv import writer
url = "https://www.propertypal.com/property-for-sale/ballymena-area/page-"
headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/106.0.0.0 Safari/537.36'}
with open('ballymena.csv', 'w', encoding='utf8', newline='') as f:
thewriter = writer(f)
header = ['Address', 'Price']
thewriter.writerow(header)
for page in range(1, 4):
req = requests.get(f"{url}{page}", headers=headers)
soup = BeautifulSoup(req.content, 'html.parser')
for li in soup.find_all('li', class_="pp-property-box"):
title = li.find('h2').text
price = li.find('p', class_="pp-property-price").text
info = [title, price]
thewriter.writerow(info)
The solution from bitflip is fine, however a few things I'll point out to help you.
try to avoid variable names that are predefined functions in python. For example list being one of those.
while csv writer is a fine package to use, also consider using pandas. You will likely further down the road need to do some data manipulation and what not, so might as well familiarise yourself with the package now. It's a very powerful tool.
Here's how I would have coded it.
from bs4 import BeautifulSoup
import requests
import pandas as pd
from random import randint
from time import sleep
from os.path import exists
#example of second page url: https://www.propertypal.com/property-for-sale/ballymena-area/page-2
url= "https://www.propertypal.com/property-for-sale/ballymena-area/"
headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/106.0.0.0 Safari/537.36'}
# Check if csv file exists
file_exists = exists('ballymena.csv')
for page in range(1, 4):
rows = []
req = requests.get(url + 'page-' + str(page), headers=headers)
# print(page)
soup = BeautifulSoup(req.content, 'html.parser')
lists = soup.find_all('li', class_="pp-property-box")
for li in lists:
title = li.find('h2').text
price = li.find('p', class_="pp-property-price").text
row = {
'Address':title,
'Price':price}
rows.append(row)
df = pd.DataFrame(rows)
# If file doesnt exists, write initial file
if not file_exists:
df.to_csv('ballymena.csv', index=False)
file_exists = True
# If it already exists, ammend to file
else:
df.to_csv('ballymena.csv', mode = 'a', header = False, index = False)
sleep(randint(2,10))

BeautifulSoup - Scraping html table on multipe pages

I'm newbie on Python and BeautifulSoup, I would like to scrape multiple pages in csv but when I'm trying to store those 3 links only the last one it's stored in csv.
How can I fix my issue ?
## importing bs4, requests, fake_useragent and csv modules
from bs4 import BeautifulSoup
import requests
from fake_useragent import UserAgent
import csv
## create an array with URLs
urls = [
'https://www.scansante.fr/applications/casemix_ghm_cmd/submit?snatnav=&typrgp=etab&annee=2019&type=ghm&base=0&typreg=noreg2016&noreg=99&finess=750300360&editable_length=10',
'https://www.scansante.fr/applications/casemix_ghm_cmd/submit?snatnav=&typrgp=etab&annee=2019&type=ghm&base=0&typreg=noreg2016&noreg=99&finess=030780118&editable_length=10',
'https://www.scansante.fr/applications/casemix_ghm_cmd/submit?snatnav=&typrgp=etab&annee=2019&type=ghm&base=0&typreg=noreg2016&noreg=99&finess=620103432&editable_length=10'
]
## initializing the UserAgent object
user_agent = UserAgent()
## starting the loop
for url in urls:
## getting the reponse from the page using get method of requests module
page = requests.get(url, headers={"user-agent": user_agent.chrome})
## storing the content of the page in a variable
html = page.content
## creating BeautifulSoup object
soup = BeautifulSoup(html, "html.parser")
table = soup.findAll("table", {"class":"table"})[0]
rows = table.findAll("tr")
with open("test.csv", "wt+", newline="") as f:
writer = csv.writer(f)
for row in rows:
csv_row = []
for cell in row.findAll(["td", "th"]):
csv_row.append(cell.get_text())
writer.writerow(csv_row)
Thanks a lot !
To simplify the reading process of the rows, you could also give a shot with pandas:
import csv
import requests
from bs4 import BeautifulSoup
import pandas as pd
urls = [
'https://www.scansante.fr/applications/casemix_ghm_cmd/submit?snatnav=&typrgp=etab&annee=2019&type=ghm&base=0&typreg=noreg2016&noreg=99&finess=750300360&editable_length=10',
'https://www.scansante.fr/applications/casemix_ghm_cmd/submit?snatnav=&typrgp=etab&annee=2019&type=ghm&base=0&typreg=noreg2016&noreg=99&finess=030780118&editable_length=10',
'https://www.scansante.fr/applications/casemix_ghm_cmd/submit?snatnav=&typrgp=etab&annee=2019&type=ghm&base=0&typreg=noreg2016&noreg=99&finess=620103432&editable_length=10'
]
headers = {'User-Agent': 'Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:77.0) Gecko/20100101 Firefox/77.0'}
all_data = []
for url in urls:
page = requests.get(url, headers=headers)
soup = BeautifulSoup(page.content, "html.parser")
table = soup.findAll("table", {"class":"table"})[0]
df_table = pd.read_html(str(table))[0]
#add a column with additional info
df_table['hit'] = soup.find("span", {"class":"c"}).text.strip()
#store the table in a list of tables
all_data.append(df_table)
#concat the tables and export them to csv
pd.concat(all_data).to_csv('test.csv',index=False)
In your code, you don't store rows variable to anywhere, so you write only values from your last URL to CSV file. This example will write values from all three URLs:
import csv
import requests
from bs4 import BeautifulSoup
urls = [
'https://www.scansante.fr/applications/casemix_ghm_cmd/submit?snatnav=&typrgp=etab&annee=2019&type=ghm&base=0&typreg=noreg2016&noreg=99&finess=750300360&editable_length=10',
'https://www.scansante.fr/applications/casemix_ghm_cmd/submit?snatnav=&typrgp=etab&annee=2019&type=ghm&base=0&typreg=noreg2016&noreg=99&finess=030780118&editable_length=10',
'https://www.scansante.fr/applications/casemix_ghm_cmd/submit?snatnav=&typrgp=etab&annee=2019&type=ghm&base=0&typreg=noreg2016&noreg=99&finess=620103432&editable_length=10'
]
headers = {'User-Agent': 'Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:77.0) Gecko/20100101 Firefox/77.0'}
all_data = []
for url in urls:
page = requests.get(url, headers=headers)
soup = BeautifulSoup(page.content, "html.parser")
table = soup.findAll("table", {"class":"table"})[0]
# here I store all rows to list `all_data`
for row in table.findAll('tr'):
tds = [cell.get_text(strip=True, separator=' ') for cell in row.findAll(["td", "th"])]
all_data.append(tds)
print(*tds)
# write list `all_data` to CSV
with open("test.csv", "wt+", newline="") as f:
writer = csv.writer(f)
for row in all_data:
writer.writerow(row)
Writes test.csv from all three URLs (screenshot from LibreOffice):

How do I convert a web-scraped table into a csv?

A year ago I learned some python in one of my classes but haven't had to use much since then so this may or may not be a simple question.
I'm trying to web-scrape the top grossing films of all time table from Box Office Mojo and I want to grab the rank, title, and gross for the top 10 films in the 2010s. I've been playing around in python and I can get the entire table into python but I don't know how to manipulate it from there, let alone write out a csv file. Any guidance/tips?
Here is what will print the entire table for me (the first few lines are copied from an old web-scraping assignment to get me started):
import bs4
import requests
from bs4 import BeautifulSoup as soup
url = "https://www.boxofficemojo.com/chart/top_lifetime_gross/"
headers = {'User-Agent' : 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML,
like Gecko) Chrome/71.0.3578.98 Safari/537.36'}
page_html = requests.get(url, headers=headers)
page_soup = soup(page_html.text, "html.parser")
boxofficemojo_table = page_soup.find("div", {"class": "a-section imdb-scroll-table-inner"})
complete_table = boxofficemojo_table.get_text()
print(complete_table)`
You Can use pd.read_html for this.
import pandas as pd
Data = pd.read_html(r'https://www.boxofficemojo.com/chart/top_lifetime_gross/')
for data in Data:
data.to_csv('Data.csv', ',')
2.Using Bs4
import pandas as pd
from bs4 import BeautifulSoup
import requests
URL = r'https://www.boxofficemojo.com/chart/top_lifetime_gross/'
print('\n>> Exctracting Data using Beautiful Soup for :'+ URL)
try:
res = requests.get(URL)
except Exception as e:
print(repr(e))
print('\n<> URL present status Code = ',(res.status_code))
soup = BeautifulSoup(res.text,"lxml")
table = soup.find('table')
list_of_rows = []
for row in table.findAll('tr'):
list_of_cells = []
for cell in row.findAll(["td"]):
text = cell.text
list_of_cells.append(text)
list_of_rows.append(list_of_cells)
for item in list_of_rows:
' '.join(item)
Data = pd.DataFrame(list_of_rows)
Data.dropna(axis = 0, how = 'all',inplace = True)
print(Data.head(10))
Data.to_csv('Table.csv')

Passing Selenium data results into Pandas

I am trying to automate a search which returns a table of information. I am able to print the results in .text but my question is how can I pass the results into a Pandas dataframe. The reason why I am asking is two fold; because I would want to print the results into a CSV file and I need the results in Pandas to do data analysis later on. Appreciate if anyone could help. My code as below:
import time
from selenium import webdriver
import pandas as pd
search = ['0501020210597400','0501020210597500','0501020210597600']
df = pd.DataFrame(search)
chrome_path = [Chrome Path]
driver = webdriver.Chrome(chrome_path)
driver.get('https://enquiry.mpsj.gov.my/v2/service/cuk_search/')
x = 0
while x <(len(df.index)):
search_box = driver.find_element_by_name('sel_value')
new_line = (df[0][x]).format(x)
search_box.send_keys(new_line)
search_box.submit()
time.sleep(5)
table = driver.find_elements_by_class_name('tr-body')
for data in table:
print(data.text)
driver.find_element_by_name('sel_value').clear()
x +=1
driver.close()
To load a CSV file to a DataFrame, you can do:
df = pd.read_csv('example.csv')
See the online doc: https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html#pandas.read_csv
To write the data to CSV, consult this article: Pandas writing dataframe to CSV file on SO.
The solution is:
df.to_csv(file_name, sep='\t')
You can use requests and do a POST to get the info rather than use selenium
import requests
from bs4 import BeautifulSoup as bs
import pandas as pd
search = ['0501020210597400','0501020210597500','0501020210597600']
headers = {'Referer' : 'https://enquiry.mpsj.gov.my/v2/service/cuk_search/1',
'User-Agent' : 'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/71.0.3578.98 Safari/537.36'
}
output = []
dfHeaders = ['No.', 'No. Akaun', 'Nama Di Bil', 'Jumlah Perlu Dibayar', '']
with requests.Session() as s:
for item in search:
r = s.get('https://enquiry.mpsj.gov.my/v2/service/cuk_search/1', headers = headers)
soup = bs(r.content, 'lxml')
key = soup.select_one('[name=ACCESS_KEY]')['value']
body = {'sel_input': 'no_akaun', 'sel_value': item, 'ACCESS_KEY': key}
res = s.post('https://enquiry.mpsj.gov.my/v2/service/cuk_search_submit/', data = body)
soup = bs(res.content, 'lxml')
table = soup.select_one('.tbl-list')
rows = table.select('.tr-body')
for row in rows:
cols = row.find_all('td')
cols = [item.text.strip() for item in cols]
output.append([item for item in cols if item])
df = pd.DataFrame(output, columns = dfHeaders)
print(df)
df.to_csv(r'C:\Users\User\Desktop\Data.csv', sep=',', encoding='utf-8-sig',index = False )

Beautiful Soup unable to grab information from table

A few months into python, and am having trouble scraping some information from tables using BeautifulSoup, any help would be appreciated. I am not getting any error codes, but instead just receiving no data from the table.
import bs4 as bs
import requests
resp = requests.get('https://www.thestreet.com/markets/gainers.html')
soup = bs.BeautifulSoup(resp.text, "lxml")
table = soup.find('table', {'id': 'nyseData'})
tickers = []
for row in table.findAll('tr')[1:]:
ticker = row.findAll('td')[1].text
tickers.append(ticker)
Any help is much appreciated!
You are running in to a problem with the page not allowing certain user-agents from accessing their site. This can be fixed by setting a user-agent string in your requests header.
Your code with the user-agent added:
import bs4 as bs
import requests
headers = {'User-Agent':'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/56.0.2924.87 Safari/537.36'}
resp = requests.get('https://www.thestreet.com/markets/gainers.html', headers=headers)
soup = bs.BeautifulSoup(resp.text,'lxml')
table = soup.find('table', {'id': 'nyseData'})
tickers = []
for row in table.findAll('tr')[1:]:
ticker = row.findAll('td')[1].text
tickers.append(ticker)
print tickers
Output:
[u'QUOT', u'BCEI', u'ATEN', u'SKX', u'FBK', u'FBM', u'CGI', u'SDRL', u'ELLI', u'CELP', u'SXCP', u'CUB', u'GLF', u'SID', u'HBM', u'NE', u'CBG', u'PJT', u'VVI', u'ARL']

Categories