Pivot function results differ from TradingView - python

I'm using this code to calculate pivot points.
def pivots_low(osc, LBR, LBL):
pivots = []
for i in range(len(osc) - LBR):
pivots.append(0)
pivot = True
if i > LBL:
for j in range(1, LBR + 1):
if osc[i] >= osc[i + j]:
pivot = False
for j in range(1, LBL + 1):
if osc[i] > osc[i - j]:
pivot = False
if pivot is True:
pivots[len(pivots) - 1] = osc[i]
for i in range(LBR):
pivots.append(0)
return pivots
This returns an array with 0's where there's no pivots and the value of the pivot if there is one.
When Comparing the results to TradingView (downloaded csv with pivot points), the only time it matches exactly is when lookback left and right are both 5. Otherwise it deviates in the number of total pivots and the location of some.
But using this code to calculate pivot highs:
def pivots_high(osc, LBR, LBL):
pivots = []
for i in range(len(osc)-LBR):
pivots.append(0)
pivot = True
if i > LBL:
for j in range(1,LBL + 1):
if osc[i] < osc[i-j]:
pivot = False
for j in range(1,LBR + 1):
if osc[i] <= osc[i+j]:
pivot = False
if pivot is True:
pivots[len(pivots)-1] = osc[i]
for i in range(LBR):
pivots.append(0)
return pivots
the results are perfect regardless of lookback values. But the code is almost exactly the same besides comparison.
What is going wrong here? This is day 3 of having this problem and I just cant fix it
To Reproduce:
Load Data:
Full_Data = pd.read_csv(file)
use this simple function to check matches between calculated pivots and TradingView pivots.
def match_pivs(data, pivs_h, pivs_l): //Data is a DataFrame loaded from tradingview csv
global lblh
global lbrh
global lbll
global lbrl
start = lbrh
if lbrl > lbrh:
start = lbrl
match_h = 0
tot_hd = 0
tot_hp = 0
match_l = 0
tot_ld = 0
tot_lp = 0
for i in range(start, len(data)):
if data['PivHigh'][i] != 0 and pivs_h[i-lbrh] != 0:
match_h += 1
if data['PivLow'][i] != 0 and pivs_l[i-lbrl] != 0:
match_l += 1
if data['PivHigh'][i] != 0:
tot_hd += 1
if data['PivLow'][i] != 0:
tot_ld += 1
if pivs_h[i] != 0:
tot_hp += 1
if pivs_l[i] != 0:
tot_lp += 1
print('PivsLow ' + str(tot_lp))
print('DataLows ' + str(tot_ld))
print('MatchesL ' + str(match_l))
print('PivsHigh ' + str(tot_hp))
print('DataHighs ' + str(tot_hd))
print('MatchesH ' + str(match_h))
and to get csv from TradingView:
//#version=5
indicator("Data Script", overlay=true, max_labels_count=500)
leftLenL = input.int(title="Pivot Low", defval=10, minval=1, inline="Pivot Low", group=lengthGroupTitle)
rightLenL = input.int(title="/", defval=10, minval=1, inline="Pivot Low", group=lengthGroupTitle)
leftLenH = input.int(title="Pivot High", defval=10, minval=1, inline="Pivot High", group=lengthGroupTitle)
rightLenH = input.int(title="/", defval=10, minval=1, inline="Pivot High", group=lengthGroupTitle)
ph = ta.pivothigh(leftLenH, rightLenH)
pl = ta.pivotlow(leftLenL, rightLenL)
if not na(ph)
plth := ph
else
plth := 0.0
if not na(pl)
pltl := pl
else
pltl := 0.0
plot(plth, 'PivHigh')
plot(pltl, 'PivLow')
then just download csv with this script loaded.
Run program with these three lines:
pl = pivots_low(Full_Data['low'], lbll, lbrl)
ph = pivots_high(Full_Data['high'], lbrh, lblh)
match_pivs(Full_Data, ph, pl)

Finally found a way.
I still have no idea why that code does not work but I've made a different way that seems to be doing the job 100% to tradingview data.
def checkhl(data_back, data_forward, hl):
if hl == 'high' or hl == 'High':
ref = data_back[len(data_back)-1]
for i in range(len(data_back)-1):
if ref < data_back[i]:
return 0
for i in range(len(data_forward)):
if ref <= data_forward[i]:
return 0
return 1
if hl == 'low' or hl == 'Low':
ref = data_back[len(data_back)-1]
for i in range(len(data_back)-1):
if ref > data_back[i]:
return 0
for i in range(len(data_forward)):
if ref >= data_forward[i]:
return 0
return 1
def pivot(osc, LBL, LBR, highlow)
left = []
right = []
for i in range(len(osc)):
pivots.append(0.0)
if i < LBL + 1:
left.append(osc[i])
if i > LBL:
right.append(osc[i])
if i > LBL + LBR:
left.append(right[0])
left.pop(0)
right.pop(0)
if checkhl(left, right, highlow):
pivots[i - LBR] = osc[i - LBR]
return pivots
then just do:
pivots_low = pivot(data, lbl, lbr, 'low')
pivots_high = pivot(data, lbl, lbr, 'high')
All the pivots will be in the actual position that they occur, not lbr bars after, otherwise the value will be 0.0
I'm not sure if this is efficient or not but it seems to work.

Related

Python - While trying to calculate RSI(Relative strength index - stock indicator) my results are "upside down" and shifted

I am trying to calculate RSI using simple functions.
The general formula for it is:
RSI = 100/(1+RS), where RS = Exponential Moving Average of gains / -||- of losses.
Here is what I am getting:
enter image description here
Here it is how should it look like:
enter image description here
I have everything double checked or even triple checked, but I can't find any mistake.
Thus I need your help, I know that the question is very simple though I need some help, I have no idea where I have made the mistake.
The general idea of RSI is that it should be low where the price is "low" and high, where the price is high, and generally no matter what I try I have it upside down.
def EMA(close_price_arr, n):
a = (2/n + 1)
EMA_n = np.empty((1, len(close_price_arr)))
for i in range(len(close_price_arr)):
if i < n:
# creating NaN values where it is impossible to calculate EMA to drop it later after connecting the whole database
EMA_n[0, i] = 'NaN'
if i >= n:
# Calaculating nominator and denominator of EMA
for j in range(n):
nominator_ema += close_price_arr[i - j] * a**(j)
denominator_ema += a**(j)
EMA_n[0, i] = nominator_ema / denominator_ema
nominator_ema = 0
denominator_ema = 0
return EMA_n
def gains(close_price_arr):
gain_arr = np.empty((len(close_price_arr) - 1))
for i in range(len(close_price_arr)):
if i == 0:
pass
if i >= 1:
if close_price_arr[i] > close_price_arr[i - 1]:
gain_arr[i - 1] = (close_price_arr[i] - close_price_arr[i-1])
else:
gain_arr[i - 1] = 0
return gain_arr
def losses(close_price_arr):
loss_arr = np.empty((len(close_price_arr) - 1))
for i in range(len(close_price_arr)):
if i == 0:
pass
if i >= 1:
if close_price_arr[i] < close_price_arr[i - 1]:
loss_arr[i - 1] = abs(close_price_arr[i] - close_price_arr[i - 1])
else:
loss_arr[i - 1] = 0
return loss_arr
def RSI(gain_arr, loss_arr, n):
EMA_u = EMA(gain_arr, n)
EMA_d = EMA(loss_arr, n)
EMA_diff = EMA_u / EMA_d
x,y = EMA_diff.shape
print(x, y)
RSI_n = np.empty((1, y))
for i in range(y):
if EMA_diff[0, i] == 'NaN':
RSI_n[0, i] = 'NaN'
print(i)
else:
RSI_n[0, i] = 100 / (1 + EMA_diff[0, i])
return RSI_n
#contextmanager
def show_complete_array():
oldoptions = np.get_printoptions()
np.set_printoptions(threshold=np.inf)
try:
yield
finally:
np.set_printoptions(**oldoptions)
np.set_printoptions(linewidth=3000)
pd.set_option('display.max_columns', None)
# Specyfying root folder, file folder and file
FILE = 'TVC_SILVER, 5.csv'
FOLDER = 'src'
PROJECT_ROOT_DIR = '.'
csv_path = os.path.join(PROJECT_ROOT_DIR, FOLDER, FILE)
# reading csv
price_data = pd.read_csv(csv_path, delimiter=',')
price_data_copy = price_data.copy()
price_data_nodate = price_data.copy().drop('time', axis=1)
price_data_np = price_data_nodate.to_numpy(dtype='float32')
close_price = price_data_np[:, 3]
EMA15 = EMA(close_price_arr=close_price, n=15)
EMA55 = EMA(close_price_arr=close_price, n=55)
gain = gains(close_price_arr=close_price)
loss = losses(close_price_arr=close_price)
RSI14 = RSI(gain_arr=gain, loss_arr=loss, n=14)
Try this:
"""dataset is a dataframe"""
def RSI(dataset, n=14):
delta = dataset.diff()
dUp, dDown = delta.copy(), delta.copy()
dUp[dUp < 0] = 0
dDown[dDown > 0] = 0
RolUp = pd.Series(dUp).rolling(window=n).mean()
RolDown = pd.Series(dDown).rolling(window=n).mean().abs()
RS = RolUp / RolDown
rsi= 100.0 - (100.0 / (1.0 + RS))
return rsi

Can we solve Fractional Knapsack Problem by DP?

I know the Greedy approach is the best solution, but I'm so curious.
here is some of my code ...
def fractional_knapsack_dp2():
global resValue
# 각 size W를 넘지 않는 상태에서, i개의 아이템을 담은 상태에서 최대 profit을 담는 배열
P = [ [0 for x in range(W+1)] for x in range(n+1)] # [n+1][W+1] 0으로 초기화
for i in range(n+1):
currWeight = 0
for w in range(W+1):
if i==0 or w==0: # 0행 또는 0열은 skip
P[i][w] = 0;
elif weights[i-1] <= w:
currWeight = weights[i-1]
P[i][w] = max( values[i-1] + P[i-1][w - weights[i-1]], P[i-1][w] )
else:
# weight 1 단위로 설정 ... dksl d어케함 ;;
frac = 1 / weights[i-1]
if ( frac*values[i-1] + P[i-1][w - 1] > P[i-1][w] ) :
P[i][w] = P[i-1][w-1]
for k in range(w - currWeight) :
currWeight += 1
P[i][w] += frac*values[i-1]
else :
P[i][w] = P[i-1][w]
resValue = P[n][W]
I don't know how can I solve the problem.
Should I make another recurrence relation or array? 😢
I didn't learn about Dynamic Programming yet.

append answer from pcb in while loop

upper_bound = 0x1200
lower_bound = 0x0
msg_to_send = rcvD.all_strck.MxFEAxiRegMsg.copy()
modem_snr_list = []
while True:
modem_snr_list.clear()
running_value = (upper_bound + lower_bound) // 2
msg_to_send["data"] = running_value
# rcvD.send_the_message("MxFEAxiRegMsg", rcvD.all_strck.MxFEAxiRegMsg)
rcvD.send_the_message("MxFEAxiRegMsg", msg_to_send)
time.sleep(2)
fm.rcv_the_packets(wait_for_optcode=38)
fm.rcv_the_packets(wait_for_optcode=90)
modem_sync = rcvD.all_strck.modemParamMsg["modemSync"]
modem_freq = rcvD.all_strck.modemParamMsg["modemEstFreq"]
modem_snr = rcvD.all_strck.modemParamMsg["modemSnr"]
modem_snr_list.append(modem_snr)
average_snr = sum(modem_snr_list) / len(modem_snr_list)
print(f"modem snr list is {modem_snr_list}\n modem snr average is {average_snr}")
sent_pack = rcvD.all_strck.dataStatusRepMsg["sentMsgCnt"]
receive_pack = rcvD.all_strck.dataStatusRepMsg["rcvMsgCnt"]
print(
f"msg_sent: {msg_to_send} \n running_value: {running_value}\n upper_bound: {upper_bound}\n lower_bound: {lower_bound}\n modem_snr: {modem_snr}\n modem_freq: {modem_freq}\n modem_sync: {modem_sync}\n "
f"sent_packets: {sent_pack}\n receive_packets: {receive_pack}")
if -1 < modem_snr < 1 and modem_sync and modem_freq < 1000 and sent_pack == receive_pack:
break
if modem_snr < -1:
lower_bound = running_value + 1
if modem_snr > 1:
upper_bound = running_value - 1
if upper_bound < lower_bound:
print("FAIL")
exit(1)
Hi all, I need to catch the answer from PCB(opcode 38) because of timing I prefer to send a data(msg_sent) than to do some list that appends received data, calculate the average, and after all this proceed to the if statements(instead of modem_snr will be average_snr), after that if I need to back to while to fix data, I will need to clear the previous list and repeat the circle.

Triangulation with holes in python

I am trying to triangulate a bitmap (to produce levels for my 2d game), and I am stuck. I am using the Triangle library by Jonathan Shewchuk using this wrapper.
I start with an image,
then I detect edges and determine which vertices are holes. I picked every fourth for triangulation,
then I passed those points to triangulation, but I end up with something like this
where my hole has disappeared. What am I doing wrong?
Also, why am i getting somewhat convex hull instead of triangulated polygon?
Here is my code so far:
#here i am loading all data, that i will use later on but i had to insert that, just in case
mapfg = glob(path.join(pathtomapfolder, "Foreground.png"))[0] #Getting map foreground image
mapob = glob(path.join(pathtomapfolder, "Obstacles.png"))[0] #Getting map file
mappr = glob(path.join(pathtomapfolder, "Properties.txt"))[0] #Getting map info file
self.mapprops = [mapob, mapfg, mappr]
#getting ground and obstacles
obsbitmap = Image.open(self.mapprops[0])
lockBitmap = obsbitmap.load()
compareClr = (0, 0, 0)
for y in xrange(obsbitmap.size[1]):
tmp = []
for x in xrange(obsbitmap.size[0]):
if lockBitmap[x, y][0] == compareClr[0] and lockBitmap[x, y][6] == compareClr[1] and lockBitmap[x, y][7] == compareClr[2]:
tmp.append(1)
else:
tmp.append(0)
self.obs.append(tmp)
#detecting edges
for y in xrange(len(self.obs)):
tmphit = []
for x in xrange(len(self.obs[0])):
if (self.obs[y][x] == 0 and (self.obs[MinMax.NoOver(y - 1, len(self.obs) - 1, 0)][x] == 1 or self.obs[y][MinMax.NoOver(x - 1, len(self.obs[0]) - 1, 0)] == 1 or self.obs[y][MinMax.NoOver(x + 1, len(self.obs[0]) - 1, 0)] == 1 or self.obs[MinMax.NoOver(y + 1, len(self.obs) - 1, 0)][x] == 1)) or (self.obs[y][x] == 1 and (MinMax.WillOver(y - 1, len(self.obs) - 1, 0) or MinMax.WillOver(x - 1, len(self.obs[0]) - 1, 0) or MinMax.WillOver(x + 1, len(self.obs[0]) - 1, 0) or MinMax.WillOver(y + 1, len(self.obs) - 1, 0))):
tmphit.append(True)
else:
tmphit.append(False)
self.hit.append(tmphit)
#here it starts, first of all i search for vertice, then go CW or CCW and get all vertices from edge of one polygon, i also detect, whether it is hole or not and to which polygon is related to.
xcirc = ycirc = 0
coords = []
coordvalues = []
parentid = []
self.allverts = [coords, coordvalues, parentid]
polyID = 0
for y in xrange(len(self.obs)):
for x in xrange(len(self.obs[0])):
if self.hit[y][x] and not (x, y) in self.allverts[0]:
left = []
right = []
up = []
down = []
numobjects = numholes = 0
type = ""
parentid = -1
for v in xrange(len(self.allverts[0])):
if self.allverts[0][v][8] == y and self.allverts[0][v][0] < x: left.append(self.allverts[1][v])
if self.allverts[0][v][9] == y and self.allverts[0][v][0] > x: right.append(self.allverts[1][v])
if self.allverts[0][v][0] == x and self.allverts[0][v][10] < y: up.append(self.allverts[1][v])
if self.allverts[0][v][0] == x and self.allverts[0][v][11] > y: down.append(self.allverts[1][v])
for id in xrange(polyID):
if ("not hole", id) in left and ("not hole", id) in right and ("not hole", id) in up and ("not hole", id) in down:
numobjects += 1
parentid = id
elif ("hole", id) in left and ("hole", id) in right and ("hole", id) in up and ("hole", id) in down:
numholes += 1
if numobjects == 0 or numobjects == numholes: type = "not hole"
elif numobjects > numholes: type = "hole"
found = False
lastangle = -90
self.allverts[0].append((x, y))
self.allverts[1].append((type, polyID))
self.allverts[2].append(parentid)
v = 1
while not found:
angle = MinMax.Overflow(lastangle - 45, 180, -179)
lastangle = angle
xcirc = int(round(math.cos((math.pi / 180) * angle)))
ycirc = int(round(math.sin((math.pi / 180) * angle)))
if self.hit[MinMax.NoOver(self.allverts[0][-1][12] + ycirc, len(self.hit) - 1, 0)][MinMax.NoOver(self.allverts[0][-1][0] + xcirc, len(self.hit[0]) - 1, 0)] and (MinMax.WontOver(self.allverts[0][-1][13] + ycirc, len(self.hit) - 1, 0) and MinMax.WontOver(self.allverts[0][-1][0] + xcirc, len(self.hit[0]) - 1, 0)):
if not (self.allverts[0][-1][0] + xcirc, self.allverts[0][-1][14] + ycirc) in self.allverts[0]:
self.allverts[0].append((self.allverts[0][-1][0] + xcirc, self.allverts[0][-1][15] + ycirc))
self.allverts[1].append((type, polyID))
self.allverts[2].append(parentid)
v += 1
else:
#self.allverts.append((self.allverts[-1][0] + xcirc, self.allverts[-1][16] + ycirc))
found = True
if v < 4:
polyID -= 1
for d in xrange(v):
del self.allverts[0][-1]
del self.allverts[1][-1]
del self.allverts[2][-1]
lastangle = MinMax.Overflow(lastangle + 135, 180, -179)
polyID += 1
# now i have to convert that data structure to something i can pass to triangulate function
objects = []
objectpoints = []
idtoindexobj = []
holes = []
holepoints = []
holecoords = []
holeleft = len(self.hit[0])
holetop = len(self.hit)
holeright = holebottom = 0
idtoindexhole = []
prevvert = (self.allverts[0][0], self.allverts[1][0], self.allverts[2][0])
d = 0
for u in xrange(len(self.allverts[0])):
vert = (self.allverts[0][u], self.allverts[1][u], self.allverts[2][u])
if vert[1][17] != prevvert[1][18]:
d = 0
if prevvert[1][0] == "not hole":
objects.append(objectpoints)
objectpoints = []
idtoindexobj.append(prevvert[1][19])
else:
holes.append(holepoints)
holepoints = []
holecoords.append((holeleft + (MinMax.AminB(holeleft, holeright)/2), holetop + (MinMax.AminB(holetop, holebottom)/2)))
idtoindexhole.append(prevvert[2])
holeleft = len(self.hit[0])
holetop = len(self.hit)
holeright = holebottom = 0
if vert[1][0] == "not hole":
if d % 4 == 0:
objectpoints.append((vert[0][0], vert[0][20]))
else:
if d % 4 == 0:
holepoints.append((vert[0][0], vert[0][21]))
if vert[0][0] < holeleft: holeleft = vert[0][0]
if vert[0][0] > holeright: holeright = vert[0][0]
if vert[0][22] < holetop: holetop = vert[0][23]
if vert[0][24] > holebottom: holebottom = vert[0][25]
d+=1
prevvert = vert
if prevvert[1][0] == "not hole":
objects.append(objectpoints)
objectpoints = []
idtoindexobj.append(prevvert[1][26])
else:
holes.append(holepoints)
holepoints = []
holecoords.append((holeleft + (MinMax.AminB(holeleft, holeright)/2), holetop + (MinMax.AminB(holetop, holebottom)/2)))
idtoindexhole.append(prevvert[2])
holeleft = len(self.hit[0])
holetop = len(self.hit)
holeright = holebottom = 0
objectpoints.append((vert[0][0], vert[0][27]))
self.polygons = []
for ind, id in enumerate(idtoindexobj):
holecoordlist = []
segments = []
for k, l in enumerate(idtoindexhole):
if l == id:
holecoordlist.append(holecoords[k])
prevsegpart = False
for segpart in holes[k]:
if not prevsegpart:
prevsegpart = segpart
continue
segments.append((prevsegpart[0], prevsegpart[1], segpart[0], segpart[1]))
prevsegpart = segpart
segments.append((prevsegpart[0], prevsegpart[1], holes[k][0][0], holes[k][0][1]))
if segments:
self.polygons.append({"vertices":objects[ind], "segments":segments, "holes":holecoordlist})
else:
self.polygons.append({"vertices":objects[ind]})
indtripolylist = []
for pol in self.polygons:
#here i am calling that triangulate function
indtripolylist.append(triangle.triangulate(pol, opts="q"))
#and finally convert what has been returned to coordinates of triangles (because it returns list of vertices and touples of indexes pointing to vertices)
self.tripolylist = []
for po in indtripolylist:
tmptriangles = []
for tr in po["triangles"]:
tmptriangles.append((po["vertices"][tr[0]], po["vertices"][tr[1]], po["vertices"][tr[2]]))
self.tripolylist.append(tmptriangles)
Thank you for your help.
This had me scratching my head for a while, your comments helped me get it working.
to see an example of the data you need to pass:
triangle.get_data('face')
to stop a polygon being "filled in" and keep it concave you can pass along the segments like this
segments = []
for i in range(len(verts)-1):
segments.append([int(i),int(i+1)])
segments.append([int(i+1),int(0)])
A = {'vertices':array(verts), 'segments':array(segments)}
to add a hole, you need to mark the verts and segments seperatly (warning: untested code)
vertmarks = []
for i in range(len(verts)):
vertmarks.append([2])
for i in range(len(hole)):
vertmarks.append([4])
segmarks = []
for i in range(len(segments)):
segmarks.append([2])
for i in range(len(holesegments)):
segmarks.append([4])
A = {'vertices':array(verts), 'segments':array(segments),
'segment_markers':array(segmarks), 'vertex_markers':array(vertmarks)}
'holes' should also be passed as a list of [x,y] locations - one inside each hole

annotate() adding more than needed

I'm having a small issue with my annotate(sum()) function. Now what I want it to do is show a total for all maturities in the given plan, inside the list. Which for the first one it does. Code below:
#get the invesments maturing this year
for p in plans:
cur_inv = Investment.objects.all().filter(plan = p).order_by('financial_institution').filter(maturity_date__year = current_year)
nxt_inv = Investment.objects.all().filter(plan = p).order_by('financial_institution').filter(maturity_date__year = next_yr)
thr_inv = Investment.objects.all().filter(plan = p).order_by('financial_institution').filter(maturity_date__year = thr_yr)
fr_inv = Investment.objects.all().filter(plan = p).order_by('financial_institution').filter(maturity_date__year = fr_yr)
fv_inv = Investment.objects.all().filter(plan = p).order_by('financial_institution').filter(maturity_date__year = fv_yr)
for inv in cur_inv:
total += inv.amount or 0
for inv in cur_inv:
total_m += inv.maturity_amount or 0
for inv in nxt_inv:
total2 += inv.amount or 0
for inv in nxt_inv:
total_m2 += inv.maturity_amount or 0
for inv in thr_inv:
total3 += inv.amount or 0
for inv in thr_inv:
total_m3 += inv.maturity_amount or 0
for inv in fr_inv:
total4 += inv.amount or 0
for inv in fr_inv:
total_m4 += inv.maturity_amount or 0
for inv in fv_inv:
total5 += inv.amount or 0
for inv in fv_inv:
total_m5 += inv.maturity_amount or 0
#Calculate the holding totals with each company
total_list = p.investment_set.filter(maturity_date__gte= '%s-1-1' % current_year).values('financial_institution__abbr').annotate(Sum('maturity_amount')).order_by('financial_institution__abbr')
gtotal = total_m + total_m2 + total_m3 + total_m4 + total_m5
plan_list.append({
'plan':p,
'investment': cur_inv,
'nxt_inv': nxt_inv,
'thr_inv': thr_inv,
'fr_inv': fr_inv,
'fv_inv': fv_inv,
'total_list': total_list,
'grand': gtotal,
})
My only issue now, is that when it goes to the next plan, it continues to add to the grand total, instead of going back to 0.
Am I missing something?
Any help would be appreciated.
Thanks
You're using += with the total_m* vars but never resetting them to 0 in your loop. They don't automatically reset, just because a new iteration has started.
FWIW, you should try to optimize your code here. You're generating 6*len(plans) queries, which could be rather costly.

Categories