I would like to create a figure that has an inset figure. However, the inset does not share the style properties of the main figure. How could I force the inset to share the style properties of the main figure? The code I am using is the following:
def initializeFigure(xlabel, ylabel, scale= 'loglog',width='1col', height=None):
import matplotlib as mpl
from matplotlib import pyplot as plt
# make sure defaults are used
plt.style.use(['science', 'scatter'])
plt.rcParams['text.usetex'] = True
import matplotlib
# Prepare figure width and height
cm_to_inch = 0.393701 # [inch/cm]
# Get figure width in inch
if width == '1col':
width = 8.8 # width [cm]
elif width == '2col':
width = 18.0 # width [cm]
figWidth = width * cm_to_inch # width [inch]
# Get figure height in inch
if height is None:
fig_aspect_ratio = 7.5/10.
figHeight = figWidth * fig_aspect_ratio # height [inch]
else:
figHeight = height * cm_to_inch # height [inch]
# Create figure with right resolution for publication
fig = plt.figure(figsize=(figWidth, figHeight), dpi=300)
# Add axis object and select as current axis for pyplot
ax = fig.add_subplot(111)
plt.sca(ax)
ax.tick_params(axis='both', which='minor',left=0,right=0,bottom=0, top=0, direction='out', labelsize='medium', pad=2)
ax.tick_params(axis='both', which='major',left=1,right=0,bottom=1, top=0, direction='out', labelsize='small', pad=2)
if scale=='loglog':
# ax.loglog(x,y, label =label)
ax.set_yscale('log')
ax.set_xscale('log')
elif scale=='semilogy':
ax.set_yscale('log')
elif scale=='semilogx':
ax.set_xscale('log')
else:
pass
ax.set_ylabel(xlabel)
ax.set_xlabel(ylabel)
return fig, ax
ylabel =r'$p(\delta \ell)$'
xlabel = r'$\delta \ell~[d_{i}]$'
fig, ax= initializeFigure(ylabel, xlabel,'2col')
plt.loglog(np.logspace(np.log10(1), np.log10(100), 1000), 1/np.logspace(np.log10(1), np.log10(100), 1000))
axins2 = ax.inset_axes([0.02, 0.02, 0.42, 0.42])
axins2.yaxis.set_label_position("right")
axins2.xaxis.set_label_position("top")
axins2.yaxis.tick_right()
x, y = np.random.rand(100),np.random.rand(100)
axins2.plot(x, y )
My question is the following:
How could I force the inset to share the style properties of the main figure?
One option is to dive into the implementation details of the Axes class and define a function to return the values properties that you define for the original axes. Then you can use this data to set the same properties on the inset Axes.
An alternative, more feasible approach is to accept two additional parameters in your function (major_tick_params=None, minor_tick_params=None) and define inside the function:
if major_tick_params is None:
major_params = {'axis':'both',
'which':'major',
'left':1,
'right':0,
'bottom':1,
'top':0,
'direction':'out',
'labelsize':'small',
'pad':2}
if minor_tick_params is None:
minor_params = {'axis':'both',
'which':'minor',
'left':0,
'right':0,
'bottom':0,
'top':0,
'direction':'out',
'labelsize':'medium',
'pad':2}
ax.tick_params(**major_tick_params)
ax.tick_params(**minor_tick_params)
Then you can define the major_tick_params and minor_tick_params before you call the function and reuse it on the inset axes.
ylabel =r'$p(\delta \ell)$'
xlabel = r'$\delta \ell~[d_{i}]$'
minor_tick_params = {'axis':'both',
'which':'minor',
'left':0,
'right':0,
'bottom':0,
'top':0,
'direction':'out',
'labelsize':'medium',
'pad':2}
major_tick_params = {'axis':'both',
'which':'major',
'left':1,
'right':0,
'bottom':1,
'top':0,
'direction':'out',
'labelsize':'small',
'pad':2}
fig, ax= initializeFigure(ylabel, xlabel,'2col', major_tick_params=major_tick_params, minor_tick_params=minor_tick_params)
xvals = np.logspace(np.log10(1), np.log10(100), 1000)
ax.plot(xvals, 1/xvals)
ax.set_xscale('log')
ax.set_yscale('log')
axins2 = ax.inset_axes([0.02, 0.02, 0.42, 0.42])
axins2.yaxis.set_label_position("right")
axins2.xaxis.set_label_position("top")
axins2.yaxis.tick_right()
x, y = np.random.rand(100),np.random.rand(100)
axins2.plot(x, y)
axins2.tick_params(**minor_tick_params)
axins2.tick_params(**major_tick_params)
Related
i have a little problem to create a subplot loop.
The following code show my result for one plot.... So it starts with a dayloop than with a hour loop (8 timesteps).
If i run the code i get a nice QUiver plot with the colorbar.
for dd in range(1,15):
day=str(dd)
readfile=fns[files_indizes[dd]]
if dd < 10:
nc_u_comp = NetCDFFile(ROOT+u_comp1+'0'+day+comp)
nc_v_comp = NetCDFFile(ROOT+v_comp1+'0'+day+comp)
else:
nc_u_comp = NetCDFFile(ROOT+u_comp1+day+comp)
nc_v_comp = NetCDFFile(ROOT+v_comp1+day+comp)
time = nc_u_comp.variables['time'][:]
index=readfile.find(comp)
index=index+len(comp)
date=readfile[index-14:index-6]
plt.clf()
for tt in range(0,len(time)):
if tt < 10:
h =str(0)+str(tt)
else:
h=str(tt)
varU=nc_u_comp.variables['u10'][tt,:,:]
varV=nc_v_comp.variables['v10'][tt,:,:]
lat = nc_u_comp.variables['latitude'][:]
lon = nc_u_comp.variables['longitude'][:]
plt.rcParams["figure.figsize"] = [10,10]
#plane projection of the world
#map with box size (defintion on the top)
box = sgeom.box(minx=llcrnrlon, maxx=urcrnrlon, miny=llcrnrlat, maxy=urcrnrlat)
x0, y0, x1, y1 = box.bounds
#Map plot. The middel of the map is central_longitude
#proj = ccrs.PlateCarree(central_longitude=0)
proj=ccrs.PlateCarree()
#Change middelpoint of the map
box_proj = ccrs.PlateCarree(central_longitude=0)
ax2 = plt.axes(projection=proj)
ax2.set_extent([x0, x1, y0, y1], box_proj)
ax2.add_feature(cartopy.feature.BORDERS, linestyle='-', alpha=.5)
ax2.coastlines(resolution='50m')
#Definition of the scale_bar
gl = ax2.gridlines(ccrs.PlateCarree(), \
linestyle='--', alpha=1, linewidth=0.5, draw_labels=True)
gl.xlabels_top = False
gl.ylabels_right = False
gl.xformatter = LONGITUDE_FORMATTER
gl.yformatter = LATITUDE_FORMATTER
magnitude = (varU ** 2 + varV ** 2) ** 0.5
strm =plt.streamplot(lon , lat , varU, varV, linewidth=2, density=2, color=magnitude)
cbar= plt.colorbar()
cbar.set_label('$m/s$')
name='Wind in 10 m '+ date + h+' UTC'
ax2.set_aspect('auto')
plt.title(name, y=1)
Now i want to create an 2x4 Subplot array with a colorbar allocate to the complete Subplot array.
I find some infromation in the internet, but it doesn't run with my code. Maybe someone can help me?
This shows how to plot an array of simple Cartopy maps in 4 rows 2 columns. Also shows how to plot a colorbar to accompany the maps array. Hope it helps.
import numpy as np
import cartopy.crs as ccrs
import matplotlib.pyplot as plt
import matplotlib as mpl
# create figure with figsize big enough to accomodate all maps, labels, etc.
fig = plt.figure(figsize=(8, 10), tight_layout=False)
# define plot array's arrangement
columns = 2
rows = 4
# set projection to use
projex = ccrs.PlateCarree()
# set the colormap and norm for
# the colorbar to use
cmap1 = mpl.cm.magma
norm1 = mpl.colors.Normalize(vmin=0, vmax=100)
def plotmymap(axs):
# your plot specs of each map should replace this
img = np.random.randint(100, size=(15, 30)) # 2d array of random values (1-100)
# render image on current axis
plims = plt.imshow(img, extent=[-180,180,-90,90], alpha=0.5, cmap=cmap1, norm=norm1)
axs.set_global()
axs.coastlines()
# add title to the map
axs.set_title("Map_"+str(i))
return plims # for use by colorbar
for i in range(1, columns*rows +1):
# add a subplot into the array of plots
ax = fig.add_subplot(rows, columns, i, projection=projex)
plims = plotmymap(ax) # a simple maps is created on subplot
# add a subplot for vertical colorbar
bottom, top = 0.1, 0.9
left, right = 0.1, 0.8
fig.subplots_adjust(top=top, bottom=bottom, left=left, right=right, hspace=0.15, wspace=0.25)
cbar_ax = fig.add_axes([0.85, bottom, 0.05, top-bottom])
fig.colorbar(plims, cax=cbar_ax) # plot colorbar
plt.show() # this plot all the maps
The resulting plots:
I'm trying to create a plot using pyplot that has a discontinuous x-axis. The usual way this is drawn is that the axis will have something like this:
(values)----//----(later values)
where the // indicates that you're skipping everything between (values) and (later values).
I haven't been able to find any examples of this, so I'm wondering if it's even possible. I know you can join data over a discontinuity for, eg, financial data, but I'd like to make the jump in the axis more explicit. At the moment I'm just using subplots but I'd really like to have everything end up on the same graph in the end.
Paul's answer is a perfectly fine method of doing this.
However, if you don't want to make a custom transform, you can just use two subplots to create the same effect.
Rather than put together an example from scratch, there's an excellent example of this written by Paul Ivanov in the matplotlib examples (It's only in the current git tip, as it was only committed a few months ago. It's not on the webpage yet.).
This is just a simple modification of this example to have a discontinuous x-axis instead of the y-axis. (Which is why I'm making this post a CW)
Basically, you just do something like this:
import matplotlib.pylab as plt
import numpy as np
# If you're not familiar with np.r_, don't worry too much about this. It's just
# a series with points from 0 to 1 spaced at 0.1, and 9 to 10 with the same spacing.
x = np.r_[0:1:0.1, 9:10:0.1]
y = np.sin(x)
fig,(ax,ax2) = plt.subplots(1, 2, sharey=True)
# plot the same data on both axes
ax.plot(x, y, 'bo')
ax2.plot(x, y, 'bo')
# zoom-in / limit the view to different portions of the data
ax.set_xlim(0,1) # most of the data
ax2.set_xlim(9,10) # outliers only
# hide the spines between ax and ax2
ax.spines['right'].set_visible(False)
ax2.spines['left'].set_visible(False)
ax.yaxis.tick_left()
ax.tick_params(labeltop='off') # don't put tick labels at the top
ax2.yaxis.tick_right()
# Make the spacing between the two axes a bit smaller
plt.subplots_adjust(wspace=0.15)
plt.show()
To add the broken axis lines // effect, we can do this (again, modified from Paul Ivanov's example):
import matplotlib.pylab as plt
import numpy as np
# If you're not familiar with np.r_, don't worry too much about this. It's just
# a series with points from 0 to 1 spaced at 0.1, and 9 to 10 with the same spacing.
x = np.r_[0:1:0.1, 9:10:0.1]
y = np.sin(x)
fig,(ax,ax2) = plt.subplots(1, 2, sharey=True)
# plot the same data on both axes
ax.plot(x, y, 'bo')
ax2.plot(x, y, 'bo')
# zoom-in / limit the view to different portions of the data
ax.set_xlim(0,1) # most of the data
ax2.set_xlim(9,10) # outliers only
# hide the spines between ax and ax2
ax.spines['right'].set_visible(False)
ax2.spines['left'].set_visible(False)
ax.yaxis.tick_left()
ax.tick_params(labeltop='off') # don't put tick labels at the top
ax2.yaxis.tick_right()
# Make the spacing between the two axes a bit smaller
plt.subplots_adjust(wspace=0.15)
# This looks pretty good, and was fairly painless, but you can get that
# cut-out diagonal lines look with just a bit more work. The important
# thing to know here is that in axes coordinates, which are always
# between 0-1, spine endpoints are at these locations (0,0), (0,1),
# (1,0), and (1,1). Thus, we just need to put the diagonals in the
# appropriate corners of each of our axes, and so long as we use the
# right transform and disable clipping.
d = .015 # how big to make the diagonal lines in axes coordinates
# arguments to pass plot, just so we don't keep repeating them
kwargs = dict(transform=ax.transAxes, color='k', clip_on=False)
ax.plot((1-d,1+d),(-d,+d), **kwargs) # top-left diagonal
ax.plot((1-d,1+d),(1-d,1+d), **kwargs) # bottom-left diagonal
kwargs.update(transform=ax2.transAxes) # switch to the bottom axes
ax2.plot((-d,d),(-d,+d), **kwargs) # top-right diagonal
ax2.plot((-d,d),(1-d,1+d), **kwargs) # bottom-right diagonal
# What's cool about this is that now if we vary the distance between
# ax and ax2 via f.subplots_adjust(hspace=...) or plt.subplot_tool(),
# the diagonal lines will move accordingly, and stay right at the tips
# of the spines they are 'breaking'
plt.show()
I see many suggestions for this feature but no indication that it's been implemented. Here is a workable solution for the time-being. It applies a step-function transform to the x-axis. It's a lot of code, but it's fairly simple since most of it is boilerplate custom scale stuff. I have not added any graphics to indicate the location of the break, since that is a matter of style. Good luck finishing the job.
from matplotlib import pyplot as plt
from matplotlib import scale as mscale
from matplotlib import transforms as mtransforms
import numpy as np
def CustomScaleFactory(l, u):
class CustomScale(mscale.ScaleBase):
name = 'custom'
def __init__(self, axis, **kwargs):
mscale.ScaleBase.__init__(self)
self.thresh = None #thresh
def get_transform(self):
return self.CustomTransform(self.thresh)
def set_default_locators_and_formatters(self, axis):
pass
class CustomTransform(mtransforms.Transform):
input_dims = 1
output_dims = 1
is_separable = True
lower = l
upper = u
def __init__(self, thresh):
mtransforms.Transform.__init__(self)
self.thresh = thresh
def transform(self, a):
aa = a.copy()
aa[a>self.lower] = a[a>self.lower]-(self.upper-self.lower)
aa[(a>self.lower)&(a<self.upper)] = self.lower
return aa
def inverted(self):
return CustomScale.InvertedCustomTransform(self.thresh)
class InvertedCustomTransform(mtransforms.Transform):
input_dims = 1
output_dims = 1
is_separable = True
lower = l
upper = u
def __init__(self, thresh):
mtransforms.Transform.__init__(self)
self.thresh = thresh
def transform(self, a):
aa = a.copy()
aa[a>self.lower] = a[a>self.lower]+(self.upper-self.lower)
return aa
def inverted(self):
return CustomScale.CustomTransform(self.thresh)
return CustomScale
mscale.register_scale(CustomScaleFactory(1.12, 8.88))
x = np.concatenate((np.linspace(0,1,10), np.linspace(9,10,10)))
xticks = np.concatenate((np.linspace(0,1,6), np.linspace(9,10,6)))
y = np.sin(x)
plt.plot(x, y, '.')
ax = plt.gca()
ax.set_xscale('custom')
ax.set_xticks(xticks)
plt.show()
Check the brokenaxes package:
import matplotlib.pyplot as plt
from brokenaxes import brokenaxes
import numpy as np
fig = plt.figure(figsize=(5,2))
bax = brokenaxes(
xlims=((0, .1), (.4, .7)),
ylims=((-1, .7), (.79, 1)),
hspace=.05
)
x = np.linspace(0, 1, 100)
bax.plot(x, np.sin(10 * x), label='sin')
bax.plot(x, np.cos(10 * x), label='cos')
bax.legend(loc=3)
bax.set_xlabel('time')
bax.set_ylabel('value')
A very simple hack is to
scatter plot rectangles over the axes' spines and
draw the "//" as text at that position.
Worked like a charm for me:
# FAKE BROKEN AXES
# plot a white rectangle on the x-axis-spine to "break" it
xpos = 10 # x position of the "break"
ypos = plt.gca().get_ylim()[0] # y position of the "break"
plt.scatter(xpos, ypos, color='white', marker='s', s=80, clip_on=False, zorder=100)
# draw "//" on the same place as text
plt.text(xpos, ymin-0.125, r'//', fontsize=label_size, zorder=101, horizontalalignment='center', verticalalignment='center')
Example Plot:
For those interested, I've expanded upon #Paul's answer and added it to the matplotlib wrapper proplot. It can do axis "jumps", "speedups", and "slowdowns".
There is no way currently to add "crosses" that indicate the discrete jump like in Joe's answer, but I plan to add this in the future. I also plan to add a default "tick locator" that sets sensible default tick locations depending on the CutoffScale arguments.
Adressing Frederick Nord's question how to enable parallel orientation of the diagonal "breaking" lines when using a gridspec with ratios unequal 1:1, the following changes based on the proposals of Paul Ivanov and Joe Kingtons may be helpful. Width ratio can be varied using variables n and m.
import matplotlib.pylab as plt
import numpy as np
import matplotlib.gridspec as gridspec
x = np.r_[0:1:0.1, 9:10:0.1]
y = np.sin(x)
n = 5; m = 1;
gs = gridspec.GridSpec(1,2, width_ratios = [n,m])
plt.figure(figsize=(10,8))
ax = plt.subplot(gs[0,0])
ax2 = plt.subplot(gs[0,1], sharey = ax)
plt.setp(ax2.get_yticklabels(), visible=False)
plt.subplots_adjust(wspace = 0.1)
ax.plot(x, y, 'bo')
ax2.plot(x, y, 'bo')
ax.set_xlim(0,1)
ax2.set_xlim(10,8)
# hide the spines between ax and ax2
ax.spines['right'].set_visible(False)
ax2.spines['left'].set_visible(False)
ax.yaxis.tick_left()
ax.tick_params(labeltop='off') # don't put tick labels at the top
ax2.yaxis.tick_right()
d = .015 # how big to make the diagonal lines in axes coordinates
# arguments to pass plot, just so we don't keep repeating them
kwargs = dict(transform=ax.transAxes, color='k', clip_on=False)
on = (n+m)/n; om = (n+m)/m;
ax.plot((1-d*on,1+d*on),(-d,d), **kwargs) # bottom-left diagonal
ax.plot((1-d*on,1+d*on),(1-d,1+d), **kwargs) # top-left diagonal
kwargs.update(transform=ax2.transAxes) # switch to the bottom axes
ax2.plot((-d*om,d*om),(-d,d), **kwargs) # bottom-right diagonal
ax2.plot((-d*om,d*om),(1-d,1+d), **kwargs) # top-right diagonal
plt.show()
This is a hacky but pretty solution for x-axis breaks.
The solution is based on https://matplotlib.org/stable/gallery/subplots_axes_and_figures/broken_axis.html, which gets rid of the problem with positioning the break above the spine, solved by How can I plot points so they appear over top of the spines with matplotlib?
from matplotlib.patches import Rectangle
import matplotlib.pyplot as plt
def axis_break(axis, xpos=[0.1, 0.125], slant=1.5):
d = slant # proportion of vertical to horizontal extent of the slanted line
anchor = (xpos[0], -1)
w = xpos[1] - xpos[0]
h = 1
kwargs = dict(marker=[(-1, -d), (1, d)], markersize=12, zorder=3,
linestyle="none", color='k', mec='k', mew=1, clip_on=False)
axis.add_patch(Rectangle(
anchor, w, h, fill=True, color="white",
transform=axis.transAxes, clip_on=False, zorder=3)
)
axis.plot(xpos, [0, 0], transform=axis.transAxes, **kwargs)
fig, ax = plt.subplots(1,1)
plt.plot(np.arange(10))
axis_break(ax, xpos=[0.1, 0.12], slant=1.5)
axis_break(ax, xpos=[0.3, 0.31], slant=-10)
if you want to replace an axis label, this would do the trick:
from matplotlib import ticker
def replace_pos_with_label(fig, pos, label, axis):
fig.canvas.draw() # this is needed to set up the x-ticks
labs = axis.get_xticklabels()
labels = []
locs = []
for text in labs:
x = text._x
lab = text._text
if x == pos:
lab = label
labels.append(lab)
locs.append(x)
axis.xaxis.set_major_locator(ticker.FixedLocator(locs))
axis.set_xticklabels(labels)
fig, ax = plt.subplots(1,1)
plt.plot(np.arange(10))
replace_pos_with_label(fig, 0, "-10", axis=ax)
replace_pos_with_label(fig, 6, "$10^{4}$", axis=ax)
axis_break(ax, xpos=[0.1, 0.12], slant=2)
Matplotlib has well documented methods of how to place multiple sets of axes in a figure window, but I cannot figure out how to define the position of one set of axes relative to the position of another set of axes. For example,
import matplotlib.pyplot as plt
import numpy as np
#Define data
x1 = np.arange(0,10,0.01)
y1 = np.sqrt(x1)
x2 = x1
y2 = 1.0/2.0 * x2**2.0
#Generate vertically stacked plots
fig = plt.figure()
ax1 = fig.add_subplot(211)
ax1.plot(x1,y1)
ax2 = fig.add_subplot(212)
ax2.plot(x2,y2)
fig.savefig('nice_stacked_plots.png')
gives the following plot:
This is all well and good, but when I change the size of the bottom axes
#Change the size of the bottom plot
bbox2 = ax2.get_position()
ax2.set_position([bbox2.x0, bbox2.y0, bbox2.width, bbox2.height * 1.25])
ax2.set_ylim(0,60)
fig.savefig('overlapping_stacked_plots.png')
the bottom axes overlap with the top axes
I realize I could subsequently update the position of the top axes to remove the overlap, but I would like to just specify the top axes position relative to the bottom axes at the outset, and have things automatically update.
For example, in the annotate tutorial it is possible to place an annotation and then place a 2nd annotation at a specified offset from the 1st annotation using the OffsetFrom class. If the 1st annotation moves, then the 2nd annotation moves with it. I would like to do something similar with axes.
I am afraid I have no general answer to offer, but do you know about add_axes?
It lets you define the location of your subplots precisely - it is then easy to make one dependent of the other.
Here is an example - as I said, pretty specific for your task, but perhaps it may inspire you?
# General aspect of the Fig (margins)
left = 0.1
right = 0.05
width= 1.-left-right
bottom = 0.1
top = 0.05
hspace = 0.10 #space between the subplots
def placeSubplots(fig, ax2height = (1.-top-bottom-hspace)/2.):
ax1height = 1-top-bottom-hspace-ax2height
ax1 = fig.add_axes([left, bottom+ax2height+hspace, width, ax1height])
ax1.plot(x1, y1)
ax2 = fig.add_axes([left, bottom, width, ax2height])
ax2.plot(x2, y2)
return fig
fig1 = placeSubplots(plt.figure())
fig2 = placeSubplots(plt.figure(), ax2height=0.6)
fig1.savefig('fig1_equal_heigth.png')
fig2.savefig('fig2_ax2_taller.png')
fig1:
fig2:
Above, the second axis height is specified in an absolute way, but you could define the height of your subplots as a ratio between them too:
def placeSubplotsRatio(fig, ax1ax2ratio = 1.):
subplotSpace = 1.-top-bottom-hspace
ax1height = subplotSpace/(1.+1./ax1ax2ratio)
ax2height = subplotSpace/(1.+ax1ax2ratio)
ax1 = fig.add_axes([left, bottom+ax2height+hspace, width, ax1height])
ax1.plot(x1, y1)
ax2 = fig.add_axes([left, bottom, width, ax2height])
ax2.plot(x2, y2)
return fig
fig3 = placeSubplotsRatio(plt.figure()) # idem as fig1
fig4 = placeSubplotsRatio(plt.figure(), ax1ax2ratio=3.) #ax1 is 3 times taller
fig5 = placeSubplotsRatio(plt.figure(), ax1ax2ratio=0.25) #ax2 is 4 times taller
fig4.savefig('fig4_ax1ax2ratio3.png')
fig5.savefig('fig5_ax1ax2ratio025.png')
fig4:
fig5:
I modified scatter_hist.py example found here to have two data sets to be plotted.
I'd like to have histograms with "stepfilled" type, but somehow if I set the type "stepfilled" the Y-axis histogram (orientation = "horizontal") is not working.
Is there any other way to do the histogram to look like "stepfilled"-style or am I doing something wrong?
Here is my code with histtype = "bar" to show the idea what I try to do. Change it to
histtype="stepfilled"
to get strange histogram:
import numpy as np
import matplotlib.pyplot as plt
# the random data
x = np.random.randn(1000)
y = np.random.randn(1000)
x_vals = [x]
y_vals = [y]
x_vals.append( np.random.randn( 300 ) )
y_vals.append( np.random.randn( 300 ) )
fig = plt.figure(1, figsize=(5.5,5.5))
from mpl_toolkits.axes_grid1 import make_axes_locatable
colour_LUT = ['#0000FF',
'#00FF00']
# the scatter plot:
xymax = np.max(np.fabs(x))
colors = []
axScatter = plt.subplot(111)
for i in range( len(x_vals ) ):
colour = colour_LUT[i]
xymax = np.max( [np.max(np.fabs(x)), np.max(np.fabs(y)), xymax ] )
axScatter.scatter( x_vals[i], y_vals[i], color = colour )
colors.append(colour)
axScatter.set_aspect(1.)
# create new axes on the right and on the top of the current axes
# The first argument of the new_vertical(new_horizontal) method is
# the height (width) of the axes to be created in inches.
divider = make_axes_locatable(axScatter)
axHistx = divider.append_axes("top", 1.2, pad=0.1, sharex=axScatter)
axHisty = divider.append_axes("right", 1.2, pad=0.1, sharey=axScatter)
# make some labels invisible
plt.setp(axHistx.get_xticklabels() + axHisty.get_yticklabels(),
visible=False)
# now determine nice limits by hand:
binwidth = 0.25
lim = ( int(xymax/binwidth) + 1) * binwidth
bins = np.arange(-lim, lim + binwidth, binwidth)
histtype = "bar"
axHistx.hist(x_vals, bins=bins, histtype= histtype, color=colors)
axHisty.hist(y_vals, bins=bins, orientation='horizontal',histtype= histtype, color=colors)
# the xaxis of axHistx and yaxis of axHisty are shared with axScatter,
# thus there is no need to manually adjust the xlim and ylim of these
# axis.
#axHistx.axis["bottom"].major_ticklabels.set_visible(False)
for tl in axHistx.get_xticklabels():
tl.set_visible(False)
axHistx.set_yticks([0, 50, 100])
#axHisty.axis["left"].major_ticklabels.set_visible(False)
for tl in axHisty.get_yticklabels():
tl.set_visible(False)
axHisty.set_xticks([0, 50, 100])
plt.draw()
plt.show()
Thank You for help!
Edit:
Here is the images which I receive in windows environment with matplotlib 1.0.0.
With histtype="bar" I have this:
and with histtype="stepfilled" I have this:
The documentation only mentions special cases for multiple data when using 'bar' and 'barstacked', which I would assume means that this isn't properly implemented for the other two types. Changing your code to add multiple histograms instead of just one worked for me:
histtype = "stepfilled"
for i in xrange(len(x_vals)):
axHistx.hist(x_vals[i], bins=bins, histtype= histtype, color=colors[i])
axHisty.hist(y_vals[i], bins=bins, orientation='horizontal',histtype= histtype, color=colors[i])
I'm trying to create a plot using pyplot that has a discontinuous x-axis. The usual way this is drawn is that the axis will have something like this:
(values)----//----(later values)
where the // indicates that you're skipping everything between (values) and (later values).
I haven't been able to find any examples of this, so I'm wondering if it's even possible. I know you can join data over a discontinuity for, eg, financial data, but I'd like to make the jump in the axis more explicit. At the moment I'm just using subplots but I'd really like to have everything end up on the same graph in the end.
Paul's answer is a perfectly fine method of doing this.
However, if you don't want to make a custom transform, you can just use two subplots to create the same effect.
Rather than put together an example from scratch, there's an excellent example of this written by Paul Ivanov in the matplotlib examples (It's only in the current git tip, as it was only committed a few months ago. It's not on the webpage yet.).
This is just a simple modification of this example to have a discontinuous x-axis instead of the y-axis. (Which is why I'm making this post a CW)
Basically, you just do something like this:
import matplotlib.pylab as plt
import numpy as np
# If you're not familiar with np.r_, don't worry too much about this. It's just
# a series with points from 0 to 1 spaced at 0.1, and 9 to 10 with the same spacing.
x = np.r_[0:1:0.1, 9:10:0.1]
y = np.sin(x)
fig,(ax,ax2) = plt.subplots(1, 2, sharey=True)
# plot the same data on both axes
ax.plot(x, y, 'bo')
ax2.plot(x, y, 'bo')
# zoom-in / limit the view to different portions of the data
ax.set_xlim(0,1) # most of the data
ax2.set_xlim(9,10) # outliers only
# hide the spines between ax and ax2
ax.spines['right'].set_visible(False)
ax2.spines['left'].set_visible(False)
ax.yaxis.tick_left()
ax.tick_params(labeltop='off') # don't put tick labels at the top
ax2.yaxis.tick_right()
# Make the spacing between the two axes a bit smaller
plt.subplots_adjust(wspace=0.15)
plt.show()
To add the broken axis lines // effect, we can do this (again, modified from Paul Ivanov's example):
import matplotlib.pylab as plt
import numpy as np
# If you're not familiar with np.r_, don't worry too much about this. It's just
# a series with points from 0 to 1 spaced at 0.1, and 9 to 10 with the same spacing.
x = np.r_[0:1:0.1, 9:10:0.1]
y = np.sin(x)
fig,(ax,ax2) = plt.subplots(1, 2, sharey=True)
# plot the same data on both axes
ax.plot(x, y, 'bo')
ax2.plot(x, y, 'bo')
# zoom-in / limit the view to different portions of the data
ax.set_xlim(0,1) # most of the data
ax2.set_xlim(9,10) # outliers only
# hide the spines between ax and ax2
ax.spines['right'].set_visible(False)
ax2.spines['left'].set_visible(False)
ax.yaxis.tick_left()
ax.tick_params(labeltop='off') # don't put tick labels at the top
ax2.yaxis.tick_right()
# Make the spacing between the two axes a bit smaller
plt.subplots_adjust(wspace=0.15)
# This looks pretty good, and was fairly painless, but you can get that
# cut-out diagonal lines look with just a bit more work. The important
# thing to know here is that in axes coordinates, which are always
# between 0-1, spine endpoints are at these locations (0,0), (0,1),
# (1,0), and (1,1). Thus, we just need to put the diagonals in the
# appropriate corners of each of our axes, and so long as we use the
# right transform and disable clipping.
d = .015 # how big to make the diagonal lines in axes coordinates
# arguments to pass plot, just so we don't keep repeating them
kwargs = dict(transform=ax.transAxes, color='k', clip_on=False)
ax.plot((1-d,1+d),(-d,+d), **kwargs) # top-left diagonal
ax.plot((1-d,1+d),(1-d,1+d), **kwargs) # bottom-left diagonal
kwargs.update(transform=ax2.transAxes) # switch to the bottom axes
ax2.plot((-d,d),(-d,+d), **kwargs) # top-right diagonal
ax2.plot((-d,d),(1-d,1+d), **kwargs) # bottom-right diagonal
# What's cool about this is that now if we vary the distance between
# ax and ax2 via f.subplots_adjust(hspace=...) or plt.subplot_tool(),
# the diagonal lines will move accordingly, and stay right at the tips
# of the spines they are 'breaking'
plt.show()
I see many suggestions for this feature but no indication that it's been implemented. Here is a workable solution for the time-being. It applies a step-function transform to the x-axis. It's a lot of code, but it's fairly simple since most of it is boilerplate custom scale stuff. I have not added any graphics to indicate the location of the break, since that is a matter of style. Good luck finishing the job.
from matplotlib import pyplot as plt
from matplotlib import scale as mscale
from matplotlib import transforms as mtransforms
import numpy as np
def CustomScaleFactory(l, u):
class CustomScale(mscale.ScaleBase):
name = 'custom'
def __init__(self, axis, **kwargs):
mscale.ScaleBase.__init__(self)
self.thresh = None #thresh
def get_transform(self):
return self.CustomTransform(self.thresh)
def set_default_locators_and_formatters(self, axis):
pass
class CustomTransform(mtransforms.Transform):
input_dims = 1
output_dims = 1
is_separable = True
lower = l
upper = u
def __init__(self, thresh):
mtransforms.Transform.__init__(self)
self.thresh = thresh
def transform(self, a):
aa = a.copy()
aa[a>self.lower] = a[a>self.lower]-(self.upper-self.lower)
aa[(a>self.lower)&(a<self.upper)] = self.lower
return aa
def inverted(self):
return CustomScale.InvertedCustomTransform(self.thresh)
class InvertedCustomTransform(mtransforms.Transform):
input_dims = 1
output_dims = 1
is_separable = True
lower = l
upper = u
def __init__(self, thresh):
mtransforms.Transform.__init__(self)
self.thresh = thresh
def transform(self, a):
aa = a.copy()
aa[a>self.lower] = a[a>self.lower]+(self.upper-self.lower)
return aa
def inverted(self):
return CustomScale.CustomTransform(self.thresh)
return CustomScale
mscale.register_scale(CustomScaleFactory(1.12, 8.88))
x = np.concatenate((np.linspace(0,1,10), np.linspace(9,10,10)))
xticks = np.concatenate((np.linspace(0,1,6), np.linspace(9,10,6)))
y = np.sin(x)
plt.plot(x, y, '.')
ax = plt.gca()
ax.set_xscale('custom')
ax.set_xticks(xticks)
plt.show()
Check the brokenaxes package:
import matplotlib.pyplot as plt
from brokenaxes import brokenaxes
import numpy as np
fig = plt.figure(figsize=(5,2))
bax = brokenaxes(
xlims=((0, .1), (.4, .7)),
ylims=((-1, .7), (.79, 1)),
hspace=.05
)
x = np.linspace(0, 1, 100)
bax.plot(x, np.sin(10 * x), label='sin')
bax.plot(x, np.cos(10 * x), label='cos')
bax.legend(loc=3)
bax.set_xlabel('time')
bax.set_ylabel('value')
A very simple hack is to
scatter plot rectangles over the axes' spines and
draw the "//" as text at that position.
Worked like a charm for me:
# FAKE BROKEN AXES
# plot a white rectangle on the x-axis-spine to "break" it
xpos = 10 # x position of the "break"
ypos = plt.gca().get_ylim()[0] # y position of the "break"
plt.scatter(xpos, ypos, color='white', marker='s', s=80, clip_on=False, zorder=100)
# draw "//" on the same place as text
plt.text(xpos, ymin-0.125, r'//', fontsize=label_size, zorder=101, horizontalalignment='center', verticalalignment='center')
Example Plot:
For those interested, I've expanded upon #Paul's answer and added it to the matplotlib wrapper proplot. It can do axis "jumps", "speedups", and "slowdowns".
There is no way currently to add "crosses" that indicate the discrete jump like in Joe's answer, but I plan to add this in the future. I also plan to add a default "tick locator" that sets sensible default tick locations depending on the CutoffScale arguments.
Adressing Frederick Nord's question how to enable parallel orientation of the diagonal "breaking" lines when using a gridspec with ratios unequal 1:1, the following changes based on the proposals of Paul Ivanov and Joe Kingtons may be helpful. Width ratio can be varied using variables n and m.
import matplotlib.pylab as plt
import numpy as np
import matplotlib.gridspec as gridspec
x = np.r_[0:1:0.1, 9:10:0.1]
y = np.sin(x)
n = 5; m = 1;
gs = gridspec.GridSpec(1,2, width_ratios = [n,m])
plt.figure(figsize=(10,8))
ax = plt.subplot(gs[0,0])
ax2 = plt.subplot(gs[0,1], sharey = ax)
plt.setp(ax2.get_yticklabels(), visible=False)
plt.subplots_adjust(wspace = 0.1)
ax.plot(x, y, 'bo')
ax2.plot(x, y, 'bo')
ax.set_xlim(0,1)
ax2.set_xlim(10,8)
# hide the spines between ax and ax2
ax.spines['right'].set_visible(False)
ax2.spines['left'].set_visible(False)
ax.yaxis.tick_left()
ax.tick_params(labeltop='off') # don't put tick labels at the top
ax2.yaxis.tick_right()
d = .015 # how big to make the diagonal lines in axes coordinates
# arguments to pass plot, just so we don't keep repeating them
kwargs = dict(transform=ax.transAxes, color='k', clip_on=False)
on = (n+m)/n; om = (n+m)/m;
ax.plot((1-d*on,1+d*on),(-d,d), **kwargs) # bottom-left diagonal
ax.plot((1-d*on,1+d*on),(1-d,1+d), **kwargs) # top-left diagonal
kwargs.update(transform=ax2.transAxes) # switch to the bottom axes
ax2.plot((-d*om,d*om),(-d,d), **kwargs) # bottom-right diagonal
ax2.plot((-d*om,d*om),(1-d,1+d), **kwargs) # top-right diagonal
plt.show()
This is a hacky but pretty solution for x-axis breaks.
The solution is based on https://matplotlib.org/stable/gallery/subplots_axes_and_figures/broken_axis.html, which gets rid of the problem with positioning the break above the spine, solved by How can I plot points so they appear over top of the spines with matplotlib?
from matplotlib.patches import Rectangle
import matplotlib.pyplot as plt
def axis_break(axis, xpos=[0.1, 0.125], slant=1.5):
d = slant # proportion of vertical to horizontal extent of the slanted line
anchor = (xpos[0], -1)
w = xpos[1] - xpos[0]
h = 1
kwargs = dict(marker=[(-1, -d), (1, d)], markersize=12, zorder=3,
linestyle="none", color='k', mec='k', mew=1, clip_on=False)
axis.add_patch(Rectangle(
anchor, w, h, fill=True, color="white",
transform=axis.transAxes, clip_on=False, zorder=3)
)
axis.plot(xpos, [0, 0], transform=axis.transAxes, **kwargs)
fig, ax = plt.subplots(1,1)
plt.plot(np.arange(10))
axis_break(ax, xpos=[0.1, 0.12], slant=1.5)
axis_break(ax, xpos=[0.3, 0.31], slant=-10)
if you want to replace an axis label, this would do the trick:
from matplotlib import ticker
def replace_pos_with_label(fig, pos, label, axis):
fig.canvas.draw() # this is needed to set up the x-ticks
labs = axis.get_xticklabels()
labels = []
locs = []
for text in labs:
x = text._x
lab = text._text
if x == pos:
lab = label
labels.append(lab)
locs.append(x)
axis.xaxis.set_major_locator(ticker.FixedLocator(locs))
axis.set_xticklabels(labels)
fig, ax = plt.subplots(1,1)
plt.plot(np.arange(10))
replace_pos_with_label(fig, 0, "-10", axis=ax)
replace_pos_with_label(fig, 6, "$10^{4}$", axis=ax)
axis_break(ax, xpos=[0.1, 0.12], slant=2)