Python: How to discretize continuous probability distributions for Kullback-Leibler Divergence - python

I want to find out how many samples are needed at minimum to more or less correctly fit a probability distribution (In my case the Generalized Extreme Value Distribution from scipy.stats).
In order to evaluate the matched function, I want to compute the KL-divergence between the original function and the fitted one.
Unfortunately, all implementations I found (e.g. scipy.stats.entropy) only take discrete arrays as input. So obviously I thought of approximating the pdf by a discrete array, but I just can't seem to figure it out.
Does anyone have experience with something similar? I would be thankful for hints relating directly to my question, but also for better alternatives to determine a distance between two functions in python, if there are any.

Related

Is there a Python package for monotonic splines?

I am trying to find a procedure to fit data monotonically in Python.
The data won’t be necessarily monotonic but the fit must be because of theoretical assumptions: so the signal must be monotonic but the measurements are taken with noise.
I imagine that a way of doing that would be to run an isotonic regression and then interpolate using a cubic spline. Are there easier alternatives?
In R, for example; I would use the cobs package for constrained splines. Does anything similar exists in Python?
Other ways of achieving the same result would also be fine if effective (e.g. fitting curves on monotonic transformations of the data that would maintain the overall shape of the relationship). I already know there are ways of achieving a similar result with GBM but I am looking for an alternative.
Thank you

Find underlaying normal distribution of random vectors

I am trying to solve a statistics-related real world problem with Python and am looking for inputs on my ideas: I have N random vectors from a m-dimensional normal distribution. I have no information about the means and the covariance matrix of the underlying distribution, in fact also that it is a normal distribution is only an assumption, a very plausible one though. I want to compute an approximation of the mean vector and covariance matrix of the distribution. The number of random vectors is in the order of magnitude of 100 to 300, the dimensionality of the normal distribution is somewhere between 2 and 5. The time for the calculation should ideally not exceed 1 minute on a standard home computer.
I am currently thinking about three approaches and am happy about all suggestions for other approaches or preferences between those three:
Fitting: Make a multi dimensional histogram of all random vectors and fit a multi dimensional normal distribution to the histogram. Problem about that approach: The covariance matrix has many entries, this could possibly be a problem for the fitting process?
Invert cumulative distribution function: Make a multi dimensional histogram as approximation of the density function of the random vectors. Then integrate this to get a multi dimensional cumulative distribution function. For one dimension, this is invertible and one could use the cum-dist function to distribute random numbers like in the original distribution. Problem: For the multi-dimensional case the cum-dist function is not invertible(?) and I don't know if this approach still works then?
Bayesian: Use Bayesian Statistics with some normal distribution as prior and update for every observation. The result should always be again a normal distribution. Problem: I think this is computationally expensive? Also, I don't want the later updates have more impact on the resulting distribution than the earlier ones.
Also, maybe there is some library which has this task already implemented? I did not find exactly this in Numpy or Scipy, maybe someone has an idea where else to look?
If the simple estimates described in the section Parameter estimation of the wikipedia article on the multivariate normal distribution are sufficient for your needs, you can use numpy.mean to compute the mean and numpy.cov to compute the sample covariance matrix.

python scipy.stats pdf and expect functions

I was wondering if someone could please explain what the following functions in scipy.stats do:
rv_continuous.expect
rv_continuous.pdf
I have read the documentation but I am still confused.
Here is my task, quite simple in theory, but I am still confused with what these functions do.
So, I have a list of areas, 16383 values. I want to find the probability that the variable area takes any value between a smaller value , called "inf" and a larger value "sup".
So, what I thought is:
scipy.stats.rv_continuous.pdf(a) #a being the list of areas
scipy.stats.rv_continuous.expect(pdf, lb = inf, ub = sup)
So that i can get the probability that any area is between sup and inf.
Can anyone help me by explaining in a simple way what the functions do and any hint on how to compute the integral of f(a) between inf and sup, please?
Thanks
Blaise
rv_continuous is a base class for all of the probability distributions implemented in scipy.stats. You would not call methods on rv_continuous yourself.
Your question is not entirely clear about what you want to do, so I will assume that you have an array of 16383 data points drawn from some unknown probability distribution. From the raw data, you will need to estimate the cumulative distribution, find the values of that cumulative distribution at the sup and inf values and subtract to find the probability that a value drawn from the unknown distribution.
There are lots of ways to estimate the unknown distribution from the data depending on how much modelling you want to do and how many assumptions you want to make. At the more complicated end of the spectrum, you could try to fit one of the standard parametric probability distributions to the data. For example, if you had a suspicion that your data were lognormally distributed, you could use scipy.stats.lognorm.fit(data, floc=0) to find the parameters of the lognormal distribution that fit your data. Then you could use scipy.stats.lognorm.cdf(sup, *params) - scipy.stats.lognorm.cdf(inf, *params) to estimate the probability of the value being between those values.
In the middle are the non-parametric forms of distribution estimation like histograms and kernel density estimates. For example, scipy.stats.gaussian_kde(data).integrate_box_1d(inf, sup) is an easy way to make this estimate using a Gaussian kernel density estimate of the unknown distribution. However, kernel density estimates aren't always appropriate and require some tweaking to get right.
The simplest thing you could do is just count the number of data points that fall between inf and sup and divide by the total number of data points that you have. This only works well with a largish number of points (which you have) and with bounds that aren't too far in the tails of the data.
The cumulative density function might give you what you want.
Then the probability P of being between two values is
P(inf < area < sup) = cdf(sup) - cdf(inf)
There's a tutorial about probabilities here and here
They are all related. The pdf is the "density" of the probabilities. They must be greater than zero and sum to 1. I think of it as indicating how likely something is. The expectation is is a generalisation of the idea of average.
E[x] = sum(x.P(x))

Find a random method that best fit list of values

I have a list of many float numbers, representing the length of an operation made several times.
For each type of operation, I have a different trend in numbers.
I'm aware of many random generators presented in some python modules, like in numpy.random
For example, I have binomial, exponencial, normal, weibul, and so on...
I'd like to know if there's a way to find the best random generator, given a list of values, that best fit each list of numbers that I have.
I.e, the generator (with its params) that best fit the trend of the numbers on the list
That's because I'd like to automatize the generation of time lengths, of each operation, so that I can simulate it during n years, without having to find by hand what method fits best what list of numbers.
EDIT: In other words, trying to clarify the problem:
I have a list of numbers. I'm trying to find the probability distribution that best fit the array of numbers I already have. The only problem I see is that each probability distribution has input params that may interfer on the result. So I'll have to figure out how to enter this params automatically, trying to best fit the list.
Any idea?
You might find it better to think about this in terms of probability distributions, rather than thinking about random number generators. You can then think in terms of testing goodness of fit for your different distributions.
As a starting point, you might try constructing probability plots for your samples. Probably the easiest in terms of the math behind it would be to consider a Q-Q plot. Using the random number generators, create a sample of the same size as your data. Sort both of these, and plot them against one another. If the distributions are the same, then you should get a straight line.
Edit: To find appropriate parameters for a statistical model, maximum likelihood estimation is a standard approach. Depending on how many samples of numbers you have and the precision you require, you may well find that just playing with the parameters by hand will give you a "good enough" solution.
Why using random numbers for this is a bad idea has already been explained. It seems to me that what you really need is to fit the distributions you mentioned to your points (for example, with a least squares fit), then check which one fits the points best (for example, with a chi-squared test).
EDIT Adding reference to numpy least squares fitting example
Given a parameterized univariate distirbution (e.g. exponential depends on lambda, or gamma depends on theta and k), the way to find the parameter values that best fit a given sample of numbers is called the Maximum Likelyhood procedure. It is not a least squares procedure, which would require binning and thus loosing information! Some Wikipedia distribution articles give expressions for the maximum likelyhood estimates of parameters, but many do not, and even the ones that do are missing expressions for error bars and covarainces. If you know calculus, you can derive these results by expressing the log likeyhood of your data set in terms of the parameters, setting the second derivative to zero to maximize it, and using the inverse of the curvature matrix at the minimum as the covariance matrix of your parameters.
Given two different fits to two different parameterized distributions, the way to compare them is called the likelyhood ratio test. Basically, you just pick the one with the larger log likelyhood.
Gabriel, if you have access to Mathematica, parameter estimation is built in:
In[43]:= data = RandomReal[ExponentialDistribution[1], 10]
Out[43]= {1.55598, 0.375999, 0.0878202, 1.58705, 0.874423, 2.17905, \
0.247473, 0.599993, 0.404341, 0.31505}
In[44]:= EstimatedDistribution[data, ExponentialDistribution[la],
ParameterEstimator -> "MaximumLikelihood"]
Out[44]= ExponentialDistribution[1.21548]
In[45]:= EstimatedDistribution[data, ExponentialDistribution[la],
ParameterEstimator -> "MethodOfMoments"]
Out[45]= ExponentialDistribution[1.21548]
However, it might be easy to figure what maximum likelihood method commands the parameter to be.
In[48]:= Simplify[
D[LogLikelihood[ExponentialDistribution[la], {x}], la], x > 0]
Out[48]= 1/la - x
Hence the estimated parameter for exponential distribution is sum (1/la -x_i) from where la = 1/Mean[data]. Similar equations can be worked out for other distribution families and coded in the language of your choice.

Fitting a bimodal distribution to a set of values

Given a 1D array of values, what is the simplest way to figure out what the best fit bimodal distribution to it is, where each 'mode' is a normal distribution? Or in other words, how can you find the combination of two normal distributions that bests reproduces the 1D array of values?
Specifically, I'm interested in implementing this in python, but answers don't have to be language specific.
Thanks!
What you are trying to do is called a Gaussian Mixture model. The standard approach to solving this is using Expectation Maximization, scipy svn includes a section on machine learning and em called scikits. I use it a a fair bit.
I suggest using the awesome scipy package.
It provides a few methods for optimisation.
There's a big fat caveat with simply applying a pre-defined least square fit or something along those lines.
Here are a few problems you will run into:
Noise larger than second/both peaks.
Partial peak - your data is cut of at one of the borders.
Sampling - width of peaks are smaller than your sampled data.
It isn't normal - you'll get some result ...
Overlap - If peaks overlap you'll find that often one peak is fitted correctly but the second will apporach zero...

Categories