Apply a cross validated ML model to unseen data - python

I would like to use scikit learn to predict with X a variable y. I would like to train a classifier on a training dataset using cross validation and then to apply this classifier to an unseen test dataset (as in https://www.nature.com/articles/s41586-022-04492-9)
from sklearn import datasets
from sklearn.model_selection import cross_validate
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
# Import dataset
X, y = datasets.load_iris(return_X_y=True)
# Create binary variable y
y[y == 0] = 1
# Divide in train and test set
x_train, x_test, y_train, y_test = train_test_split(X, y,test_size=75, random_state=4, stratify=y)
# Cross validation on the train data
cv_model = cross_validate(model, x_train, y_train, cv=5)
Now I would like to use this cross validated model and to apply it to the unseen test set. I am unable to find how.
It would be something like
result = cv_model.score(x_test, y_test)
Except this does not work

You cannot do that; you need to fit the model before using it to predict new data. cross_validate is just a convenience function to get the scores; as clearly mentioned in the documentation, it returns just that, i.e. scores, and not a (fitted) model:
Evaluate metric(s) by cross-validation and also record fit/score times.
[...]
Returns: scores : dict of float arrays of shape (n_splits,)
Array of scores of the estimator for each run of the cross validation.
A dict of arrays containing the score/time arrays for each scorer is returned.

Related

Non linear regression using Xgboost

I have a dataframe with 36540 rows. the objective is to predict y HITS_DAY.
#data
https://github.com/soufMiashs/Predict_Hits
I am trying to train a non-linear regression model but model doesn't seem to learn much.
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.20, random_state=42)
data_dmatrix = xgb.DMatrix(data=x,label=y)
xg_reg = xgb.XGBRegressor(learning_rate = 0.1, objectif='reg:linear', max_depth=5,
n_estimators = 1000)
xg_reg.fit(X_train,y_train)
preds = xg_reg.predict(X_test)
df=pd.DataFrame({'ACTUAL':y_test, 'PREDICTED':preds})
what am I doing wrong?
You're not doing anything wrong in particular (except maybe the objectif parameter for xgboost which doesn't exist), however, you have to consider how xgboost works. It will try to create "trees". Trees have splits based on the values of the features. From the plot you show here, it looks like there are very few samples that go above 0. So making a test train split random will likely result in a test set with virtually no samples with a value above 0 (so a horizontal line).
Other than that, it seems you want to fit a linear model on non-linear data. Selecting a different objective function is likely to help with this.
Finally, how do you know that your model is not learning anything? I don't see any evaluation metrics to confirm this. Try to think of meaningful evaluation metrics for your model and show them. This will help you determine if your model is "good enough".
To summarize:
Fix the imbalance in your dataset (or at least take it into consideration)
Select an appropriate objective function
Check evaluation metrics that make sense for your model
From this example it looks like your model is indeed learning something, even without parameter tuning (which you should do!).
import pandas
import xgboost
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, r2_score
# Read the data
df = pandas.read_excel("./data.xlsx")
# Split in X and y
X = df.drop(columns=["HITS_DAY"])
y = df["HITS_DAY"]
# Show the values of the full dataset in a plot
y.sort_values().reset_index()["HITS_DAY"].plot()
# Split in test and train, use stratification to make sure the 2 groups look similar
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.20, random_state=42, stratify=[element > 1 for element in y.values]
)
# Show the plots of the test and train set (make sure they look similar!)
y_train.sort_values().reset_index()["HITS_DAY"].plot()
y_test.sort_values().reset_index()["HITS_DAY"].plot()
# Create the regressor
estimator = xgboost.XGBRegressor(objective="reg:squaredlogerror")
# Fit the regressor
estimator.fit(X_train, y_train)
# Predict on the test set
predictions = estimator.predict(X_test)
df = pandas.DataFrame({"ACTUAL": y_test, "PREDICTED": predictions})
# Show the actual vs predicted
df.sort_values("ACTUAL").reset_index()[["ACTUAL", "PREDICTED"]].plot()
# Show some evaluation metrics
print(f"Mean squared error: {mean_squared_error(y_test.values, predictions)}")
print(f"R2 score: {r2_score(y_test.values, predictions)}")
Output:
Mean squared error: 0.01525351142868279
R2 score: 0.07857787102063485

How does one code data from a different (test) file vs all the data in one file?

All examples I've ever come across always conveniently have data in one file to show how train_test_split works (or any model really). But quite often the training data and testing data are two separate files.
So, I made a ultra-basic logistic regression train file and test file consisting of two columns, 'age', 'insurance'. And naming the df's df_train, df_test.
I realize df_test hasn't been trained, hence the error but...isn't that the point?
I know model.predict(X_test) doesn't throw an error, but that is based on the training data not the test data.
Word of warning, this is what happens when you're old and trying to learn new things. Don't get old.
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(df[['age']],df.insurance,test_size=0.1)
from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
model.fit(X_train, y_train)
model.predict(df_test)
Thanks,
Old fart
As you stated :
train file and test file consisting of two columns, 'age',
'insurance'.
So if test files contains both age and insurance columns and used as it is, the predict function will not work because of mis-match of input between training and prediction.
Also model.predict expect the independent variable only(in your case its age) in below format :
predict(self, X)[source]ΒΆ
Predict class labels for samples in X.
Parameters:
X : array_like or sparse matrix, shape (n_samples, n_features)
Samples.
Now coming to the modification :
model.predict(df_test["age"].values)
Edit : Try this :
from sklearn.model_selection import train_test_split
X = df["age"].values
y = df["insurance"].values
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.1)
from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
model.fit(X_train, y_train)
model.predict([list(df_test["age"].values)])

Sklearn DecisionTreeClassifier F-Score Different Results with Each run

I'm trying to train a decision tree classifier using Python. I'm using MinMaxScaler() to scale the data, and f1_score for my evaluation metric. The strange thing is that I'm noticing my model giving me different results in a pattern at each run.
data in my code is a (2000, 7) pandas.DataFrame, with 6 feature columns and the last column being the target value. Columns 1, 3, and 5 are categorical data.
The following code is what I did to preprocess and format my data:
import numpy as np
import pandas as pd
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import f1_score
# Data Preprocessing Step
# =============================================================================
data = pd.read_csv("./data/train.csv")
X = data.iloc[:, :-1]
y = data.iloc[:, 6]
# Choose which columns are categorical data, and convert them to numeric data.
labelenc = LabelEncoder()
categorical_data = list(data.select_dtypes(include='object').columns)
for i in range(len(categorical_data)):
X[categorical_data[i]] = labelenc.fit_transform(X[categorical_data[i]])
# Convert categorical numeric data to one-of-K data, and change y from Series to ndarray.
onehotenc = OneHotEncoder()
X = onehotenc.fit_transform(X).toarray()
y = y.values
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2)
min_max_scaler = MinMaxScaler()
X_train_scaled = min_max_scaler.fit_transform(X_train)
X_val_scaled = min_max_scaler.fit_transform(X_val)
The next code is for the actual decision tree model training:
dectree = DecisionTreeClassifier(class_weight='balanced')
dectree = dectree.fit(X_train_scaled, y_train)
predictions = dectree.predict(X_val_scaled)
score = f1_score(y_val, predictions, average='macro')
print("Score is = {}".format(score))
The output that I get (i.e. the score) varies, but in a pattern. For example, it would circulate among data within the range of 0.39 and 0.42.
On some iterations, I even get the UndefinedMetricWarning, that claims "F-score is ill-defined and being set to 0.0 in labels with no predicted samples."
I'm familiar with what the UndefinedMetricWarning means, after doing some searching on this community and Google. I guess the two questions I have may be organized to:
Why does my output vary for each iteration? Is there something in the preprocessing stage that happens which I'm not aware of?
I've also tried to use the F-score with other data splits, but I always get the warning. Is this unpreventable?
Thank you.
You are splitting the dataset into train and test which randomly divides sets for both train and test. Due to this, when you train your model with different training data everytime, and testing it with different test data, you will get a range of F score depending on how well the model is trained.
In order to replicate the result each time you run, use random_state parameter. It will maintain a random number state which will give you the same random number each time you run. This shows that the random numbers are generated in the same order. This can be any number.
#train test split
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=13)
#Decision tree model
dectree = DecisionTreeClassifier(class_weight='balanced', random_state=2018)

Setting the n_estimators argument using **kwargs (Scikit Learn)

I am trying to follow this tutorial to learn the machine learning based prediction but I have got two questions on it?
Ques1. How to set the n_estimators in the below piece of code, otherwise it will always assume the default value.
from sklearn.cross_validation import KFold
def run_cv(X,y,clf_class,**kwargs):
# Construct a kfolds object
kf = KFold(len(y),n_folds=5,shuffle=True)
y_pred = y.copy()
# Iterate through folds
for train_index, test_index in kf:
X_train, X_test = X[train_index], X[test_index]
y_train = y[train_index]
# Initialize a classifier with key word arguments
clf = clf_class(**kwargs)
clf.fit(X_train,y_train)
y_pred[test_index] = clf.predict(X_test)
return y_pred
It is being called as:
from sklearn.svm import SVC
print "%.3f" % accuracy(y, run_cv(X,y,SVC))
Ques2: How to use the already trained model file (e.g. obtained from SVM) so that I can use it to predict more (test) data which I didn't used for training?
For your first question, in the above code you would call run_cv(X,y,SVC,n_classifiers=100), the **kwargs will pass this to the classifier initializer with the step clf = clf_class(**kwargs).
For your second question, the cross validation in the code you've linked is just for model evaluation, i.e. comparing different types of models and hyperparameters, and determining the likely effectiveness of your model in production. Once you've decided on your model, you need to refit the model on the whole dataset:
clf.fit(X,y)
Then you can get predictions with clf.predict or clf.predict_proba.

Cross validation and model selection

I am using sklearn for SVM training. I am using the cross-validation to evaluate the estimator and avoid the overfitting model.
I split the data into two parts. Train data and test data. Here is the code:
import numpy as np
from sklearn import cross_validation
from sklearn import datasets
from sklearn import svm
X_train, X_test, y_train, y_test = cross_validation.train_test_split(
iris.data, iris.target, test_size=0.4, random_state=0
)
clf = svm.SVC(kernel='linear', C=1)
scores = cross_validation.cross_val_score(clf, X_train, y_train, cv=5)
print scores
Now I need to evaluate the estimator clf on X_test.
clf.score(X_test, y_test)
here, I get an error saying that the model is not fitted using fit(), but normally, in cross_val_score function the model is fitted? What is the problem?
cross_val_score is basically a convenience wrapper for the sklearn cross-validation iterators. You give it a classifier and your whole (training + validation) dataset and it automatically performs one or more rounds of cross-validation by splitting your data into random training/validation sets, fitting the training set, and computing the score on the validation set. See the documentation here for an example and more explanation.
The reason why clf.score(X_test, y_test) raises an exception is because cross_val_score performs the fitting on a copy of the estimator rather than the original (see the use of clone(estimator) in the source code here). Because of this, clf remains unchanged outside of the function call, and is therefore not properly initialized when you call clf.fit.

Categories