How to read specif cell with pandas library? - python

I want to read from excel sheet a specific cell: h6. So I try it like this:
import pandas as pd
excel_file = './docs/fruit.xlsx'
df = pd.read_excel(excel_file,'Overzicht')
sheet = df.active
x1 = sheet['H6'].value
print(x1)
But then I get this error:
File "C:\Python310\lib\site-packages\pandas\core\generic.py", line 5575, in __getattr__
return object.__getattribute__(self, name)
AttributeError: 'DataFrame' object has no attribute 'active'
So my questiion is: How to read specif cell from sheet from excelsheet?
Thank you
Oke, I tried with openpyxl:
import openpyxl
path = "./docs/fruit.xlsx"
wb_obj = openpyxl.load_workbook(path)
sheet_obj = wb_obj.active
cell_obj = sheet_obj.cell(row = 6, column = 9)
print(cell_obj.value)
But then the formula is printed. Like this:
=(H6*1000)/F6/G6
and not the value: 93

You can do this using openpyxl directly or pandas (which internally uses openpyxl behind the scene)...
Using Openpyxl
You will need to use data_only=True when you open the file. Also, make sure you know the row and column number. To read the data in H6, row would be 6 and 8 would be H
import openpyxl
path = "./docs/Schoolfruit.xlsx"
wb_obj = openpyxl.load_workbook(path, data_only=True)
sheet_obj = wb_obj.active ## Or use sheet_obj = wb_obj['Sheet1'] if you know sheet name
val = sheet_obj.cell(row = 6, column = 8).value
print(val)
Using Pandas
The other option is to use pandas read_excel() which will read the whole sheet into a dataframe. You can use iloc() or at() to read the specific cell. Note that this is probably the less optimal solution if you need to read just one cell...
Another point to note here is that, once you have read the data into a dataframe, the row 1 will be considered as the header and the first row would now be 0. So the row number would be 4 instead of 6. Similarly, the first column would now be 0 and not 1, which would change the position to [4,7]
import pandas as pd
path = "./docs/Schoolfruit.xlsx"
df = pd.read_excel(path, 'Sheet1')
print(df.iloc[4,7])

I found a solution and hope, it works for you.
import pandas as pd
excel_file = './docs/Schoolfruit.xlsx'
df = pd.read_excel(excel_file, sheet_name='active' ,header=None, skiprows=1)
print(df[7][4])
7: Hth column
4: 6th row (skipped first row and index is began from 0)

Related

how to assign a list value to column in excel file?

I have a list value and want to assign it into a column in a excel file. The values I want to change are in sheet 6.
my poor code looks something like this the best I could do is try to first change the AF6:AF22 to a fixed value 5 with hope that I could change it to list.
But is there a simple way to change AF6:AF22 values to a list?
something simple ws['AF6:AF22'] = l?
from openpyxl import Workbook
import pandas as pd
from openpyxl import load_workbook
l = list(range(5))
FilePath = 'excel_file.xlsx'
wb = load_workbook(FilePath)
ws = wb.worksheets
sheet_number = 6
for sheet_number in ws.iter_cols('AF6:AF22'):
for cell in sheet_number:
cell.value = 5
Option 1
Hi - I am adding a faster way here. This is probably better as it avoids the for loop and updating cells one at a time.
from openpyxl import Workbook
import pandas as pd
from openpyxl import load_workbook
l = list(range(17)) #The list - You can replace l with whatever you need
with pd.ExcelWriter('excel_file.xlsx', mode='a', engine = 'openpyxl') as writer:
pd.DataFrame(l).to_excel(writer, sheet_name='Sheet6', startrow = 5, startcol= 31, index=False, header=None)
Option 2
You can use the below code to do what you need. Added comments, so you get an understanding of my logic...
from openpyxl import Workbook
import pandas as pd
from openpyxl import load_workbook
l = list(range(17)) #The list - You can replace l with whatever you need
FilePath = 'excel_file.xlsx'
wb = load_workbook(FilePath)
ws = wb.worksheets[5] #Worksheet 5 is the 6th sheet as numbering starts from zero
for i in range(6,23): # Column numbers 6 through 22
ws.cell(row=i, column=32).value = l[i-6] #Write to cell in AF = column 32
wb.save("excel_file.xlsx")

Custom Excel column using pandas [duplicate]

I am being asked to generate some Excel reports. I am currently using pandas quite heavily for my data, so naturally I would like to use the pandas.ExcelWriter method to generate these reports. However the fixed column widths are a problem.
The code I have so far is simple enough. Say I have a dataframe called df:
writer = pd.ExcelWriter(excel_file_path, engine='openpyxl')
df.to_excel(writer, sheet_name="Summary")
I was looking over the pandas docs, and I don't really see any options to set column widths. Is there a trick to make it such that the columns auto-adjust to the data? Or is there something I can do after the fact to the xlsx file to adjust the column widths?
(I am using the OpenPyXL library, and generating .xlsx files - if that makes any difference.)
Inspired by user6178746's answer, I have the following:
# Given a dict of dataframes, for example:
# dfs = {'gadgets': df_gadgets, 'widgets': df_widgets}
writer = pd.ExcelWriter(filename, engine='xlsxwriter')
for sheetname, df in dfs.items(): # loop through `dict` of dataframes
df.to_excel(writer, sheet_name=sheetname) # send df to writer
worksheet = writer.sheets[sheetname] # pull worksheet object
for idx, col in enumerate(df): # loop through all columns
series = df[col]
max_len = max((
series.astype(str).map(len).max(), # len of largest item
len(str(series.name)) # len of column name/header
)) + 1 # adding a little extra space
worksheet.set_column(idx, idx, max_len) # set column width
writer.save()
Dynamically adjust all the column lengths
writer = pd.ExcelWriter('/path/to/output/file.xlsx')
df.to_excel(writer, sheet_name='sheetName', index=False, na_rep='NaN')
for column in df:
column_length = max(df[column].astype(str).map(len).max(), len(column))
col_idx = df.columns.get_loc(column)
writer.sheets['sheetName'].set_column(col_idx, col_idx, column_length)
writer.save()
Manually adjust a column using Column Name
col_idx = df.columns.get_loc('columnName')
writer.sheets['sheetName'].set_column(col_idx, col_idx, 15)
Manually adjust a column using Column Index
writer.sheets['sheetName'].set_column(col_idx, col_idx, 15)
In case any of the above is failing with
AttributeError: 'Worksheet' object has no attribute 'set_column'
make sure to install xlsxwriter:
pip install xlsxwriter
For a more comprehensive explanation you can read the article How to Auto-Adjust the Width of Excel Columns with Pandas ExcelWriter on TDS.
I'm posting this because I just ran into the same issue and found that the official documentation for Xlsxwriter and pandas still have this functionality listed as unsupported. I hacked together a solution that solved the issue i was having. I basically just iterate through each column and use worksheet.set_column to set the column width == the max length of the contents of that column.
One important note, however. This solution does not fit the column headers, simply the column values. That should be an easy change though if you need to fit the headers instead. Hope this helps someone :)
import pandas as pd
import sqlalchemy as sa
import urllib
read_server = 'serverName'
read_database = 'databaseName'
read_params = urllib.quote_plus("DRIVER={SQL Server};SERVER="+read_server+";DATABASE="+read_database+";TRUSTED_CONNECTION=Yes")
read_engine = sa.create_engine("mssql+pyodbc:///?odbc_connect=%s" % read_params)
#Output some SQL Server data into a dataframe
my_sql_query = """ SELECT * FROM dbo.my_table """
my_dataframe = pd.read_sql_query(my_sql_query,con=read_engine)
#Set destination directory to save excel.
xlsFilepath = r'H:\my_project' + "\\" + 'my_file_name.xlsx'
writer = pd.ExcelWriter(xlsFilepath, engine='xlsxwriter')
#Write excel to file using pandas to_excel
my_dataframe.to_excel(writer, startrow = 1, sheet_name='Sheet1', index=False)
#Indicate workbook and worksheet for formatting
workbook = writer.book
worksheet = writer.sheets['Sheet1']
#Iterate through each column and set the width == the max length in that column. A padding length of 2 is also added.
for i, col in enumerate(my_dataframe.columns):
# find length of column i
column_len = my_dataframe[col].astype(str).str.len().max()
# Setting the length if the column header is larger
# than the max column value length
column_len = max(column_len, len(col)) + 2
# set the column length
worksheet.set_column(i, i, column_len)
writer.save()
There is a nice package that I started to use recently called StyleFrame.
it gets DataFrame and lets you to style it very easily...
by default the columns width is auto-adjusting.
for example:
from StyleFrame import StyleFrame
import pandas as pd
df = pd.DataFrame({'aaaaaaaaaaa': [1, 2, 3],
'bbbbbbbbb': [1, 1, 1],
'ccccccccccc': [2, 3, 4]})
excel_writer = StyleFrame.ExcelWriter('example.xlsx')
sf = StyleFrame(df)
sf.to_excel(excel_writer=excel_writer, row_to_add_filters=0,
columns_and_rows_to_freeze='B2')
excel_writer.save()
you can also change the columns width:
sf.set_column_width(columns=['aaaaaaaaaaa', 'bbbbbbbbb'],
width=35.3)
UPDATE 1
In version 1.4 best_fit argument was added to StyleFrame.to_excel.
See the documentation.
UPDATE 2
Here's a sample of code that works for StyleFrame 3.x.x
from styleframe import StyleFrame
import pandas as pd
columns = ['aaaaaaaaaaa', 'bbbbbbbbb', 'ccccccccccc', ]
df = pd.DataFrame(data={
'aaaaaaaaaaa': [1, 2, 3, ],
'bbbbbbbbb': [1, 1, 1, ],
'ccccccccccc': [2, 3, 4, ],
}, columns=columns,
)
excel_writer = StyleFrame.ExcelWriter('example.xlsx')
sf = StyleFrame(df)
sf.to_excel(
excel_writer=excel_writer,
best_fit=columns,
columns_and_rows_to_freeze='B2',
row_to_add_filters=0,
)
excel_writer.save()
There is probably no automatic way to do it right now, but as you use openpyxl, the following line (adapted from another answer by user Bufke on how to do in manually) allows you to specify a sane value (in character widths):
writer.sheets['Summary'].column_dimensions['A'].width = 15
By using pandas and xlsxwriter you can do your task, below code will perfectly work in Python 3.x. For more details on working with XlsxWriter with pandas this link might be useful https://xlsxwriter.readthedocs.io/working_with_pandas.html
import pandas as pd
writer = pd.ExcelWriter(excel_file_path, engine='xlsxwriter')
df.to_excel(writer, sheet_name="Summary")
workbook = writer.book
worksheet = writer.sheets["Summary"]
#set the column width as per your requirement
worksheet.set_column('A:A', 25)
writer.save()
I found that it was more useful to adjust the column with based on the column header rather than column content.
Using df.columns.values.tolist() I generate a list of the column headers and use the lengths of these headers to determine the width of the columns.
See full code below:
import pandas as pd
import xlsxwriter
writer = pd.ExcelWriter(filename, engine='xlsxwriter')
df.to_excel(writer, index=False, sheet_name=sheetname)
workbook = writer.book # Access the workbook
worksheet= writer.sheets[sheetname] # Access the Worksheet
header_list = df.columns.values.tolist() # Generate list of headers
for i in range(0, len(header_list)):
worksheet.set_column(i, i, len(header_list[i])) # Set column widths based on len(header)
writer.save() # Save the excel file
At work, I am always writing the dataframes to excel files. So instead of writing the same code over and over, I have created a modulus. Now I just import it and use it to write and formate the excel files. There is one downside though, it takes a long time if the dataframe is extra large.
So here is the code:
def result_to_excel(output_name, dataframes_list, sheet_names_list, output_dir):
out_path = os.path.join(output_dir, output_name)
writerReport = pd.ExcelWriter(out_path, engine='xlsxwriter',
datetime_format='yyyymmdd', date_format='yyyymmdd')
workbook = writerReport.book
# loop through the list of dataframes to save every dataframe into a new sheet in the excel file
for i, dataframe in enumerate(dataframes_list):
sheet_name = sheet_names_list[i] # choose the sheet name from sheet_names_list
dataframe.to_excel(writerReport, sheet_name=sheet_name, index=False, startrow=0)
# Add a header format.
format = workbook.add_format({
'bold': True,
'border': 1,
'fg_color': '#0000FF',
'font_color': 'white'})
# Write the column headers with the defined format.
worksheet = writerReport.sheets[sheet_name]
for col_num, col_name in enumerate(dataframe.columns.values):
worksheet.write(0, col_num, col_name, format)
worksheet.autofilter(0, 0, 0, len(dataframe.columns) - 1)
worksheet.freeze_panes(1, 0)
# loop through the columns in the dataframe to get the width of the column
for j, col in enumerate(dataframe.columns):
max_width = max([len(str(s)) for s in dataframe[col].values] + [len(col) + 2])
# define a max width to not get to wide column
if max_width > 50:
max_width = 50
worksheet.set_column(j, j, max_width)
writerReport.save()
return output_dir + output_name
Combining the other answers and comments and also supporting multi-indices:
def autosize_excel_columns(worksheet, df):
autosize_excel_columns_df(worksheet, df.index.to_frame())
autosize_excel_columns_df(worksheet, df, offset=df.index.nlevels)
def autosize_excel_columns_df(worksheet, df, offset=0):
for idx, col in enumerate(df):
series = df[col]
max_len = max((
series.astype(str).map(len).max(),
len(str(series.name))
)) + 1
worksheet.set_column(idx+offset, idx+offset, max_len)
sheetname=...
df.to_excel(writer, sheet_name=sheetname, freeze_panes=(df.columns.nlevels, df.index.nlevels))
worksheet = writer.sheets[sheetname]
autosize_excel_columns(worksheet, df)
writer.save()
you can solve the problem by calling the following function, where df is the dataframe you want to get the sizes and the sheetname is the sheet in excel where you want the modifications to take place
def auto_width_columns(df, sheetname):
workbook = writer.book
worksheet= writer.sheets[sheetname]
for i, col in enumerate(df.columns):
column_len = max(df[col].astype(str).str.len().max(), len(col) + 2)
worksheet.set_column(i, i, column_len)
import re
import openpyxl
..
for col in _ws.columns:
max_lenght = 0
print(col[0])
col_name = re.findall('\w\d', str(col[0]))
col_name = col_name[0]
col_name = re.findall('\w', str(col_name))[0]
print(col_name)
for cell in col:
try:
if len(str(cell.value)) > max_lenght:
max_lenght = len(cell.value)
except:
pass
adjusted_width = (max_lenght+2)
_ws.column_dimensions[col_name].width = adjusted_width
Yes, there is there is something you can do subsequently to the xlsx file to adjust the column widths.
Use xlwings to autofit columns. It's a pretty simple solution, see the 6 last lines of the example code. The advantage of this procedure is that you don't have to worry about font size, font type or anything else.
Requirement: Excel installation.
import pandas as pd
import xlwings as xw
path = r"test.xlsx"
# Export your dataframe in question.
df = pd._testing.makeDataFrame()
df.to_excel(path)
# Autofit all columns with xlwings.
with xw.App(visible=False) as app:
wb = xw.Book(path)
for ws in wb.sheets:
ws.autofit(axis="columns")
wb.save(path)
wb.close()
Easiest solution is to specify width of column in set_column method.
for worksheet in writer.sheets.values():
worksheet.set_column(0,last_column_value, required_width_constant)
This function works for me, also fixes the index width
def write_to_excel(writer, X, sheet_name, sep_only=False):
#writer=writer object
#X=dataframe
#sheet_name=name of sheet
#sep_only=True:write only as separate excel file, False: write as sheet to the writer object
if sheet_name=="":
print("specify sheet_name!")
else:
X.to_excel(f"{output_folder}{prefix_excel_save}_{sheet_name}.xlsx")
if not sep_only:
X.to_excel(writer, sheet_name=sheet_name)
#fix column widths
worksheet = writer.sheets[sheet_name] # pull worksheet object
for idx, col in enumerate(X.columns): # loop through all columns
series = X[col]
max_len = max((
series.astype(str).map(len).max(), # len of largest item
len(str(series.name)) # len of column name/header
)) + 1 # adding a little extra space
worksheet.set_column(idx+1, idx+1, max_len) # set column width (=1 because index = 1)
#fix index width
max_len=pd.Series(X.index.values).astype(str).map(len).max()+1
worksheet.set_column(0, 0, max_len)
if sep_only:
print(f'{sheet_name} is written as seperate file')
else:
print(f'{sheet_name} is written as seperate file')
print(f'{sheet_name} is written as sheet')
return writer
call example:
writer = write_to_excel(writer, dataframe, "Statistical_Analysis")
I may be a bit late to the party but this code works when using 'openpyxl' as your engine, sometimes pip install xlsxwriter wont solve the issue. This code below works like a charm. Edit any part as you wish.
def text_length(text):
"""
Get the effective text length in characters, taking into account newlines
"""
if not text:
return 0
lines = text.split("\n")
return max(len(line) for line in lines)
def _to_str_for_length(v, decimals=3):
"""
Like str() but rounds decimals to predefined length
"""
if isinstance(v, float):
# Round to [decimal] places
return str(Decimal(v).quantize(Decimal('1.' + '0' * decimals)).normalize())
else:
return str(v)
def auto_adjust_xlsx_column_width(df, writer, sheet_name, margin=3, length_factor=1.0, decimals=3, index=False):
sheet = writer.sheets[sheet_name]
_to_str = functools.partial(_to_str_for_length, decimals=decimals)
# Compute & set column width for each column
for column_name in df.columns:
# Convert the value of the columns to string and select the
column_length = max(df[column_name].apply(_to_str).map(text_length).max(), text_length(column_name)) + 5
# Get index of column in XLSX
# Column index is +1 if we also export the index column
col_idx = df.columns.get_loc(column_name)
if index:
col_idx += 1
# Set width of column to (column_length + margin)
sheet.column_dimensions[openpyxl.utils.cell.get_column_letter(col_idx + 1)].width = column_length * length_factor + margin
# Compute column width of index column (if enabled)
if index: # If the index column is being exported
index_length = max(df.index.map(_to_str).map(text_length).max(), text_length(df.index.name))
sheet.column_dimensions["A"].width = index_length * length_factor + margin
An openpyxl version based on #alichaudry's code.
The code 1) loads an excel file, 2) adjusts column widths and 3) saves it.
def auto_adjust_column_widths(excel_file : "Excel File Path", extra_space = 1) -> None:
"""
Adjusts column widths of the excel file and replaces it with the adjusted one.
Adjusting columns is based on the lengths of columns values (including column names).
Parameters
----------
excel_file :
excel_file to adjust column widths.
extra_space :
extra column width in addition to the value-based-widths
"""
from openpyxl import load_workbook
from openpyxl.utils import get_column_letter
wb = load_workbook(excel_file)
for ws in wb:
df = pd.DataFrame(ws.values,)
for i,r in (df.astype(str).applymap(len).max(axis=0) + extra_space).iteritems():
ws.column_dimensions[get_column_letter(i+1)].width = r
wb.save(excel_file)

How to combine value in multiple cell references in Excel by Python?

I am trying to do something like grabbing all values in each cell while they are referencing one by one. Maybe an example help illustration.
Example:
A
B
C
=B2
='I am' & C2
'Peter
Example2 - in term of number:
A
B
C
D
=B2
=C2*D2
12
56
So I want to get a concat string 'I am Peter' or 672 (from 12*56) when I reading the cell A2
Code I tried:
from openpyxl import load_workbook
import pandas as pd
wb = load_workbook(filename = 'new.xlsx')
sheet_names = wb.get_sheet_names()
name = sheet_names[0]
sheet_ranges = wb[name]
df = pd.DataFrame(sheet_ranges.values)
print(df)
The formula will become 'NaN'
Any suggestion to achieve it? Thanks!
If you want to have the actual values of the cells, you have to use data_only=True
wb = load_workbook(filename = 'new.xlsx', data_only=True)
Look here: Read Excel cell value and not the formula computing it -openpyxl
Anyway, as you use pandas, it would be way easier to go directly:
import pandas as pd
df = pd.read_excel('new.xlsx')
print(df)
which grabs the first sheet (but could be specified) and gives the values as output.
openpyxl supports either the formula or the value of the formula. You can select which using the data_only parameter when loading a workbook.
You can change your code like below:
from openpyxl import load_workbook
import pandas as pd
wb = load_workbook(filename='new.xlsx', data_only=True)
sheet_names = wb.get_sheet_names()
name = sheet_names[0]
sheet_ranges = wb[name]
df = pd.DataFrame(sheet_ranges.values)
print(df)

Python Pandas dataframe reading exact specified range in an excel sheet

I have a lot of different table (and other unstructured data in an excel sheet) .. I need to create a dataframe out of range 'A3:D20' from 'Sheet2' of Excel sheet 'data'.
All examples that I come across drilldown up to sheet level, but not how to pick it from an exact range.
import openpyxl
import pandas as pd
wb = openpyxl.load_workbook('data.xlsx')
sheet = wb.get_sheet_by_name('Sheet2')
range = ['A3':'D20'] #<-- how to specify this?
spots = pd.DataFrame(sheet.range) #what should be the exact syntax for this?
print (spots)
Once I get this, I plan to look up data in column A and find its corresponding value in column B.
Edit 1: I realised that openpyxl takes too long, and so have changed that to pandas.read_excel('data.xlsx','Sheet2') instead, and it is much faster at that stage at least.
Edit 2: For the time being, I have put my data in just one sheet and:
removed all other info
added column names,
applied index_col on my leftmost column
then used wb.loc[]
Use the following arguments from pandas read_excel documentation:
skiprows : list-like
Rows to skip at the beginning (0-indexed)
nrows: int, default None
Number of rows to parse.
parse_cols : int or list, default None
If None then parse all columns,
If int then indicates last column to be parsed
If list of ints then indicates list of column numbers to be parsed
If string then indicates comma separated list of column names and column ranges (e.g. “A:E” or “A,C,E:F”)
I imagine the call will look like:
df = read_excel(filename, 'Sheet2', skiprows = 2, nrows=18, parse_cols = 'A:D')
EDIT:
in later version of pandas parse_cols has been renamed to usecols so the above call should be rewritten as:
df = read_excel(filename, 'Sheet2', skiprows = 2, nrows=18, usecols= 'A:D')
One way to do this is to use the openpyxl module.
Here's an example:
from openpyxl import load_workbook
wb = load_workbook(filename='data.xlsx',
read_only=True)
ws = wb['Sheet2']
# Read the cell values into a list of lists
data_rows = []
for row in ws['A3':'D20']:
data_cols = []
for cell in row:
data_cols.append(cell.value)
data_rows.append(data_cols)
# Transform into dataframe
import pandas as pd
df = pd.DataFrame(data_rows)
my answer with pandas O.25 tested and worked well
pd.read_excel('resultat-elections-2012.xls', sheet_name = 'France entière T1T2', skiprows = 2, nrows= 5, usecols = 'A:H')
pd.read_excel('resultat-elections-2012.xls', index_col = None, skiprows= 2, nrows= 5, sheet_name='France entière T1T2', usecols=range(0,8))
So :
i need data after two first lines ; selected desired lines (5) and col A to H.
Be carefull #shane answer's need to be improved and updated with the new parameters of Pandas

How can I open an Excel file in Python?

How do I open a file that is an Excel file for reading in Python?
I've opened text files, for example, sometextfile.txt with the reading command. How do I do that for an Excel file?
Edit:
In the newer version of pandas, you can pass the sheet name as a parameter.
file_name = # path to file + file name
sheet = # sheet name or sheet number or list of sheet numbers and names
import pandas as pd
df = pd.read_excel(io=file_name, sheet_name=sheet)
print(df.head(5)) # print first 5 rows of the dataframe
Check the docs for examples on how to pass sheet_name: https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_excel.html
Old version:
you can use pandas package as well....
When you are working with an excel file with multiple sheets, you can use:
import pandas as pd
xl = pd.ExcelFile(path + filename)
xl.sheet_names
>>> [u'Sheet1', u'Sheet2', u'Sheet3']
df = xl.parse("Sheet1")
df.head()
df.head() will print first 5 rows of your Excel file
If you're working with an Excel file with a single sheet, you can simply use:
import pandas as pd
df = pd.read_excel(path + filename)
print df.head()
Try the xlrd library.
[Edit] - from what I can see from your comment, something like the snippet below might do the trick. I'm assuming here that you're just searching one column for the word 'john', but you could add more or make this into a more generic function.
from xlrd import open_workbook
book = open_workbook('simple.xls',on_demand=True)
for name in book.sheet_names():
if name.endswith('2'):
sheet = book.sheet_by_name(name)
# Attempt to find a matching row (search the first column for 'john')
rowIndex = -1
for cell in sheet.col(0): #
if 'john' in cell.value:
break
# If we found the row, print it
if row != -1:
cells = sheet.row(row)
for cell in cells:
print cell.value
book.unload_sheet(name)
This isn't as straightforward as opening a plain text file and will require some sort of external module since nothing is built-in to do this. Here are some options:
http://www.python-excel.org/
If possible, you may want to consider exporting the excel spreadsheet as a CSV file and then using the built-in python csv module to read it:
http://docs.python.org/library/csv.html
There's the openpxyl package:
>>> from openpyxl import load_workbook
>>> wb2 = load_workbook('test.xlsx')
>>> print wb2.get_sheet_names()
['Sheet2', 'New Title', 'Sheet1']
>>> worksheet1 = wb2['Sheet1'] # one way to load a worksheet
>>> worksheet2 = wb2.get_sheet_by_name('Sheet2') # another way to load a worksheet
>>> print(worksheet1['D18'].value)
3
>>> for row in worksheet1.iter_rows():
>>> print row[0].value()
You can use xlpython package that requires xlrd only.
Find it here https://pypi.python.org/pypi/xlpython
and its documentation here https://github.com/morfat/xlpython
This may help:
This creates a node that takes a 2D List (list of list items) and pushes them into the excel spreadsheet. make sure the IN[]s are present or will throw and exception.
this is a re-write of the Revit excel dynamo node for excel 2013 as the default prepackaged node kept breaking. I also have a similar read node. The excel syntax in Python is touchy.
thnx #CodingNinja - updated : )
###Export Excel - intended to replace malfunctioning excel node
import clr
clr.AddReferenceByName('Microsoft.Office.Interop.Excel, Version=15.0.0.0, Culture=neutral, PublicKeyToken=71e9bce111e9429c')
##AddReferenceGUID("{00020813-0000-0000-C000-000000000046}") ''Excel C:\Program Files\Microsoft Office\Office15\EXCEL.EXE
##Need to Verify interop for version 2015 is 15 and node attachemnt for it.
from Microsoft.Office.Interop import * ##Excel
################################Initialize FP and Sheet ID
##Same functionality as the excel node
strFileName = IN[0] ##Filename
sheetName = IN[1] ##Sheet
RowOffset= IN[2] ##RowOffset
ColOffset= IN[3] ##COL OFfset
Data=IN[4] ##Data
Overwrite=IN[5] ##Check for auto-overwtite
XLVisible = False #IN[6] ##XL Visible for operation or not?
RowOffset=0
if IN[2]>0:
RowOffset=IN[2] ##RowOffset
ColOffset=0
if IN[3]>0:
ColOffset=IN[3] ##COL OFfset
if IN[6]<>False:
XLVisible = True #IN[6] ##XL Visible for operation or not?
################################Initialize FP and Sheet ID
xlCellTypeLastCell = 11 #####define special sells value constant
################################
xls = Excel.ApplicationClass() ####Connect with application
xls.Visible = XLVisible ##VISIBLE YES/NO
xls.DisplayAlerts = False ### ALerts
import os.path
if os.path.isfile(strFileName):
wb = xls.Workbooks.Open(strFileName, False) ####Open the file
else:
wb = xls.Workbooks.add# ####Open the file
wb.SaveAs(strFileName)
wb.application.visible = XLVisible ####Show Excel
try:
ws = wb.Worksheets(sheetName) ####Get the sheet in the WB base
except:
ws = wb.sheets.add() ####If it doesn't exist- add it. use () for object method
ws.Name = sheetName
#################################
#lastRow for iterating rows
lastRow=ws.UsedRange.SpecialCells(xlCellTypeLastCell).Row
#lastCol for iterating columns
lastCol=ws.UsedRange.SpecialCells(xlCellTypeLastCell).Column
#######################################################################
out=[] ###MESSAGE GATHERING
c=0
r=0
val=""
if Overwrite == False : ####Look ahead for non-empty cells to throw error
for r, row in enumerate(Data): ####BASE 0## EACH ROW OF DATA ENUMERATED in the 2D array #range( RowOffset, lastRow + RowOffset):
for c, col in enumerate (row): ####BASE 0## Each colmn in each row is a cell with data ### in range(ColOffset, lastCol + ColOffset):
if col.Value2 >"" :
OUT= "ERROR- Cannot overwrite"
raise ValueError("ERROR- Cannot overwrite")
##out.append(Data[0]) ##append mesage for error
############################################################################
for r, row in enumerate(Data): ####BASE 0## EACH ROW OF DATA ENUMERATED in the 2D array #range( RowOffset, lastRow + RowOffset):
for c, col in enumerate (row): ####BASE 0## Each colmn in each row is a cell with data ### in range(ColOffset, lastCol + ColOffset):
ws.Cells[r+1+RowOffset,c+1+ColOffset].Value2 = col.__str__()
##run macro disbled for debugging excel macro
##xls.Application.Run("Align_data_and_Highlight_Issues")
import pandas as pd
import os
files = os.listdir('path/to/files/directory/')
desiredFile = files[i]
filePath = 'path/to/files/directory/%s'
Ofile = filePath % desiredFile
xls_import = pd.read_csv(Ofile)
Now you can use the power of pandas DataFrames!
This code worked for me with Python 3.5.2. It opens and saves and excel. I am currently working on how to save data into the file but this is the code:
import csv
excel = csv.writer(open("file1.csv", "wb"))

Categories