I have imported a dataset into a Pandas dataframe, but I can't quite figure out how I could convert the start time to a 12h clock (e.g. 4 pm)?
The variable columns are as follows:
start
2022-01-01 00:07:52.943
2022-01-01 00:09:31.745
2022-01-01 00:14:37.187
Thank you.
You can use:
df['start'] = pd.to_datetime(df['start'])
df['start'] = df['start'].dt.date.astype(str) + ' ' + df['start'].dt.strftime('%I:%M %p')
OUTPUT
start
0 2022-01-01 12:07 AM
1 2022-01-01 12:09 AM
2 2022-01-01 12:14 AM
If dates are datetime values:
df.start.dt.strftime('%H%P')
Related
I am trying to capture the frequency of hours between two timestamps in a dataframe. For example, one row of data has '2022-01-01 00:35:00' and '2022-01-01 05:29:47'. I would like for frequency to be attributed to Hours 0, 1, 2, 3, 4, and 5.
Start Time
End Time
2022-01-01 00:35:00
2022-01-01 05:29:47
2022-01-01 00:55:00
2022-01-01 05:00:17
2022-01-01 01:35:00
2022-01-01 06:26:00
2022-01-01 02:29:00
2022-01-01 04:25:17
I have been trying to capture the time delta between the two but have not been able to figure out counting the frequency of hours.
You can extract the hours and then calculate the delta:
import datetime
df['start_hour'] = [datetime.datetime.strptime(i, "%Y-%m-%d %H:%M:%S").hour for i in df['Start Time']]
df['end_hour'] = [datetime.datetime.strptime(i, "%Y-%m-%d %H:%M:%S").hour for i in df['End Time']]
df['delta'] = df['end_hour'] - df['start_hour']
Try this:
df['freq'] = df.apply(lambda x:[i + x['Start Time'].hour for i in list(range(x['End Time'].hour - x['Start Time'].hour)], axis=1)
if I have 2 different set of dates:
01/05/2022 - 31/12/2022
01/01/2023 - 31/12/2023
01/05/2022 - 30/09/2022
01/10/2022 - 31/12/2022
01/01/2023 - 31/12/2023
I want to check if both set of dates above are contiguous between below range of dates
Date 1 = 01/05/2022
Date 2 = 31/12/2023
Please suggest a solution.
It seems to me easier to use pandas to check if dates fall into the date range.
You have the data day, month, year. In my practice, I usually see the sequences year, month, day.
I changed the variables 'Date_1', 'Date_2' to the desired format and the arrays themselves with dates, which I divided into two parts from and to. Then I filled the dataframe with these arrays and checked the date range. I specifically added one line with data for clarity: 2023-01-01 2025-12-31, it is just filtered, since it does not fall under the condition.
import pandas as pd
from datetime import datetime
Date_1 = '01/05/2022'
Date_2 = '31/12/2023'
Date_1 = datetime.strptime(Date_1, "%d/%m/%Y")
Date_2 = datetime.strptime(Date_2, "%d/%m/%Y")
start = [datetime.strptime(i, "%d/%m/%Y")for i in ['01/05/2022', '01/01/2023', '01/05/2022', '01/10/2022', '01/01/2023', '01/01/2023']]
finish = [datetime.strptime(i, "%d/%m/%Y")for i in ['31/12/2022', '31/12/2023', '30/09/2022', '31/12/2022', '31/12/2023', '31/12/2025']]
df = pd.DataFrame({'start': start, 'finish': finish})
print(df)
print(df[(df['start'] >= Date_1) & (df['finish'] <= Date_2)])
Output print(df)
start finish
0 2022-05-01 2022-12-31
1 2023-01-01 2023-12-31
2 2022-05-01 2022-09-30
3 2022-10-01 2022-12-31
4 2023-01-01 2023-12-31
5 2023-01-01 2025-12-31
Output print(df[(df['start'] >= Date_1) & (df['finish'] <= Date_2)])
start finish
0 2022-05-01 2022-12-31
1 2023-01-01 2023-12-31
2 2022-05-01 2022-09-30
3 2022-10-01 2022-12-31
4 2023-01-01 2023-12-31
Any ideas on how I can manipulate my current date-time data to make it suitable for use when converting the datatype to time?
For example:
df1['Date/Time'] = pd.to_datetime(df1['Date/Time'])
The current format for the data is mm/dd 00:00:00
an example of the column in the dataframe can be seen below.
Date/Time Dry_Temp[C] Wet_Temp[C] Solar_Diffuse_Rate[[W/m2]] \
0 01/01 00:10:00 8.45 8.237306 0.0
1 01/01 00:20:00 7.30 6.968360 0.0
2 01/01 00:30:00 6.15 5.710239 0.0
3 01/01 00:40:00 5.00 4.462898 0.0
4 01/01 00:50:00 3.85 3.226244 0.0
For the condition where the hour is denoted as 24, you have two choices. First you can simply reset the hour to 00 and second you can reset the hour to 00 and also add 1 to the date.
In either case the first step is detecting the condition which can be done with a simple find statement t.find(' 24:')
Having detected the condition in the first case it is a simple matter of reseting the hour to 00 and proceeding with the process of formatting the field. In the second case, however, adding 1 to the day is a little more complicated because of the fact you can roll over to next month.
Here is the approach I would use:
Given a df of form:
Date Time
0 01/01 00:00:00
1 01/01 00:24:00
2 01/01 24:00:00
3 01/31 24:00:00
The First Case
def parseDate2(tx):
ti = tx.find(' 24:')
if ti >= 0:
tk = pd.to_datetime(tx[:5]+' 00:'+tx[10:], format= '%m/%d %H:%M:%S')
return tk + du.relativedelta.relativedelta(hours=+24)
return pd.to_datetime(tx, format= '%m/%d %H:%M:%S')
df['Date Time'] = df['Date Time'].apply(lambda x: parseDate(x))
Produces the following:
Date Time
0 1900-01-01 00:00:00
1 1900-01-01 00:24:00
2 1900-01-01 00:00:00
3 1900-01-31 00:00:00
For the second case, I employed the dateutil relativedelta library and slightly modified my parseDate funstion as shown below:
import dateutil as du
def parseDate2(tx):
ti = tx.find(' 24:')
if ti >= 0:
tk = pd.to_datetime(tx[:5]+' 00:'+tx[10:], format= '%m/%d %H:%M:%S')
return tk + du.relativedelta.relativedelta(hours=+24)
return pd.to_datetime(tx, format= '%m/%d %H:%M:%S')
df['Date Time'] = df['Date Time'].apply(lambda x: parseDate2(x))
Yields:
Date Time
0 1900-01-01 00:00:00
1 1900-01-01 00:24:00
2 1900-01-02 00:00:00
3 1900-02-01 00:00:00
To access the values of the datetime (namely the time), you can use:
# These are now in a usable format
seconds = df1['Date/Time'].dt.second
minutes = df1['Date/Time'].dt.minute
hours = df1['Date/Time'].dt.hours
And if need be, you can create its own independent time series with:
df1['Dat/Time'].dt.time
I am working in a dataframe in Pandas that looks like this.
Identifier datetime
0 AL011851 00:00:00
1 AL011851 06:00:00
2 Al011851 12:00:00
This is my code so far:
import pandas as pd
hurricane_df = pd.read_csv("hurdat2.csv",parse_dates=['datetime'])
hurricane_df['datetime'] = pd.to_timedelta(hurricane_df['datetime'].dt.strftime('%H:%M:%S'))
hurricane_df
grouped = hurricane_df.groupby('datetime').size()
grouped
What I did was convert the datetime column to a timedelta to get the hours. I want to get the size of the datetime column but I want just hours like 1:00, 2:00, 3:00, etc. but I get minute intervals as well like 1:15 and 2:45.
Any way to just display the hour?
Thank you.
You can use pandas.Timestamp.round with Series.dt shortcut:
df['datetime'] = df['datetime'].dt.round('h')
So
... datetime
01:15:00
02:45:00
becomes
... datetime
01:00:00
03:00:00
df = pd.DataFrame({'Identifier':['AL011851','AL011851','AL011851'],'datetime': ["2018-12-08 16:35:23","2018-12-08 14:20:45", "2018-12-08 11:45:00"]})
df['datetime'] = pd.to_datetime(df['datetime'])
df
Identifier datetime
0 AL011851 2018-12-08 16:35:23
1 AL011851 2018-12-08 14:20:45
2 AL011851 2018-12-08 11:45:00
# Rounds to nearest hour
def roundHour(t):
return (t.replace(second=0, microsecond=0, minute=0, hour=t.hour)
+timedelta(hours=t.minute//30))
df.datetime=df.datetime.map(lambda t: roundHour(t)) # Step 1: Round to nearest hour
df.datetime=df.datetime.map(lambda t: t.strftime('%H:%M')) # Step 2: Remove seconds
df
Identifier datetime
0 AL011851 17:00
1 AL011851 14:00
2 AL011851 12:00
I have a dataframe column which looks like this :
It reads M:S.MS. How can I convert it into a M:S:MS timeformat so I can plot it as a time series graph?
If I plot it as it is, python throws an Invalid literal for float() error.
Note
: This dataframe contains one hour worth of data. Values between
0:0.0 - 59:59.9
df = pd.DataFrame({'date':['00:02.0','00:05:0','00:08.1']})
print (df)
date
0 00:02.0
1 00:05:0
2 00:08.1
It is possible convert to datetime:
df['date'] = pd.to_datetime(df['date'], format='%M:%S.%f')
print (df)
date
0 1900-01-01 00:00:02.000
1 1900-01-01 00:00:05.000
2 1900-01-01 00:00:08.100
Or to timedeltas:
df['date'] = pd.to_timedelta(df['date'].radd('00:'))
print (df)
date
0 00:00:02
1 00:00:05
2 00:00:08.100000
EDIT:
For custom date use:
date = '2015-01-04'
td = pd.to_datetime(date) - pd.to_datetime('1900-01-01')
df['date'] = pd.to_datetime(df['date'], format='%M:%S.%f') + td
print (df)
date
0 2015-01-04 00:00:02.000
1 2015-01-04 00:00:05.000
2 2015-01-04 00:00:08.100