Related
I have run an autoencoder model, and returned a dictionary with each output and it's label, using FashionMNIST. My goal is to print 10 images only for the dress and coat class (class labels 3 and 4). I have one-hot-encoded the labels such that the dress class appears as [0.,0,.0,1.,0.,0.,0.,0.,0.]. My dictionary output is:
print(pa). #dictionary is called pa
{'output': array([[1.5346111e-04, 2.3307074e-04, 2.8705355e-04, ..., 1.9890528e-04,
1.8257453e-04, 2.0764180e-04],
[1.9767908e-03, 1.5839143e-03, 1.7811939e-03, ..., 1.7838757e-03,
1.4038634e-03, 2.3405524e-03],
[5.8998094e-06, 6.9388111e-06, 5.8752844e-06, ..., 5.1715115e-06,
4.4670110e-06, 1.2018012e-05],
...,
[2.1034568e-05, 3.0344427e-05, 7.0048365e-05, ..., 9.4724113e-05,
8.9003828e-05, 4.1828611e-05],
[2.7930623e-06, 3.0393956e-06, 4.5835086e-06, ..., 3.8765144e-04,
3.6324131e-05, 5.6411723e-06],
[1.2453397e-04, 1.1948447e-04, 2.0121646e-04, ..., 1.0773790e-03,
2.9582143e-04, 1.7229551e-04]], dtype=float32),
'label': array([[1., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 1., 0.],
[0., 0., 0., ..., 1., 0., 0.],
...,
[1., 0., 0., ..., 0., 0., 0.],
[0., 0., 1., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.]], dtype=float32)}
I am trying to run a for loop, where if the pa['label'] is equal to a certain one-hot-encoded array, I plot the corresponding pa['output'].
for i in range(len(pa['label'])):
if pa['label'][i] == np.array([0.,0.,0.,1.,0.,0.,0.,0.,0.]):
print(pa['lable'][i])
# plt.imshow(pa['output'][i].reshape(28,28))
# plt.show()
However, I get a warning(?):
/opt/conda/lib/python3.7/site-packages/ipykernel_launcher.py:2: DeprecationWarning: elementwise comparison failed; this will raise an error in the future.
I have also tried making a list of arrays of the one-hot-encoded arrays i want to plot and trying to compare my dictionary label to this array (different sized arrays):
clothing_array = np.array([[0., 0., 0., 1., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 1., 0., 0., 0., 0., 0.]])
for i in range(len(pa['label'])):
if (pa['label'][i] == clothing_array[i]).any():
plt.imshow(pa['output'][i].reshape(28,28))
plt.show()
However, it plots a picture of a tshirt, a bag, and then i get the error
IndexError: index 2 is out of bounds for axis 0 with size 2
Which i understand since clothing_array only has two indices. But obviously this code is wrong since I want to print ONLY dress and coat. I don't know why it's printing these images and i don't know how to fix it. Any help or clarifying questions are more than welcome.
Here are the first ten arrays of my dictionary labels:
array([[0., 0., 0., 1., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 1., 0.],
[0., 0., 0., 1., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
[1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 1., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 1., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 1., 0., 0., 0., 0.],
[0., 0., 0., 0., 1., 0., 0., 0., 0., 0.],
[1., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], dtype=float32)
I will post an example here.
Here we have two arrays for you x is the label array and y the clothing . You can get in z the ones that are identical (the indexes). Finally by using the matching_indexes you can collect the onces you want from output and plot them
x = np.array([[1., 0., 0., 0., 0., 0., 0.],
[0., 1., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 1., 0., 0.],
[1., 0., 0., 0., 0., 0., 0.],
[0., 0., 1., 0., 0., 0., 0.],
[0., 0., 0., 1., 0., 0., 0.]])
y = np.array([[1.,0.,0.,0.,0.,0.,0.]])
z= np.multiply(x,y)
matching_indexes = np.where(z.any(axis=1))[0]
I am new in computer vision and I am currently working on a numpy array of 0 and 1 on python as follow :
I am trying to find the contour of the shape formed by the cells that are equal to 1, this is what the result should look like :
I would like to be able to get the position of each element highlighted in green following a certain order (counter clockwise for exemple).
I tried to use the findContours function of OpenCV in python by following some examples I found on the web but I didn't make it work :
# Import
import numpy as np
import cv2
# Find contours
tableau_poche = np.array([[1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0.],
[1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0.],
[1., 1., 1., 1., 1., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0.,
0.],
[0., 0., 0., 0., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0.,
0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0.]])
tableau_poche = np.int8(tableau_poche)
contours, hierarchy = cv2.findContours(tableau_poche, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
I get the following message :
error: OpenCV(4.0.1) C:\ci\opencv-suite_1573470242804\work\modules\imgproc\src\thresh.cpp:1492: error: (-210:Unsupported format or combination of formats) in function 'cv::threshold'
Actually, I don't know if I am supposed to use this OpenCV function (maybe the "matplotlib.pyplot.contour()" function can solve my problem too ...) or if it's possible to use it on the numpy array I have. In a near future, I might be interested by the convexityDefects function of OpenCV on my numpy array.
You have a type issue. This OpenCV function works only with unsigned integer uint8. Your array uses signed integer int8.
simply replace:
tableau_poche = np.int8(tableau_poche)
by
tableau_poche = tableau_poche.astype(np.uint8)
and the findContour() will work.
As pointed out in comments, you can get what you want (or very close) by changing the attributes of the findContour(). By using cv2.CHAIN_APPROX_NONE instead of cv2.CHAIN_APPROX_SIMPLE, it will give you all the points of the contour. However, it works vertically, horizontally and diagonally for any pixel of distance 1. So it is not 100% what you had on your question as it "cuts" the corners.
See documentation here for more info on options ContourApproximationModes
In pandas or numpy, I can do the following to get one-hot vectors:
>>> import numpy as np
>>> import pandas as pd
>>> x = [0,2,1,4,3]
>>> pd.get_dummies(x).values
array([[ 1., 0., 0., 0., 0.],
[ 0., 0., 1., 0., 0.],
[ 0., 1., 0., 0., 0.],
[ 0., 0., 0., 0., 1.],
[ 0., 0., 0., 1., 0.]])
>>> np.eye(len(set(x)))[x]
array([[ 1., 0., 0., 0., 0.],
[ 0., 0., 1., 0., 0.],
[ 0., 1., 0., 0., 0.],
[ 0., 0., 0., 0., 1.],
[ 0., 0., 0., 1., 0.]])
From text, with gensim, I can do:
>>> from gensim.corpora import Dictionary
>>> sent1 = 'this is a foo bar sentence .'.split()
>>> sent2 = 'this is another foo bar sentence .'.split()
>>> texts = [sent1, sent2]
>>> vocab = Dictionary(texts)
>>> [[vocab.token2id[word] for word in sent] for sent in texts]
[[3, 4, 0, 6, 1, 2, 5], [3, 4, 7, 6, 1, 2, 5]]
Then I'll have to do the same pd.get_dummies or np.eyes to get the one-hot vector but I get an error where there's one dimension missing from my one-hot vector I have 8 unique words but the one-hot vector lengths are only 7:
>>> [pd.get_dummies(sent).values for sent in texts_idx]
[array([[ 0., 0., 0., 1., 0., 0., 0.],
[ 0., 0., 0., 0., 1., 0., 0.],
[ 1., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0., 1.],
[ 0., 1., 0., 0., 0., 0., 0.],
[ 0., 0., 1., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 1., 0.]]), array([[ 0., 0., 1., 0., 0., 0., 0.],
[ 0., 0., 0., 1., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0., 1.],
[ 0., 0., 0., 0., 0., 1., 0.],
[ 1., 0., 0., 0., 0., 0., 0.],
[ 0., 1., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 1., 0., 0.]])]
It seems like it's doing one-hot vector individually as it iterates through each sentence, instead of using the global vocabulary.
Using np.eye, I do get the right vectors:
>>> [np.eye(len(vocab))[sent] for sent in texts_idx]
[array([[ 0., 0., 0., 1., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 1., 0., 0., 0.],
[ 1., 0., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0., 1., 0.],
[ 0., 1., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 1., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 1., 0., 0.]]), array([[ 0., 0., 0., 1., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 1., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0., 0., 1.],
[ 0., 0., 0., 0., 0., 0., 1., 0.],
[ 0., 1., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 1., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 1., 0., 0.]])]
Also, currently, I have to do several things from using gensim.corpora.Dictionary to converting the words to their ids then getting the one-hot vector.
Are there other ways to achieve the same one-hot vector from texts?
There are various packages that will do all the steps in a single function such as http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html.
Alternatively, if you have your vocabulary and text indexes for each sentence already, you can create a one-hot encoding by preallocating and using smart indexing. In the following text_idx is a list of integers and vocab is a list relating integers indexes to words.
import numpy as np
vocab_size = len(vocab)
text_length = len(text_idx)
one_hot = np.zeros(([vocab_size, text_length])
one_hot[text_idx, np.arange(text_length)] = 1
to create one_hot_vector, you need to create unique vocabulary from text
vocab=set(vocab)
label_encoder = LabelEncoder()
integer_encoded = label_encoder.fit_transform(vocab)
one_hot_encoder = OneHotEncoder(sparse=False)
doc = "dog"
index=vocab.index(doc)
integer_encoded = integer_encoded.reshape(len(integer_encoded), 1)
one_hot_encoder=one_hot_encoder.fit_transform(integer_encoded)[index]
The 7th value is the "."(Dot) in your sentences separated by a " "(space) and split() counts it as a word !!
I want to append a vector to a matrix in python. I tried append or concatenate methods but I didn't get the answer. I was previously working with Matlab and there I used this:
m = zeros(10, 4) % define my matrix, 10x4
v = ones(10, 1) % my vecto, 10x1
c = [m,v] % so simple! the result is: 10x5 (the vector added as the last column)
How can I do that in python using numpy?
You're looking for np.r_ and np.c_. (Think "column stack" and "row stack" (which are also functions) but with matlab-style range generations.)
Also see np.concatenate, np.vstack, np.hstack, np.dstack, np.row_stack, np.column_stack etc.
For example:
import numpy as np
m = np.zeros((10, 4))
v = np.ones((10, 1))
c = np.c_[m, v]
Yields:
array([[ 0., 0., 0., 0., 1.],
[ 0., 0., 0., 0., 1.],
[ 0., 0., 0., 0., 1.],
[ 0., 0., 0., 0., 1.],
[ 0., 0., 0., 0., 1.],
[ 0., 0., 0., 0., 1.],
[ 0., 0., 0., 0., 1.],
[ 0., 0., 0., 0., 1.],
[ 0., 0., 0., 0., 1.],
[ 0., 0., 0., 0., 1.]])
This is also equivalent to np.hstack([m, v]) or np.column_stack([m, v])
If you're not coming from matlab, hstack and column_stack probably seem much more readable and descriptive. (And they're arguably better in this case for that reason.)
However, np.c_ and np.r_ have additional functionality that folks coming from matlab tend to expect. For example:
In [7]: np.r_[1:5, 2]
Out[7]: array([1, 2, 3, 4, 2])
Or:
In [8]: np.c_[m, 0:10]
Out[8]:
array([[ 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 1.],
[ 0., 0., 0., 0., 2.],
[ 0., 0., 0., 0., 3.],
[ 0., 0., 0., 0., 4.],
[ 0., 0., 0., 0., 5.],
[ 0., 0., 0., 0., 6.],
[ 0., 0., 0., 0., 7.],
[ 0., 0., 0., 0., 8.],
[ 0., 0., 0., 0., 9.]])
At any rate, for matlab folks, it's handy to know about np.r_ and np.c_ in addition to vstack, hstack, etc.
In numpy it is similar:
>>> m=np.zeros((10,4))
>>> m
array([[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.]])
>>> v=np.ones((10,1))
>>> v
array([[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.]])
>>> np.c_[m,v]
array([[ 0., 0., 0., 0., 1.],
[ 0., 0., 0., 0., 1.],
[ 0., 0., 0., 0., 1.],
[ 0., 0., 0., 0., 1.],
[ 0., 0., 0., 0., 1.],
[ 0., 0., 0., 0., 1.],
[ 0., 0., 0., 0., 1.],
[ 0., 0., 0., 0., 1.],
[ 0., 0., 0., 0., 1.],
[ 0., 0., 0., 0., 1.]])
I'm trying to follow the Wikipedia Article on latent semantic indexing in Python using the following code:
documentTermMatrix = array([[ 0., 1., 0., 1., 1., 0., 1.],
[ 0., 1., 1., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 1., 1.],
[ 0., 0., 0., 1., 0., 0., 0.],
[ 0., 1., 1., 0., 0., 0., 0.],
[ 1., 0., 0., 1., 0., 0., 0.],
[ 0., 0., 0., 0., 1., 1., 0.],
[ 0., 0., 1., 1., 0., 0., 0.],
[ 1., 0., 0., 1., 0., 0., 0.]])
u,s,vt = linalg.svd(documentTermMatrix, full_matrices=False)
sigma = diag(s)
## remove extra dimensions...
numberOfDimensions = 4
for i in range(4, len(sigma) -1):
sigma[i][i] = 0
queryVector = array([[ 0.], # same as first column in documentTermMatrix
[ 0.],
[ 0.],
[ 0.],
[ 0.],
[ 1.],
[ 0.],
[ 0.],
[ 1.]])
How the math says it should work:
dtMatrixToQueryAgainst = dot(u, dot(s,vt))
queryVector = dot(inv(s), dot(transpose(u), queryVector))
similarityToFirst = cosineDistance(queryVector, dtMatrixToQueryAgainst[:,0]
# gives 'matrices are not aligned' error. should be 1 because they're the same
What does work, with math that looks incorrect: ( from here)
dtMatrixToQueryAgainst = dot(s, vt)
queryVector = dot(transpose(u), queryVector)
similarityToFirst = cosineDistance(queryVector, dtMatrixToQueryAgainsst[:,0])
# gives 1, which is correct
Why does route work, and the first not, when everything I can find about the math of LSA shows the first as correct? I feel like I'm missing something obvious...
There are several inconsistencies in your code that cause errors before your point of confusion. This makes it difficult to understand exactly what you tried and why you are confused (clearly you did not run the code as it is pasted, or it would have thrown an exception earlier).
That said, if I follow your intent correctly, your first approach is nearly correct. Consider the following code:
documentTermMatrix = array([[ 0., 1., 0., 1., 1., 0., 1.],
[ 0., 1., 1., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 1., 1.],
[ 0., 0., 0., 1., 0., 0., 0.],
[ 0., 1., 1., 0., 0., 0., 0.],
[ 1., 0., 0., 1., 0., 0., 0.],
[ 0., 0., 0., 0., 1., 1., 0.],
[ 0., 0., 1., 1., 0., 0., 0.],
[ 1., 0., 0., 1., 0., 0., 0.]])
numDimensions = 4
u, s, vt = linalg.svd(documentTermMatrix, full_matrices=False)
u = u[:, :numDimensions]
sigma = diag(s)[:numDimensions, :numDimensions]
vt = vt[:numDimensions, :]
lowRankDocumentTermMatrix = dot(u, dot(sigma, vt))
queryVector = documentTermMatrix[:, 0]
lowDimensionalQuery = dot(inv(sigma), dot(u.T, queryVector))
lowDimensionalQuery
vt[:,0]
You should see that lowDimensionalQuery and vt[:,0] are equal. Think of vt as a representation of the documents in a low-dimensional subspace. First we map our query into that subspace to get lowDimensionalQuery, and then we compare it with the corresponding column of vt. Your mistake was trying to compare the transformed query to the document vector from lowRankDocumentTermMatrix, which lives in the original space. Since the transformed query has fewer elements than the "reconstructed" document, Python complained.