callback functions based on modal popup data not working (dash) - python

I am new to dash and am having trouble with writing a more complex callback function. The steps to my app are:
press a button to open a modal popup.
select options from a drop-down on the popup, which changes input options.
choose the desired input options
click a "submit" button to print (ultimately write) the input data.
I suspect I need either pattern matching callbacks, or chained callbacks because the errors I get say:
"Attempting to connect a callback Input item to component:
"id"
but no components with that id exist in the layout."
This is because the inputs don't appear until the modal popup and drop-down are activated.
Below is a minimal example with all the important layout features and should run on any machine. I specifically need help getting the last callback in the proper format to print the selected data from the modal drop-down.
Thanks!
import time
import dash
import dash_core_components as dcc
import dash_html_components as html
from dash.dependencies import Input, Output, State
import dash_bootstrap_components as dbc
from dash_bootstrap_templates import load_figure_template
################################################################################################
app = dash.Dash(external_stylesheets=[dbc.themes.CERULEAN])
report_list = [
{"label": "drop down 1", "value": 1},
{"label": "drop down 2", "value": 2},
]
body1 = html.Div([
html.H6(
"Enter value (required)"
),
dcc.Input(
id = 'report-1',
type = 'text',
placeholder = "value",
debounce=True,
required=True,
),
html.Div(html.Br(),),
html.H6(
"Choose a new reach type (required)"
),
dcc.RadioItems(
id = 'type_radio',
options=[
{'label':'radio1','value':1},
{'label':'radio2', 'value':2},],
className='btn-group-vertical p-2'),
])
body2 = html.Div([
html.H6(
"Enter value (required)",
),
dcc.Input(
id = 'report-2',
type = 'text',
placeholder = "value",
debounce=True,
required=True,
),
html.Div(html.Br(),),
html.H6(
"Input 1 (required)",
),
dcc.Input(
id = 'input1',
type = 'text',
placeholder = "input 1",
debounce=True,
required=True,
),
html.Div(html.Br(),),
html.H6(
"Input 2 (required)"),
dcc.Input(
id = 'input2',
type = 'text',
placeholder = "input 2",
debounce=True,
required=True,
),
])
################################################################################################
report_overlay = dbc.Modal(
[
dbc.ModalBody(
html.Div(children=[
html.Div([
'Description...'],
id="report-md"),
html.Div([
html.H5([
'Choose an option:'
]),
]),
html.Div([
dcc.Dropdown(
id='Report_DropBox',
options=report_list,
style={
# "textAlign":"center",
"width":"60%",
}
),
]),
html.Div([html.Br()]),
html.Div(id='report-options'), #different options for reporting a reach.
html.Div([html.Br()]),
html.Div([
dbc.Button(
"Submit",
id="report-submit",
outline=False,
color="secondary",
size="sm",
style={
"textTransform": "none",
"width":"30%"
},
),
]),
],
),
),
html.Div([html.Br()]),
html.Div(
id='submit_status',
style={"textAlign":"center", "width":"50%"}), #print status of submission.
html.Div([html.Br()]),
dbc.ModalFooter(
dbc.Button(
"Close",
id="report-close",
className="howto-bn"
)),
],
id="report-modal",
size="lg",
)
################################################################################################
app.layout = html.Div([
html.Br(),
dbc.Button(
"Report Reach",
id="report-open",
outline=False,
color="red",
style={
# "textTransform": "none",
"margin-right": "5px",
"color":"white",
"background-color":"#C42828",
"textAlign":"center",
},
),
report_overlay,
],style={"textAlign":"center"},
)
################################################################################################
##### callbacks
# Callback for modal popup
#app.callback(
Output("report-modal", "is_open"),
[Input("report-open", "n_clicks"), Input("report-close", "n_clicks")],
[State("report-modal", "is_open")],
)
def toggle_modal(n3, n4, is_open):
if n3 or n4:
return not is_open
return is_open
# Callback for different layouts based on drop down.
#app.callback(Output('report-options', 'children'),
Input('Report_DropBox', 'value'))
def render_content(report):
if report == 1:
return body1
if report == 2:
return body2
#attempted callback to print data based on modal input.
#app.callback(
Output("submit_status", "children"),
[
Input("Report_DropBox", "value"),
Input("report-1", "value"),
Input("report-2", "value"),
Input("type_radio", "value"),
Input("input1", "value"),
Input("input2", "value"),
Input("report-submit","n_clicks")
],
)
def print_report(dropbox, r1, r2, type, ip1, ip2, submit):
if submit:
if dropbox == 1:
r = r1
data = type
date_stamp = time.strftime("%d-%b-%Y %H:%M:%S", time.gmtime())
List = [r,data,date_stamp]
statement = html.Div([List])
elif dropbox == 2:
r = r2
data1 = ip1
data2 = ip2
date_stamp = time.strftime("%d-%b-%Y %H:%M:%S", time.gmtime())
List = [r,data1,data2,date_stamp]
statement = html.Div([List])
return statement
if __name__ == '__main__':
app.run_server(debug=True)

Related

Why is Dash callback-function not triggered in python? (selected_columns)

I want to trigger an event if the checkbox of a dash-table is clicked. When I start the webapp, I see below output
* Serving Flask app 'app'
* Debug mode: on
aaaa
[]
aaaa
[]
where "aaaa" indicating the callback is triggered. But when I click the checkbox after the initial load, nothing happens. I would expect that if I click the checkbox of a table, the callback-function dummy was triggered. Why is it not triggered?
import dash
import dash_bootstrap_components as dbc
from dash import html
from dash import dcc, dash_table
import plotly.express as px
from dash.dependencies import Input, Output
import pandas as pd
# data source: https://www.kaggle.com/chubak/iranian-students-from-1968-to-2017
# data owner: Chubak Bidpaa
df = pd.read_csv('https://raw.githubusercontent.com/Coding-with-Adam/Dash-by-Plotly/master/Bootstrap/Side-Bar/iranian_students.csv')
app = dash.Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])
# styling the sidebar
SIDEBAR_STYLE = {
"position": "fixed",
"top": 0,
"left": 0,
"bottom": 0,
"width": "16rem",
"padding": "2rem 1rem",
"background-color": "#f8f9fa",
}
# padding for the page content
CONTENT_STYLE = {
"margin-left": "18rem",
"margin-right": "2rem",
"padding": "2rem 1rem",
}
sidebar = html.Div(
[
html.H2("", className="display-4"),
html.Hr(),
html.H2("Sidebar", className="display-4"),
html.Hr(),
html.P(
"Number of students per education level", className="lead"
),
dbc.Nav(
[
dbc.NavLink("Home", href="/", active="exact"),
dbc.NavLink("Page 1", href="/page-1", active="exact"),
dbc.NavLink("Page 2", href="/page-2", active="exact"),
],
vertical=True,
pills=True,
),
],
style=SIDEBAR_STYLE,
)
navbar = dbc.NavbarSimple(
children=[
dbc.NavItem(dbc.NavLink("Page 1", href="#")),
dbc.DropdownMenu(
children=[
dbc.DropdownMenuItem("More pages", header=True),
dbc.DropdownMenuItem("Page 2", href="#"),
dbc.DropdownMenuItem("Page 3", href="#"),
],
nav=True,
in_navbar=True,
label="More",
),
],
brand="NavbarSimple",
brand_href="#",
color="primary",
dark=True,
)
fig1 = px.bar(df, barmode='group', x='Years',
y=['Girls Kindergarten', 'Boys Kindergarten'])
fig1.update_layout(plot_bgcolor='rgb(10,10,10)')
children1 = [html.H1('Kindergarten in Iran',
style={'textAlign':'center'}),
dcc.Graph(id='bargraph',
figure=fig1),
dash_table.DataTable(
id='datatable-interactivity',
columns=[
{"name": i, "id": i, "deletable": True, "selectable": True} for i in df.columns
],
data=df.to_dict('records'),
editable=True,
filter_action="native",
sort_action="native",
sort_mode="multi",
column_selectable="single",
row_selectable="multi",
row_deletable=True,
selected_columns=[],
selected_rows=[],
page_action="native",
page_current= 0,
page_size= 10,
)]
content = html.Div(id="page-content", children=children1, style=CONTENT_STYLE)
app.layout = html.Div([
dcc.Location(id="url"),
sidebar,
navbar,
content
])
#fig1.update_layout(plot_bgcolor='rgb(10,10,10)')
"""
def update_styles(selected_columns):
return [{
'if': { 'column_id': i },
'background_color': '#D2F3FF'
} for i in selected_columns]
"""
#app.callback(
Output('datatable-interactivity', 'style_data_conditional'),
Input('datatable-interactivity', 'selected_columns')
)
def dummy(selected_columns):
print("aaaa")
print(selected_columns)
#app.callback(
Output("page-content", "children"),
[Input("url", "pathname")]
)
def render_page_content(pathname):
if pathname == "/":
return children1
elif pathname == "/page-1":
return children1
elif pathname == "/page-2":
return children1
# If the user tries to reach a different page, return a 404 message
return dbc.Jumbotron(
[
html.H1("404: Not found", className="text-danger"),
html.Hr(),
html.P(f"The pathname {pathname} was not recognised..."),
]
)
if __name__=='__main__':
app.run_server(debug=True)
The dummy function accepts a wrong input parameter. I have not worked with selected_columns, but selected_rows so far. A function input needed to be "chosen_rows" then for the selected_rows.

A nonexistent object was used in an `Input` of a Dash callback an multipage app

I am trying to build a basic webpage in Dash and Plotly, using callbacks to deliver stock graphs based on the pathname.
I would also like the graph to have a callback with radio buttons that specify the time period of data to display.
The graphs work fine however I would also like other pages to do other things and return different html but because I have specified the callback_layout in the #app.layout, it shows up on every page.
However, If I remove the callback_layout from #app.layout, I get an error in Dash saying "A nonexistent object was used in an Input of a Dash callback an multipage app".
How would I solve this? I want the callback radio buttons under 'stock-period' to only show up when I need to pull up the Plotly graph
import dash
import dash_bootstrap_components as dbc
from dash import html
from dash import dcc
import plotly.express as px
from dash.dependencies import Input, Output, State
import pandas as pd
import yfinance as yf
external_stylesheets = [dbc.themes.CYBORG] #DARKLY
app = dash.Dash(__name__, external_stylesheets=external_stylesheets, suppress_callback_exceptions=True)
# styling the sidebar
SIDEBAR_STYLE = {
"position": "fixed",
"top": 0,
"left": 0,
"bottom": 0,
"width": "16rem",
"padding": "2rem 1rem",
# "background-color": "#4C4C4C",
}
# padding for the page content
CONTENT_STYLE = {
"margin-left": "18rem",
"margin-right": "2rem",
"padding": "2rem 1rem",
"background-color": "#060606"
}
sidebar = html.Div(
[
html.H2("Sidebard / Stocks", className="display-4"),
html.Hr(),
html.P(
"Number of students per education level", className="lead"
),
dbc.Nav(
[
dbc.NavLink("Home", href="/", active="exact"),
dbc.NavLink("Test", href="/test", active="exact"),
dbc.NavLink("NVDA", href="/NVDA", active="exact"),
dbc.NavLink("MSFT", href="/MSFT", active="exact"),
dbc.NavLink("AAPL", href="/AAPL", active="exact"),
],
vertical=True,
pills=True,
),
],
style=SIDEBAR_STYLE,
)
content = html.Div(id="page-content", children=[], style=CONTENT_STYLE) # Graph goes inside children via call back
callback_layout = html.Div([
dcc.RadioItems(
id='period-selector',
options = [
{'label': '1 mth', 'value': '1mo'},
{'label': '3 mth', 'value': '3mo'},
{'label': '6 mth', 'value': '6mo'},
{'label': '1 yr', 'value': '1y'},
{'label': '5 yr', 'value': '5y'}
],
value = "6mo",
#labelStyle is done in CSS
labelStyle={
'textAlign': 'center',
'display': 'inline-block',
'color': 'white',
'font-family': 'Arial',
'font-size' : '15px',
'padding-right': '30px'
},
style={
'textAlign': 'center'
}
)
])
app.layout = html.Div([
dcc.Location(id="url", refresh=False),
sidebar,
content,
callback_layout
])
homepage_layout = html.Div([
dcc.Link('Go to Page 1', href='/page-1'),
html.Br(),
dcc.Link('Go to Page 2', href='/page-2'),
])
""" Plotly graph """
#app.callback(
Output("page-content", "children"),
Input("url", "pathname"),
Input('period-selector', 'value')
)
def render_page_content(pathname, period_selector):
""" App routing from sidebar to content depending on path """
if pathname == '/':
return homepage_layout
if pathname == '/test':
return 'Test'
else: # If pathname isn't defined above, assume is stock ticker and calls graph below
interval = '1d'
quote = yf.Ticker(pathname)
hist = quote.history(period_selector, interval)
df = hist.round(decimals=2)
last_price = df.iloc[-1, 0] # return first row (-1)
#Performance over period calc
performance_calc = ((df.iloc[-1, 0] / df.iloc[0, 0]) - 1) * 100
if performance_calc >= 0:
performance = '+' + str(round(performance_calc,2))
else:
performance = str(round(performance_calc,2))
#Define color of performance %
performance_int = (round(performance_calc,2))
if performance_int >= 0:
perf_color = 'lime'
else:
perf_color = 'red'
fig = px.line(df,
x=df.index, y=df["Close"],
title='NVDA',
template="plotly_dark",
color_discrete_sequence=['lime'],
labels = {'Date': ''}
)
if interval == '1mo':
d_tick='604800000' #7 days in milliseconds. Datetime format requires ms input.
elif interval == '5y':
d_tick = 'M12'
else:
d_tick='M1'
fig.update_xaxes(
dtick=d_tick,
showgrid=False,
)
fig.update_yaxes(
showgrid=False,
visible=False
)
#Last price annotation
fig.add_annotation(dict(font=dict(color='white',size=40, family='Arial Black'),
x=0,
y=1.2,
showarrow=False,
text=str(last_price),
textangle=0,
xanchor='left',
xref="paper",
yref="paper")
)
#Performance annotation
fig.add_annotation(dict(font=dict(color=perf_color,size=25, family='Arial'),
x=0.14,
y=1.12,
showarrow=False,
text=str(performance) + '%',
textangle=0,
xanchor='left',
xref="paper",
yref="paper")
)
fig.update_traces(hovertemplate=None)
fig.update_layout(
plot_bgcolor='#060606',
paper_bgcolor='#060606',
font_color='white',
title=dict(
y = 0.82, #Adjust location of stock ticker title
x = 0.92,
xanchor = 'center',
yanchor = 'top',
font=dict(
family="Arial",
size=25,
color='white'
)
),
hovermode = 'x',
# xaxis_tickformat = '%b'
)
# Return below into children tag above
return [
html.H1(pathname,
style={'textAlign':'center'}),
dcc.Graph(id='stock-chart',
figure = fig
)
]
if __name__=='__main__':
app.run_server(debug=True, port=3000)
To get the desired behavior you can just hide the chart radio buttons for all endpoints that do not build the stock price graph. To do this add the style attribute of the period-selector element as an output to your main callback as shown below.
app.layout = html.Div([
dcc.Location(id="url", refresh=False),
sidebar,
content,
callback_layout # Leave this here, do not move.
])
#app.callback(
Output("page-content", "children"),
Output("period-selector", "style"), # Add new output here
Input("url", "pathname"),
Input('period-selector', 'value')
)
def render_page_content(pathname, period_selector):
""" App routing from sidebar to content depending on path """
hidden_style = {'display': 'none'}
# It would be best to make visible_style a module level variable.
# Use it for both the app layout and this callback function.
# That way if you want to change its location or look you only have to edit one location.
visible_style = {'textAlign': 'center'}
if pathname == '/':
return homepage_layout, hidden_style
if pathname == '/test':
return 'Test', hidden_style
else:
# Your other build code here.
return [
html.H1(pathname,
style={'textAlign': 'center'}),
dcc.Graph(id='stock-chart',
figure=fig
)
], visible_style
The MultiplexerTransform from dash-extensions was designed to solve this problem. To enable it, replace you imports from Dash with their equivalents from dash-extensions.enrich,
from dash import Dash, Input, Output, html, ... # before
from dash_extensions.enrich import Dash, Input, Output, html, ... # after
and the error should disappear. You can read more about the details in the documentation.

Sidebar with filters (dropdowns) in Plotly Dash

I am trying to program a sidebar with some filters but the callback update_output of this dropdown is not working (not throwing an error, just doing nothing).
I think it is because this dropdown is not in the main layout, because my layout is composed of the sidebar and a content. My dropdowns in this sidebar will be filters that will be applied to the dataframe that feeds the graphs of the dashboard and dashboard2 layouts.
My question is how or where should I program those callbacks to give functionality to my sidebar dropdowns?
sidebar = html.Div(
[
html.H2("Sidebar", className="display-4"),
html.Hr(),
html.P(
"Sidebar", className="lead"
),
dbc.Nav(
[
dbc.NavLink("Home", href="/", active="exact"),
dbc.NavLink("Page 1", href="/page-1", active="exact"),
dbc.NavLink("Page 2", href="/page-2", active="exact"),
],
vertical=True,
pills=True,
),
dcc.Dropdown(id='dropdown',value="City"),
html.Br(),
dcc.Dropdown(id='dropdown2',options=[])
],
style=SIDEBAR_STYLE,
)
content = html.Div(id="page-content", children=[], style=CONTENT_STYLE)
app.layout = html.Div([
dcc.Location(id="url"),
sidebar,
content
])
#app.callback(
Output('dropdown2', 'options'),
Input('dropdown', 'value')
)
def update_output(value):
return df[df["cities"].isin(value)]
#app.callback(
Output("page-content", "children"),
[Input("url", "pathname")]
)
def render_page_content(pathname):
if pathname == "/":
return dashboard.layout
elif pathname == "/page-1":
return dashboard.layout
elif pathname == "/page-2":
return dashboard2.layout
# return a 404 message when user tries to reach a different page
return dbc.Jumbotron(
[
html.H1("404: Not found", className="text-danger"),
html.Hr(),
html.P(f"The pathname {pathname} was not recognised..."),
]
)
if __name__=='__main__':
app.run_server(debug=True, port=8000)
I find checklists to be better for this purpose. If you're open to using that instead of dropdown menu to filter your dataframe, then the complete snippet below will produce the following Plotly Dash App.
Complete code:
from jupyter_dash import JupyterDash
import dash_core_components as dcc
import dash_html_components as html
from dash.dependencies import Input, Output, State, ClientsideFunction
import dash_bootstrap_components as dbc
import dash_core_components as dcc
import pandas as pd
import plotly.graph_objs as go
import numpy as np
import plotly.express as px
app = JupyterDash(external_stylesheets=[dbc.themes.SLATE])
df = px.data.stocks()
df = df.set_index('date')
controls = dbc.Card(
[
dbc.FormGroup(
[
dbc.Label("Checklist"),
dcc.Checklist(
id="column_select",
options=[{"label":col, "value": col} for col in df.columns],
value=[df.columns[0]],
labelStyle={'display': 'inline-block', 'width': '12em', 'line-height':'0.5em'}
),
],
),
],
body=True,
style = {'font-size': 'large'}
)
app.layout = dbc.Container(
[
html.H1("Dropdowns and checklists"),
html.Hr(),
dbc.Row([
dbc.Col([controls],xs = 4),
dbc.Col([
dbc.Row([
dbc.Col(dcc.Graph(id="graph"), style={'height': '420px'}),
])
]),
]),
],
fluid=True,
)
#app.callback(
Output("graph", "figure"),
[Input("column_select", "value"),],
)
def make_graph(cols):
fig = px.line(df, x = df.index, y = cols, template = 'plotly_dark')
return fig
app.run_server(mode='external', port = 8982)

Dash : Dynamically update an element based on radio option selected

I have a radio element and a text box element in my dash application. I'd like to update the text the field based on the selected option from a callback.
dbc.InputGroup(
[
dbc.RadioItems(
id="type",
persistence=True,
persistence_type="memory",
options=[
{"label": "option1", "value": "option1"},
{"label": "option2", "value": "option2"}
],
value="option1",
style={"margin-left":"8px"}
),
],
style={"margin-top":"20px","width": "80%", "float": "left"},
),
dbc.InputGroup(
[
dbc.InputGroupAddon("Floor", style={"margin-left":"8px"}),
dbc.Input(
id="floor",
persistence=True,
persistence_type="memory"
),
],
),
How do I make the text "Floor" to be dynamic based on the option selected in the radio?
You need to use the #app.callback in order to make your InputGroupAddon dynamic
import dash
from dash.dependencies import Input, Output
import dash_core_components as dcc
import dash_html_components as html
import dash_bootstrap_components as dbc
app = dash.Dash(__name__)
app.layout = (
html.Div([
dbc.InputGroup([
dbc.RadioItems(
id="type",
persistence=True,
persistence_type="memory",
options=[
{"label": "option1", "value": "option1"},
{"label": "option2", "value": "option2"}
],
value="option1",
style={"margin-left":"8px"}
),
],
style={"margin-top":"20px","width": "80%", "float": "left"},
),
dbc.InputGroup([
dbc.InputGroupAddon(
id='dbc-input-addon',
style={"margin-left":"8px"}),
dbc.Input(
id="floor",
persistence=True,
persistence_type="memory"
),
])
])
)
#app.callback(
Output(component_id='dbc-input-addon', component_property='children'),
[Input(component_id='type', component_property='value')]
)
def change_input(option_value):
if option_value == 'option1':
input_txt = 'Floor'
elif option_value == 'option2':
input_txt = 'No floor'
return input_txt
if __name__ == '__main__':
app.run_server(debug=True)

Plotly Dash Update Drop Down from call back where data frame inside the call back

I am trying to update the drop-down menu from the data frame column value where my data frame is generated inside call back since I am taking user inputs and extracting some data from API.
I want to create a filter in the dropdown that's why I want that drop-down updated dynamically using the data frame column.
so in a call back I have df['name_id'] through which I want to update the segment dropdown.
I have taken the only important line to break in my code since the code is too lengthy:
import dash_core_components as dcc
import dash_html_components as html
import dash_bootstrap_components as dbc
import datetime
import dash_table
import httplib2
import pandas as pd
import requests
import io
import time
from Dash_App.app import app
from dash.dependencies import Input, Output, State
from oauth2client import GOOGLE_REVOKE_URI, GOOGLE_TOKEN_URI, client
from oauth2client import client, GOOGLE_TOKEN_URI
from datetime import date, timedelta
from apiclient import discovery
row1 = html.Div(
[
dbc.Row([
dbc.Col([
dbc.Input(id="client_id",
type="text",
placeholder="Client ID",
style={'width': '150px'}, persistence=True,
persistence_type='memory'),
]),
], align="center"),
], style={'margin-top': 20, 'margin-left': -90}
)
row2 = html.Div([
dbc.Row([
dbc.Col([
dcc.Dropdown(
id='segment',
options=[{'label': i, 'value': i} for i in "what"],
multi=True,
style={'width': '250px'},
placeholder='Segment'),
]),
])
])
tab_2_layout = dbc.Container(children=[
row1,
html.Br(),
row2,
]
)
#app.callback(Output('output_div-ga', 'children'),
[Input('submit-button', 'n_clicks')],
[State('client_id', 'value'),
],
)
def ga_output(clicks, client_id):
if clicks is not None:
my_client_id = client_id
credentials = client.OAuth2Credentials(
access_token=None, # set access_token to None since we use a refresh token
client_id=my_client_id)
credentials.refresh(httplib2.Http()) # refresh the access token (optional)
http = credentials.authorize(httplib2.Http()) # apply the credentials
service_v3 = discovery.build('analytics', 'v3', http=http)
segments = service_v3.management().segments().list().execute()
df = pd.DataFrame(segments['items'])
df = df[['name', 'id']]
df['name_id'] = df.name.astype(str).str.cat(df.id.astype(str), sep=':')
return html.Div([dcc.Store('memory'),
dash_table.DataTable(
id='table',
columns=[{"name": i, "id": i} for i in dff.columns],
data=dff.to_dict("rows"), persistence=True, persistence_type='memory',
export_format="csv",
),
])
I am able to solve this by generating form inside call back.
return html.Div([
dbc.Row([
dbc.Col([
dcc.Dropdown(
id='segment',
options=[{'label': i, 'value': i} for i in df['name_id'].unique()],
persistence=True, persistence_type='memory',
multi=True,
style={'width': '250px', 'margin-left': -250, 'margin-top': 10},
placeholder='Segment'),
]), ]), ])
What worked for me was to give each column that you want to edit an id, make it editable and then update the dropdown options in the DataTable. I also returned the whole DataTable in my callback.
app.callback(
Output("table-dropdown-container", "children"),
Input("input-data-table-id", "data"),
)(self.update_unlabelled_shops_table)
...
dt = (
dash_table.DataTable(
id='table-id',
data=df.to_dict("records"),
columns=[{"name": i, "id": i} if i != column_name else {"name": i, "id": i, "editable": True, "presentation": "dropdown"} for i in df.columns],
page_size=8,
dropdown={
column_name: {
"options": [
{"label": i, "value": i}
for i in df[column_name].unique()
]
},
},
),
)
return dt
except Exception as e:
print(e)
return [None]
And to create your div block.
def create_div(self):
return html.Div(
[
dash_table.DataTable(
id='table-id',
columns=[],
editable=True,
dropdown={},
),
html.Div(id="table-dropdown-container"),
]
)
Hope this helps somebody...

Categories