google cloud platform provides video intelligence framework to detect person landmarks in video. Sample code is from gcp documentation.
I'm struggling to find a way to force the framework to annotated every single frame of the video, as this call returns only timestamps of 0.1 seconds. I only could think of a hack of manually triple length of the video (that is 30fps) to get annotation per every frame, but I really don't like the idea of doing that.
Any idea on how to do this? Thanks.
Sample code:
import io
from google.cloud import videointelligence_v1 as videointelligence
def detect_person(local_file_path="path/to/your/video-file.mp4"):
"""Detects people in a video from a local file."""
client = videointelligence.VideoIntelligenceServiceClient()
with io.open(local_file_path, "rb") as f:
input_content = f.read()
# Configure the request
config = videointelligence.types.PersonDetectionConfig(
include_bounding_boxes=True,
include_attributes=True,
include_pose_landmarks=True,
)
context = videointelligence.types.VideoContext(person_detection_config=config)
# Start the asynchronous request
operation = client.annotate_video(
request={
"features": [videointelligence.Feature.PERSON_DETECTION],
"input_content": input_content,
"video_context": context,
}
)
print("\nProcessing video for person detection annotations.")
result = operation.result(timeout=300)
print("\nFinished processing.\n")
# Retrieve the first result, because a single video was processed.
annotation_result = result.annotation_results[0]
for annotation in annotation_result.person_detection_annotations:
print("Person detected:")
for track in annotation.tracks:
print(
"Segment: {}s to {}s".format(
track.segment.start_time_offset.seconds
+ track.segment.start_time_offset.microseconds / 1e6,
track.segment.end_time_offset.seconds
+ track.segment.end_time_offset.microseconds / 1e6,
)
)
# Each segment includes timestamped objects that include
# characteristic - -e.g.clothes, posture of the person detected.
# Grab the first timestamped object
timestamped_object = track.timestamped_objects[0]
box = timestamped_object.normalized_bounding_box
print("Bounding box:")
print("\tleft : {}".format(box.left))
print("\ttop : {}".format(box.top))
print("\tright : {}".format(box.right))
print("\tbottom: {}".format(box.bottom))
# Attributes include unique pieces of clothing,
# poses, or hair color.
print("Attributes:")
for attribute in timestamped_object.attributes:
print(
"\t{}:{} {}".format(
attribute.name, attribute.value, attribute.confidence
)
)
# Landmarks in person detection include body parts such as
# left_shoulder, right_ear, and right_ankle
print("Landmarks:")
for landmark in timestamped_object.landmarks:
print(
"\t{}: {} (x={}, y={})".format(
landmark.name,
landmark.confidence,
landmark.point.x, # Normalized vertex
landmark.point.y, # Normalized vertex
)
)
Attributes of the PersonDetectionConfig
"""
Attributes:
include_bounding_boxes (bool):
Whether bounding boxes are included in the
person detection annotation output.
include_pose_landmarks (bool):
Whether to enable pose landmarks detection. Ignored if
'include_bounding_boxes' is set to false.
include_attributes (bool):
Whether to enable person attributes detection, such as cloth
color (black, blue, etc), type (coat, dress, etc), pattern
(plain, floral, etc), hair, etc. Ignored if
'include_bounding_boxes' is set to false.
"""
Sample output
Landmarks: 2.5025s
nose: 0.7880418300628662 (x=0.10155333578586578, y=0.29470884799957275)
left_eye: 0.8498712182044983 (x=0.10444415360689163, y=0.2844345271587372)
right_eye: 0.05180135369300842 (x=0.1029987558722496, y=0.28700312972068787)
left_ear: 0.8830078840255737 (x=0.11745283752679825, y=0.28700312972068787)
right_ear: 0.03634342923760414 (x=0.12757070362567902, y=0.28957170248031616)
left_shoulder: 0.8504171371459961 (x=0.1145620197057724, y=0.34094318747520447)
right_shoulder: 0.7254488468170166 (x=0.14925184845924377, y=0.34351176023483276)
left_elbow: 0.7874324321746826 (x=0.10444415360689163, y=0.4205690324306488)
right_elbow: 0.873414158821106 (x=0.18249624967575073, y=0.4154318571090698)
left_wrist: 0.8134297132492065 (x=0.07987220585346222, y=0.44882336258888245)
right_wrist: 0.5310596227645874 (x=0.1579243242740631, y=0.4693719446659088)
left_hip: 0.48307809233665466 (x=0.12901613116264343, y=0.5130376815795898)
right_hip: 0.4054966866970062 (x=0.14347021281719208, y=0.507900595664978)
left_knee: 0.707266092300415 (x=0.14057938754558563, y=0.6363293528556824)
right_knee: 0.536503791809082 (x=0.1029987558722496, y=0.615780770778656)
left_ankle: 0.6422659158706665 (x=0.21429529786109924, y=0.6620150804519653)
right_ankle: 0.7963647842407227 (x=0.08276302367448807, y=0.7467780113220215)
Landmarks: 2.6026s
nose: 0.6816550493240356 (x=0.030738139525055885, y=0.3216055631637573)
left_eye: 0.7059812545776367 (x=0.03222046047449112, y=0.3110688030719757)
right_eye: 0.038844481110572815 (x=0.030738139525055885, y=0.3110688030719757)
left_ear: 0.7951924800872803 (x=0.045561421662569046, y=0.3110688030719757)
right_ear: 0.03984677046537399 (x=0.05742005258798599, y=0.3110688030719757)
left_shoulder: 0.812483012676239 (x=0.047043751925230026, y=0.36638668179512024)
right_shoulder: 0.7965729236602783 (x=0.08113731443881989, y=0.36375248432159424)
left_elbow: 0.614456295967102 (x=0.05000840872526169, y=0.45331475138664246)
right_elbow: 0.589381992816925 (x=0.10040760785341263, y=0.45331475138664246)
left_wrist: 0.6238939762115479 (x=0.029255803674459457, y=0.49809587001800537)
right_wrist: 0.31396669149398804 (x=0.0796549841761589, y=0.49282753467559814)
left_hip: 0.3904641270637512 (x=0.05890238285064697, y=0.5376086235046387)
right_hip: 0.3786430358886719 (x=0.0796549841761589, y=0.5323402285575867)
left_knee: 0.46311870217323303 (x=0.035185132175683975, y=0.648244321346283)
right_knee: 0.33408626914024353 (x=0.0411144383251667, y=0.6429758667945862)
Related
I'm new to tensorflow and object detetion, and any help would be greatly appreciated! I got a database of 50 photos, used this video to get me started, and it DID work with Google's Sample Model (I'm using a RPi4B with 8 GB of RAM), then I wanted to create my own model. I tried a couple of options, but ultimately failed since the type of files I needed were a .TFLITE and a .txt one with the labels. I only managed to get a .LITE file which from what I tested didn't work
I tried his google collab sheet but the terminal got stuck at step 5 when I pressed the button to train the model, so I tried Edge Impulse but the output models were all in a .LITE file, and didn't provide a labelmap.txt file for the code. I tried manually changing the extension from .LITE to .TFLITE since according to this thread it was supposed to work, but it didn't!
I need this to be ready in 3 days from now... Isn't there a more beginner-friendly way to do this? How can I get a valid .TFLITE model to work with my RPI4? If I have to, I will change the code for this to work. Here's the code the tutorial provided:
######## Webcam Object Detection Using Tensorflow-trained Classifier #########
#
# Author: Evan Juras
# Date: 10/27/19
# Description:
# This program uses a TensorFlow Lite model to perform object detection on a live webcam
# feed. It draws boxes and scores around the objects of interest in each frame from the
# webcam. To improve FPS, the webcam object runs in a separate thread from the main program.
# This script will work with either a Picamera or regular USB webcam.
#
# This code is based off the TensorFlow Lite image classification example at:
# https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/examples/python/label_image.py
#
# I added my own method of drawing boxes and labels using OpenCV.
# Import packages
import os
import argparse
import cv2
import numpy as np
import sys
import time
from threading import Thread
import importlib.util
# Define VideoStream class to handle streaming of video from webcam in separate processing thread
# Source - Adrian Rosebrock, PyImageSearch: https://www.pyimagesearch.com/2015/12/28/increasing-raspberry-pi-fps-with-python-and-opencv/
class VideoStream:
"""Camera object that controls video streaming from the Picamera"""
def _init_(self,resolution=(640,480),framerate=30):
# Initialize the PiCamera and the camera image stream
self.stream = cv2.VideoCapture(0)
ret = self.stream.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc(*'MJPG'))
ret = self.stream.set(3,resolution[0])
ret = self.stream.set(4,resolution[1])
# Read first frame from the stream
(self.grabbed, self.frame) = self.stream.read()
# Variable to control when the camera is stopped
self.stopped = False
def start(self):
# Start the thread that reads frames from the video stream
Thread(target=self.update,args=()).start()
return self
def update(self):
# Keep looping indefinitely until the thread is stopped
while True:
# If the camera is stopped, stop the thread
if self.stopped:
# Close camera resources
self.stream.release()
return
# Otherwise, grab the next frame from the stream
(self.grabbed, self.frame) = self.stream.read()
def read(self):
# Return the most recent frame
return self.frame
def stop(self):
# Indicate that the camera and thread should be stopped
self.stopped = True
# Define and parse input arguments
parser = argparse.ArgumentParser()
parser.add_argument('--modeldir', help='Folder the .tflite file is located in',
required=True)
parser.add_argument('--graph', help='Name of the .tflite file, if different than detect.tflite',
default='detect.lite')
parser.add_argument('--labels', help='Name of the labelmap file, if different than labelmap.txt',
default='labelmap.txt')
parser.add_argument('--threshold', help='Minimum confidence threshold for displaying detected objects',
default=0.5)
parser.add_argument('--resolution', help='Desired webcam resolution in WxH. If the webcam does not support the resolution entered, errors may occur.',
default='1280x720')
parser.add_argument('--edgetpu', help='Use Coral Edge TPU Accelerator to speed up detection',
action='store_true')
args = parser.parse_args()
MODEL_NAME = args.modeldir
GRAPH_NAME = args.graph
LABELMAP_NAME = args.labels
min_conf_threshold = float(args.threshold)
resW, resH = args.resolution.split('x')
imW, imH = int(resW), int(resH)
use_TPU = args.edgetpu
# Import TensorFlow libraries
# If tflite_runtime is installed, import interpreter from tflite_runtime, else import from regular tensorflow
# If using Coral Edge TPU, import the load_delegate library
pkg = importlib.util.find_spec('tflite_runtime')
if pkg:
from tflite_runtime.interpreter import Interpreter
if use_TPU:
from tflite_runtime.interpreter import load_delegate
else:
from tensorflow.lite.python.interpreter import Interpreter
if use_TPU:
from tensorflow.lite.python.interpreter import load_delegate
# If using Edge TPU, assign filename for Edge TPU model
if use_TPU:
# If user has specified the name of the .tflite file, use that name, otherwise use default 'edgetpu.tflite'
if (GRAPH_NAME == 'detect.lite'):
GRAPH_NAME = 'edgetpu.tflite'
# Get path to current working directory
CWD_PATH = os.getcwd()
# Path to .tflite file, which contains the model that is used for object detection
PATH_TO_CKPT = os.path.join(CWD_PATH,MODEL_NAME,GRAPH_NAME)
# Path to label map file
PATH_TO_LABELS = os.path.join(CWD_PATH,MODEL_NAME,LABELMAP_NAME)
# Load the label map
with open(PATH_TO_LABELS, 'r') as f:
labels = [line.strip() for line in f.readlines()]
# Have to do a weird fix for label map if using the COCO "starter model" from
# https://www.tensorflow.org/lite/models/object_detection/overview
# First label is '???', which has to be removed.
if labels[0] == '???':
del(labels[0])
# Load the Tensorflow Lite model.
# If using Edge TPU, use special load_delegate argument
if use_TPU:
interpreter = Interpreter(model_path=PATH_TO_CKPT,
experimental_delegates=[load_delegate('libedgetpu.so.1.0')])
print(PATH_TO_CKPT)
else:
interpreter = Interpreter(model_path=PATH_TO_CKPT)
interpreter.allocate_tensors()
# Get model details
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
height = input_details[0]['shape'][1]
width = input_details[0]['shape'][2]
floating_model = (input_details[0]['dtype'] == np.float32)
input_mean = 127.5
input_std = 127.5
# Check output layer name to determine if this model was created with TF2 or TF1,
# because outputs are ordered differently for TF2 and TF1 models
outname = output_details[0]['name']
if ('StatefulPartitionedCall' in outname): # This is a TF2 model
boxes_idx, classes_idx, scores_idx = 1, 3, 0
else: # This is a TF1 model
boxes_idx, classes_idx, scores_idx = 0, 1, 2
# Initialize frame rate calculation
frame_rate_calc = 1
freq = cv2.getTickFrequency()
# Initialize video stream
videostream = VideoStream(resolution=(imW,imH),framerate=30).start()
time.sleep(1)
#for frame1 in camera.capture_continuous(rawCapture, format="bgr",use_video_port=True):
while True:
# Start timer (for calculating frame rate)
t1 = cv2.getTickCount()
# Grab frame from video stream
frame1 = videostream.read()
# Acquire frame and resize to expected shape [1xHxWx3]
frame = frame1.copy()
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame_resized = cv2.resize(frame_rgb, (width, height))
input_data = np.expand_dims(frame_resized, axis=0)
# Normalize pixel values if using a floating model (i.e. if model is non-quantized)
if floating_model:
input_data = (np.float32(input_data) - input_mean) / input_std
# Perform the actual detection by running the model with the image as input
interpreter.set_tensor(input_details[0]['index'],input_data)
interpreter.invoke()
# Retrieve detection results
boxes = interpreter.get_tensor(output_details[boxes_idx]['index'])[0] # Bounding box coordinates of detected objects
classes = interpreter.get_tensor(output_details[classes_idx]['index'])[0] # Class index of detected objects
scores = interpreter.get_tensor(output_details[scores_idx]['index'])[0] # Confidence of detected objects
# Loop over all detections and draw detection box if confidence is above minimum threshold
for i in range(len(scores)):
if ((scores[i] > min_conf_threshold) and (scores[i] <= 1.0)):
# Get bounding box coordinates and draw box
# Interpreter can return coordinates that are outside of image dimensions, need to force them to be within image using max() and min()
ymin = int(max(1,(boxes[i][0] * imH)))
xmin = int(max(1,(boxes[i][1] * imW)))
ymax = int(min(imH,(boxes[i][2] * imH)))
xmax = int(min(imW,(boxes[i][3] * imW)))
cv2.rectangle(frame, (xmin,ymin), (xmax,ymax), (10, 255, 0), 2)
# Draw label
object_name = labels[int(classes[i])] # Look up object name from "labels" array using class index
label = '%s: %d%%' % (object_name, int(scores[i]*100)) # Example: 'person: 72%'
if object_name=='person' and int(scores[i]*100)>65:
print("YES")
else:
print("NO")
labelSize, baseLine = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.7, 2) # Get font size
label_ymin = max(ymin, labelSize[1] + 10) # Make sure not to draw label too close to top of window
cv2.rectangle(frame, (xmin, label_ymin-labelSize[1]-10), (xmin+labelSize[0], label_ymin+baseLine-10), (255, 255, 255), cv2.FILLED) # Draw white box to put label text in
cv2.putText(frame, label, (xmin, label_ymin-7), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 0), 2) # Draw label text
# Draw framerate in corner of frame
cv2.putText(frame,'FPS: {0:.2f}'.format(frame_rate_calc),(30,50),cv2.FONT_HERSHEY_SIMPLEX,1,(255,255,0),2,cv2.LINE_AA)
# All the results have been drawn on the frame, so it's time to display it.
cv2.imshow('Object detector', frame)
# Calculate framerate
t2 = cv2.getTickCount()
time1 = (t2-t1)/freq
frame_rate_calc= 1/time1
# Press 'q' to quit
if cv2.waitKey(1) == ord('q'):
break
# Clean up
cv2.destroyAllWindows()
videostream.stop()
```
Easy, just downgrade to OpenCV version 3.4.16, and use Tensorflow 1.0 instead of 2.0 and that should solve all your problems. That will allow the use of .LITE files, as well that of .TFLITE
Also, try increasing the resolution to a 720x1280, most likely that can cause a ton of errors as well when working with tensorflow
Take a look here: https://www.tensorflow.org/tutorials/images/classification
This notebook sets up a new classification model, and ends with "Convert the Keras Sequential model to a TensorFlow Lite model"
https://www.tensorflow.org/tutorials/images/classification#convert_the_keras_sequential_model_to_a_tensorflow_lite_model
# Convert the model.
converter = tf.lite.TFLiteConverter.from_keras_model(model)
tflite_model = converter.convert()
# Save the model.
with open('model.tflite', 'wb') as f:
f.write(tflite_model)
This reliably produces a tflite model from a standard tf model.
I was able to get the current image from a Thorlabs uc480 camera using instrumental. My issue is when I try to adjust the parameters for grab_image. I can change cx and left to any value and get an image. But cy and top only works if cy=600 and top=300. The purpose is to create a GUI so that the user can select values for these parameters to zoom in/out an image.
Here is my code
import instrumental
from instrumental.drivers.cameras import uc480
from matplotlib.figure import Figure
import matplotlib.pyplot as plt
paramsets = instrumental.list_instruments()
cammer = instrumental.instrument(paramsets[0])
plt.figure()
framer= cammer.grab_image(timeout='1s',copy=True,n_frames=1,exposure_time='5ms',cx=640,
left=10,cy=600,top=300)
plt.pcolormesh(framer)
The above code does not give an image if I choose cy=600 and top=10. Are there any particular value set to be used for these parameters? How can I get an image of the full sensor size?
Thorlabs has a Python programming interface available as a download on their website. It is very well documented, and can be installed locally via pip.
Link:
https://www.thorlabs.com/software_pages/ViewSoftwarePage.cfm?Code=ThorCam
Here is an example of a simple capture algorithm that might help get you started:
from thorlabs_tsi_sdk.tl_camera import TLCameraSDK
from thorlabs_tsi_sdk.tl_mono_to_color_processor import MonoToColorProcessorSDK
from thorlabs_tsi_sdk.tl_camera_enums import SENSOR_TYPE
# open the TLCameraSDK dll
with TLCameraSDK() as sdk:
cameras = sdk.discover_available_cameras()
if len(cameras) == 0:
print("Error: no cameras detected!")
with sdk.open_camera(cameras[0]) as camera:
#camera.disarm() # ensure any previous session is closed
# setup the camera for continuous acquisition
camera.frames_per_trigger_zero_for_unlimited = 0
camera.image_poll_timeout_ms = 2000 # 2 second timeout
camera.arm(2)
# need to save the image width and height for color processing
image_width = camera.image_width_pixels
image_height = camera.image_height_pixels
# initialize a mono to color processor if this is a color camera
is_color_camera = (camera.camera_sensor_type == SENSOR_TYPE.BAYER)
mono_to_color_sdk = None
mono_to_color_processor = None
if is_color_camera:
mono_to_color_sdk = MonoToColorProcessorSDK()
mono_to_color_processor = mono_to_color_sdk.create_mono_to_color_processor(
camera.camera_sensor_type,
camera.color_filter_array_phase,
camera.get_color_correction_matrix(),
camera.get_default_white_balance_matrix(),
camera.bit_depth
)
# begin acquisition
camera.issue_software_trigger()
# get the next frame
frame = camera.get_pending_frame_or_null()
# initialize frame attempts and max limit
frame_attempts = 0
max_attempts = 10
# if frame is null, try to get a frame until
# successful or until max_attempts is reached
if frame is None:
while frame is None:
frame = camera.get_pending_frame_or_null()
frame_attempts += 1
if frame_attempts == max_attempts:
raise TimeoutError("Timeout was reached while polling for a frame, program will now exit")
image_data = frame.image_buffer
if is_color_camera:
# transform the raw image data into RGB color data
color_data = mono_to_color_processor.transform_to_24(image_data, image_width, image_height)
save_data = np.reshape(color_data,(image_height, image_width,3))
camera.disarm()
You can also process the image after capture with the PIL library.
I am trying to decode and display a particular image format for a planetary image encoded according the PDS standard. I am using Pillow and I need to implement a bit decoder but after various attempts I have no good results. Could anyone help me to implement this particular Pillow decoder? I would provide more information when needed
For sure, I will provide information of the encoding for the PDS file I want to use. These are the important lines from the header of the file :
POINTERS TO DATA OBJECTS
BROWSE_IMAGE= = 20480 <BYTES>
IMAGE = 53248 <BYTES>
OBJECT DESCRIPTION
OBJECT = IMAGE
FIRST_LINE = 1
LINE_PREFIX_BYTES = 0
LINE_SUFFIX_BYTES = 0
LINES = 1024
LINE_SAMPLES = 1024
SAMPLE_TYPE = MSB_UNSIGNED_INTEGER
SAMPLE_BITS = 16
SAMPLE_BIT_MASK = "2#0000001111111111#"
END_OBJECT = IMAGE
Is that clear enough? that is the part of the header defining the encoding method of the image. The whole file contains both the header and the image itself. I obviously need a pillow decoder, and precisely a bit decoder, but mine does not work.
And this will be my code for the bit decoder:
from PIL import Image, ImageFile
class DarkImageFile( ImageFile.ImageFile ) :
format = 'IMG'
format_description = 'IMG dark frame'
def _open( self ) :
self.size = (1024,1024)
self.mode = 'F' # data representation mode
self.tile = [ ("bit", ( 0,0 ) + self.size, 53248, (10,6, 0, 3) ) ]
Image.register_open( "IMG", DarkImageFile )
Image.register_extension( "IMG", ".img" )
I'm trying to save a captured 640x480 RGB image with NAO's front camera to my computer. I'm using python and PIL to do so. Unfortunately, the image just won't save on my computer, no matter what image type or path I use for the parameters of the Image.save()- Method. the image created with PIL contains valid RGB-information though. Here's my code sample from choregraphe:
import Image
def onInput_onStart(self):
cam_input = ALProxy("ALVideoDevice")
nameId = cam_input.subscribeCamera("Test_Cam", 1, 2, 13, 20)
image = cam_input.getImageRemote(nameId) #captures an image
w = image[0] #get the image width
h = image[1] #get the image height
pixel_array = image[6] #contains the image data
result = Image.fromstring("RGB", (w, h), pixel_array)
#the following line doesnt work
result.save("C:\Users\Claudia\Desktop\NAO\Bilder\test.png", "PNG")
cam_input.releaseImage(nameId)
cam_input.unsubscribe(nameId)
pass
Thank you so much for your help in advance!
- a frustrated student
In the comment, you say the code is pasted from choregraphe, so I guess you launch it using choregraphe.
If so, then the code is injected into your robot then started.
So your image is saved to the NAO hard drive and I guess your robot doesn't have a folder named: "C:\Users\Claudia\Desktop\NAO\Bilder\test.png".
So change the path to "/home/nao/test.png", start your code, then log into your NAO using putty or browse folder using winscp (as it looks like you're using windows).
And you should see your image-file.
In order for your code to run correctly it needs to be properly indented. Your code should look like this:
import Image
def onInput_onStart(self):
cam_input = ALProxy("ALVideoDevice")
nameId = cam_input.subscribeCamera("Test_Cam", 1, 2, 13, 20)
image = cam_input.getImageRemote(nameId) #captures an image
w = image[0] #get the image width
h = image[1] #get the image height
pixel_array = image[6] #contains the image data
...
Make sure to indent everything that's inside the def onInput_onStart(self): method.
Sorry for the late response, but it maybe helpful for someone. You should try it with naoqi. Here is the documentation for retriving images
http://doc.aldebaran.com/2-4/dev/python/examples/vision/get_image.html
The original code was not working for me so I made some tweeks.
parser = argparse.ArgumentParser()
parser.add_argument("--ip", type=str, default="nao.local.",
help="Robot IP address. On robot or Local Naoqi: use
'nao.local.'.")
parser.add_argument("--port", type=int, default=9559,
help="Naoqi port number")
args = parser.parse_args()
session = qi.Session()
try:
session.connect("tcp://" + args.ip + ":" + str(args.port))
except RuntimeError:
pass
"""
First get an image, then show it on the screen with PIL.
"""
# Get the service ALVideoDevice.
video_service = session.service("ALVideoDevice")
resolution = 2 # VGA
colorSpace = 11 # RGB
videoClient = video_service.subscribe("python_client",0,3,13,1)
t0 = time.time()
# Get a camera image.
# image[6] contains the image data passed as an array of ASCII chars.
naoImage = video_service.getImageRemote(videoClient)
t1 = time.time()
# Time the image transfer.
print ("acquisition delay ", t1 - t0)
#video_service.unsubscribe(videoClient)
# Now we work with the image returned and save it as a PNG using ImageDraw
# package.
# Get the image size and pixel array.
imageWidth = naoImage[0]
imageHeight = naoImage[1]
array = naoImage[6]
image_string = str(bytearray(array))
# Create a PIL Image from our pixel array.
im = Image.fromstring("RGB", (imageWidth, imageHeight), image_string)
# Save the image.
im.save("C:\\Users\\Lenovo\\Desktop\\PROJEKTI\\python2-
connect4\\camImage.png", "PNG")
Be careful to use Python 2.7.
The code runs on your computer not the NAO robot!
I'm having some trouble rescaling video output of GStreamer to the dimension of the window the video is displayed in (retaining aspect ratio of the video). The problem is that I first need to preroll the video to be able to determine its dimensions by retrieving the negotiated caps, and then calculate the dimensions it needs to be displayed in to fit the window. Once I have prerolled the video and got the dimension caps, I cannot change the video's dimension anymore. Setting the new caps still results in the video being output in its original size. What must I do to solve this?
Just to be complete. In the current implementation I cannot render to an OpenGL texture which would have easily solved this problem because you could simply render output to the texture and scale it to fit the screen. I have to draw the output on a pygame surface, which needs to have the correct dimensions. pygame does offer functionality to scale its surfaces, but I think such an implementation (as I have now) is slower than retrieving the frames in their correct size directly from GStreamer (am I right?)
This is my code for loading and displaying the video (I omitted the main loop stuff):
def calcScaledRes(self, screen_res, image_res):
"""Calculate image size so it fits the screen
Args
screen_res (tuple) - Display window size/Resolution
image_res (tuple) - Image width and height
Returns
tuple - width and height of image scaled to window/screen
"""
rs = screen_res[0]/float(screen_res[1])
ri = image_res[0]/float(image_res[1])
if rs > ri:
return (int(image_res[0] * screen_res[1]/image_res[1]), screen_res[1])
else:
return (screen_res[0], int(image_res[1]*screen_res[0]/image_res[0]))
def load(self, vfile):
"""
Loads a videofile and makes it ready for playback
Arguments:
vfile -- the uri to the file to be played
"""
# Info required for color space conversion (YUV->RGB)
# masks are necessary for correct display on unix systems
_VIDEO_CAPS = ','.join([
'video/x-raw-rgb',
'red_mask=(int)0xff0000',
'green_mask=(int)0x00ff00',
'blue_mask=(int)0x0000ff'
])
self.caps = gst.Caps(_VIDEO_CAPS)
# Create videoplayer and load URI
self.player = gst.element_factory_make("playbin2", "player")
self.player.set_property("uri", vfile)
# Enable deinterlacing of video if necessary
self.player.props.flags |= (1 << 9)
# Reroute frame output to Python
self._videosink = gst.element_factory_make('appsink', 'videosink')
self._videosink.set_property('caps', self.caps)
self._videosink.set_property('async', True)
self._videosink.set_property('drop', True)
self._videosink.set_property('emit-signals', True)
self._videosink.connect('new-buffer', self.__handle_videoframe)
self.player.set_property('video-sink', self._videosink)
# Preroll movie to get dimension data
self.player.set_state(gst.STATE_PAUSED)
# If movie is loaded correctly, info about the clip should be available
if self.player.get_state(gst.CLOCK_TIME_NONE)[0] == gst.STATE_CHANGE_SUCCESS:
pads = self._videosink.pads()
for pad in pads:
caps = pad.get_negotiated_caps()[0]
self.vidsize = caps['width'], caps['height']
else:
raise exceptions.runtime_error("Failed to retrieve video size")
# Calculate size of video when fit to screen
self.scaledVideoSize = self.calcScaledRes((self.screen_width,self.screen_height), self.vidsize)
# Calculate the top left corner of the video (to later center it vertically on screen)
self.vidPos = ((self.screen_width - self.scaledVideoSize [0]) / 2, (self.screen_height - self.scaledVideoSize [1]) / 2)
# Add width and height info to video caps and reload caps
_VIDEO_CAPS += ", width={0}, heigh={1}".format(self.scaledVideoSize[0], self.scaledVideoSize[1])
self.caps = gst.Caps(_VIDEO_CAPS)
self._videosink.set_property('caps', self.caps) #??? not working, video still displayed in original size
def __handle_videoframe(self, appsink):
"""
Callback method for handling a video frame
Arguments:
appsink -- the sink to which gst supplies the frame (not used)
"""
buffer = self._videosink.emit('pull-buffer')
img = pygame.image.frombuffer(buffer.data, self.vidsize, "RGB")
# Upscale image to new surfuace if presented fullscreen
# Create the surface if it doesn't exist yet and keep rendering to this surface
# for future frames (should be faster)
if not hasattr(self,"destSurf"):
self.destSurf = pygame.transform.scale(img, self.destsize)
else:
pygame.transform.scale(img, self.destsize, self.destSurf)
self.screen.blit(self.destSurf, self.vidPos)
# Swap the buffers
pygame.display.flip()
# Increase frame counter
self.frameNo += 1
I'm pretty sure that your issue was (has it is very long time since you asked this question) that you never hooked up the bus to watch for messages that were emitted.
The code for this is usually something like this:
def some_function(self):
#code defining Gplayer (the pipeline)
#
# here
Gplayer.set_property('flags', self.GST_VIDEO|self.GST_AUDIO|self.GST_TEXT|self.GST_SOFT_VOLUME|self.GST_DEINTERLACE)
# more code
#
# finally
# Create the bus to listen for messages
bus = Gplayer.get_bus()
bus.add_signal_watch()
bus.enable_sync_message_emission()
bus.connect('message', self.OnBusMessage)
bus.connect('sync-message::element', self.OnSyncMessage)
# Listen for gstreamer bus messages
def OnBusMessage(self, bus, message):
t = message.type
if t == Gst.MessageType.ERROR:
pass
elif t == Gst.MessageType.EOS:
print ("End of Audio")
return True
def OnSyncMessage(self, bus, msg):
if msg.get_structure() is None:
return True
if message_name == 'prepare-window-handle':
imagesink = msg.src
imagesink.set_property('force-aspect-ratio', True)
imagesink.set_window_handle(self.panel1.GetHandle())
The key bit for your issue is setting up a call back for the sync-message and in that call-back, setting the property force-aspect-ratio to True.
This property ensures that the video fits the window it is being displayed in at all times.
Note the self.panel1.GetHandle() function names the panel in which you are displaying the video.
I appreciate that you will have moved on but hopefully this will help someone else trawling through the archives.