I have a root file that I open with 2000 entries, and variable amount of subentries and in each column is a different variable. Lets say I am only interested in 5 of those. I want to put them in an array with np.shape(array)=(2000,250,5). The 250 is plenty to contain all subentrys per entry.
The root file is converted into a dictionary by uproot DATA=[variablename:[array of entries [array of subentries]]
I create an array np.zeros(2000,250,5) and fill it with the data I want, but it takes about 500ms and I need a solution that scales as I aim for 1 million entries later on. I found multiple solutions, but my lowest was about 300ms
lim_i=len(N_DATA["nTrack"])
i=0
INPUT_ARRAY=np.zeros((lim_i,500,5))
for l in range(len(INPUT_ARRAY)):
while i < lim_i:
EVENT=np.zeros((500,5))
k=0
lim_k=len(TRACK_DATA["Track_pt"][i])
while k<lim_k:
EVENT[k][0]=TRACK_DATA["Track_pt"][i][k]
EVENT[k][1]=TRACK_DATA["Track_phi"][i][k]
EVENT[k][2]=TRACK_DATA["Track_eta"][i][k]
EVENT[k][3]=TRACK_DATA["Track_dxy"][i][k]
EVENT[k][4]=TRACK_DATA["Track_charge"][i][k]
k+=1
INPUT_ARRAY[i]=EVENT
i+=1
INPUT_ARRAY
Taking note of fKarl Knechtel's second comment, "You should avoid explicitly iterating over Numpy arrays yourself (there is practically guaranteed to be a built-in Numpy thing that just does what you want, and probably much faster than native Python can)," there is a way to do this with array-at-a-time programming, but not in NumPy. The reason Uproot returns Awkward Arrays is because you need a way to deal with variable-length data efficiently.
I don't have your file, but I'll start with a similar one:
>>> import uproot4
>>> import skhep_testdata
>>> events = uproot4.open(skhep_testdata.data_path("uproot-HZZ.root"))["events"]
The branches that start with "Muon_" in this file have the same variable-length structure as in your tracks. (The C++ typename is a dynamically sized array, interpreted in Python "as jagged.")
>>> events.show(filter_name="Muon_*")
name | typename | interpretation
---------------------+--------------------------+-------------------------------
Muon_Px | float[] | AsJagged(AsDtype('>f4'))
Muon_Py | float[] | AsJagged(AsDtype('>f4'))
Muon_Pz | float[] | AsJagged(AsDtype('>f4'))
Muon_E | float[] | AsJagged(AsDtype('>f4'))
Muon_Charge | int32_t[] | AsJagged(AsDtype('>i4'))
Muon_Iso | float[] | AsJagged(AsDtype('>f4'))
If you just ask for these arrays, you get them as an Awkward Array.
>>> muons = events.arrays(filter_name="Muon_*")
>>> muons
<Array [{Muon_Px: [-52.9, 37.7, ... 0]}] type='2421 * {"Muon_Px": var * float32,...'>
To put them to better use, let's import Awkward Array and start by asking for its type.
>>> import awkward1 as ak
>>> ak.type(muons)
2421 * {"Muon_Px": var * float32, "Muon_Py": var * float32, "Muon_Pz": var * float32, "Muon_E": var * float32, "Muon_Charge": var * int32, "Muon_Iso": var * float32}
What does this mean? It means you have 2421 records with fields named "Muon_Px", etc., that each contain variable-length lists of float32 or int32, depending on the field. We can look at one of them by converting it to Python lists and dicts.
>>> muons[0].tolist()
{'Muon_Px': [-52.89945602416992, 37.7377815246582],
'Muon_Py': [-11.654671669006348, 0.6934735774993896],
'Muon_Pz': [-8.16079330444336, -11.307581901550293],
'Muon_E': [54.77949905395508, 39.401695251464844],
'Muon_Charge': [1, -1],
'Muon_Iso': [4.200153350830078, 2.1510612964630127]}
(You could have made these lists of records, rather than records of lists, by passing how="zip" to TTree.arrays or using ak.unzip and ak.zip in Awkward Array, but that's tangential to the padding that you want to do.)
The problem is that the lists have different lengths. NumPy doesn't have any functions that will help us here because it deals entirely in rectilinear arrays. Therefore, we need a function that's specific to Awkward Array, ak.num.
>>> ak.num(muons)
<Array [{Muon_Px: 2, ... Muon_Iso: 1}] type='2421 * {"Muon_Px": int64, "Muon_Py"...'>
This is telling us the number of elements in each list, per field. For clarity, look at the first one:
>>> ak.num(muons)[0].tolist()
{'Muon_Px': 2, 'Muon_Py': 2, 'Muon_Pz': 2, 'Muon_E': 2, 'Muon_Charge': 2, 'Muon_Iso': 2}
You want to turn these irregular lists into regular lists that all have the same size. That's called "padding." Again, there's a function for that, but we first need to get the maximum number of elements, so that we know how much to pad it by.
>>> ak.max(ak.num(muons))
4
So let's make them all length 4.
>>> ak.pad_none(muons, ak.max(ak.num(muons)))
<Array [{Muon_Px: [-52.9, 37.7, ... None]}] type='2421 * {"Muon_Px": var * ?floa...'>
Again, let's look at the first one to understand what we have.
{'Muon_Px': [-52.89945602416992, 37.7377815246582, None, None],
'Muon_Py': [-11.654671669006348, 0.6934735774993896, None, None],
'Muon_Pz': [-8.16079330444336, -11.307581901550293, None, None],
'Muon_E': [54.77949905395508, 39.401695251464844, None, None],
'Muon_Charge': [1, -1, None, None],
'Muon_Iso': [4.200153350830078, 2.1510612964630127, None, None]}
You wanted to pad them with zeros, not None, so we convert the missing values into zeros.
>>> ak.fill_none(ak.pad_none(muons, ak.max(ak.num(muons))), 0)[0].tolist()
{'Muon_Px': [-52.89945602416992, 37.7377815246582, 0.0, 0.0],
'Muon_Py': [-11.654671669006348, 0.6934735774993896, 0.0, 0.0],
'Muon_Pz': [-8.16079330444336, -11.307581901550293, 0.0, 0.0],
'Muon_E': [54.77949905395508, 39.401695251464844, 0.0, 0.0],
'Muon_Charge': [1, -1, 0, 0],
'Muon_Iso': [4.200153350830078, 2.1510612964630127, 0.0, 0.0]}
Finally, NumPy doesn't have records (other than the structured array, which also implies that the columns are contiguous in memory; Awkward Array's "records" are abstract). So let's unzip what we have into six separate arrays.
>>> arrays = ak.unzip(ak.fill_none(ak.pad_none(muons, ak.max(ak.num(muons))), 0))
>>> arrays
(<Array [[-52.9, 37.7, 0, 0, ... 23.9, 0, 0, 0]] type='2421 * var * float64'>,
<Array [[-11.7, 0.693, 0, 0, ... 0, 0, 0]] type='2421 * var * float64'>,
<Array [[-8.16, -11.3, 0, 0, ... 0, 0, 0]] type='2421 * var * float64'>,
<Array [[54.8, 39.4, 0, 0], ... 69.6, 0, 0, 0]] type='2421 * var * float64'>,
<Array [[1, -1, 0, 0], ... [-1, 0, 0, 0]] type='2421 * var * int64'>,
<Array [[4.2, 2.15, 0, 0], ... [0, 0, 0, 0]] type='2421 * var * float64'>)
Note that this one line does everything from the initial data-pull from Uproot (muons). I'm not going to profile it now, but you'll find that this one line is considerably faster than explicit looping.
Now what we have is semantically equivalent to six NumPy arrays, so we'll just cast them as NumPy. (Attempts to do so with irregular data would fail. You have to explicitly pad the data.)
>>> numpy_arrays = [ak.to_numpy(x) for x in arrays]
>>> numpy_arrays
[array([[-52.89945602, 37.73778152, 0. , 0. ],
[ -0.81645936, 0. , 0. , 0. ],
[ 48.98783112, 0.82756668, 0. , 0. ],
...,
[-29.75678635, 0. , 0. , 0. ],
[ 1.14186978, 0. , 0. , 0. ],
[ 23.9132061 , 0. , 0. , 0. ]]),
array([[-11.65467167, 0.69347358, 0. , 0. ],
[-24.40425873, 0. , 0. , 0. ],
[-21.72313881, 29.8005085 , 0. , 0. ],
...,
[-15.30385876, 0. , 0. , 0. ],
[ 63.60956955, 0. , 0. , 0. ],
[-35.66507721, 0. , 0. , 0. ]]),
array([[ -8.1607933 , -11.3075819 , 0. , 0. ],
[ 20.19996834, 0. , 0. , 0. ],
[ 11.16828537, 36.96519089, 0. , 0. ],
...,
[-52.66374969, 0. , 0. , 0. ],
[162.17631531, 0. , 0. , 0. ],
[ 54.71943665, 0. , 0. , 0. ]]),
array([[ 54.77949905, 39.40169525, 0. , 0. ],
[ 31.69044495, 0. , 0. , 0. ],
[ 54.73978806, 47.48885727, 0. , 0. ],
...,
[ 62.39516068, 0. , 0. , 0. ],
[174.20863342, 0. , 0. , 0. ],
[ 69.55621338, 0. , 0. , 0. ]]),
array([[ 1, -1, 0, 0],
[ 1, 0, 0, 0],
[ 1, -1, 0, 0],
...,
[-1, 0, 0, 0],
[-1, 0, 0, 0],
[-1, 0, 0, 0]]),
array([[4.20015335, 2.1510613 , 0. , 0. ],
[2.18804741, 0. , 0. , 0. ],
[1.41282165, 3.38350415, 0. , 0. ],
...,
[3.76294518, 0. , 0. , 0. ],
[0.55081069, 0. , 0. , 0. ],
[0. , 0. , 0. , 0. ]])]
And now NumPy's dstack is appropriate. (This is making them contiguous in memory, so you could use NumPy's structured arrays if you want to. I would find that easier for keeping track of which index means which variable, but that's up to you. Actually, Xarray is particularly good at tracking metadata of rectilinear arrays.)
>>> import numpy as np
>>> np.dstack(numpy_arrays)
array([[[-52.89945602, -11.65467167, -8.1607933 , 54.77949905,
1. , 4.20015335],
[ 37.73778152, 0.69347358, -11.3075819 , 39.40169525,
-1. , 2.1510613 ],
[ 0. , 0. , 0. , 0. ,
0. , 0. ],
[ 0. , 0. , 0. , 0. ,
0. , 0. ]],
[[ -0.81645936, -24.40425873, 20.19996834, 31.69044495,
1. , 2.18804741],
[ 0. , 0. , 0. , 0. ,
0. , 0. ],
[ 0. , 0. , 0. , 0. ,
0. , 0. ],
[ 0. , 0. , 0. , 0. ,
0. , 0. ]],
[[ 48.98783112, -21.72313881, 11.16828537, 54.73978806,
1. , 1.41282165],
[ 0.82756668, 29.8005085 , 36.96519089, 47.48885727,
-1. , 3.38350415],
[ 0. , 0. , 0. , 0. ,
0. , 0. ],
[ 0. , 0. , 0. , 0. ,
0. , 0. ]],
...,
[[-29.75678635, -15.30385876, -52.66374969, 62.39516068,
-1. , 3.76294518],
[ 0. , 0. , 0. , 0. ,
0. , 0. ],
[ 0. , 0. , 0. , 0. ,
0. , 0. ],
[ 0. , 0. , 0. , 0. ,
0. , 0. ]],
[[ 1.14186978, 63.60956955, 162.17631531, 174.20863342,
-1. , 0.55081069],
[ 0. , 0. , 0. , 0. ,
0. , 0. ],
[ 0. , 0. , 0. , 0. ,
0. , 0. ],
[ 0. , 0. , 0. , 0. ,
0. , 0. ]],
[[ 23.9132061 , -35.66507721, 54.71943665, 69.55621338,
-1. , 0. ],
[ 0. , 0. , 0. , 0. ,
0. , 0. ],
[ 0. , 0. , 0. , 0. ,
0. , 0. ],
[ 0. , 0. , 0. , 0. ,
0. , 0. ]]])
Observation 1: we can assign directly to the appropriate sub-arrays of INPUT_ARRAY[i], instead of creating EVENT as a proxy for INPUT_ARRAY[i] and then copying that in. (I will also set your variable names in lowercase, to follow normal conventions.
lim_i = len(n_data["nTrack"])
i = 0
input_array = np.zeros((lim_i,500,5))
for l in range(len(input_array)):
while i < lim_i:
k = 0
lim_k = len(track_data["Track_pt"][i])
while k < lim_k:
input_array[i][k][0] = track_data["Track_pt"][i][k]
input_array[i][k][1] = track_data["Track_phi"][i][k]
input_array[i][k][2] = track_data["Track_eta"][i][k]
input_array[i][k][3] = track_data["Track_dxy"][i][k]
input_array[i][k][4] = track_data["Track_charge"][i][k]
k += 1
i += 1
Observation 2: the assignments we make in the innermost loop have the same basic structure. It would be nice if we could take the various entries of the TRACK_DATA dict (which are 2-dimensional data) and stack them together. Numpy has a convenient (and efficient) built-in for stacking 2-dimensional data along the third dimension: np.dstack. Having prepared that 3-dimensional array, we can just copy in from it mechanically:
track_array = np.dstack((
track_data['Track_pt'],
track_data['Track_phi'],
track_data['Track_eta'],
track_data['Track_dxy'],
track_data['Track_charge']
))
lim_i = len(n_data["nTrack"])
i = 0
input_array = np.zeros((lim_i,500,5))
for l in range(len(input_array)):
while i < lim_i:
k = 0
lim_k = len(track_data["Track_pt"][i])
while k < lim_k:
input_array[i][k][0] = track_data[i][k][0]
input_array[i][k][1] = track_data[i][k][1]
input_array[i][k][2] = track_data[i][k][2]
input_array[i][k][3] = track_data[i][k][3]
input_array[i][k][4] = track_data[i][k][4]
k += 1
i += 1
Observation 3: but now, the purpose of our innermost loop is simply to copy an entire chunk of track_data along the last dimension. We could just do that directly:
track_array = np.dstack((
track_data['Track_pt'],
track_data['Track_phi'],
track_data['Track_eta'],
track_data['Track_dxy'],
track_data['Track_charge']
))
lim_i = len(n_data["nTrack"])
i = 0
input_array = np.zeros((lim_i,500,5))
for l in range(len(input_array)):
while i < lim_i:
k = 0
lim_k = len(track_data["Track_pt"][i])
while k < lim_k:
input_array[i][k] = track_data[i][k]
k += 1
i += 1
Observation 4: But actually, the same reasoning applies to the other two dimensions of the array. Clearly, our intent is to copy the entire array produced from the dstack; and that is already a new array, so we could just use it directly.
input_array = np.dstack((
track_data['Track_pt'],
track_data['Track_phi'],
track_data['Track_eta'],
track_data['Track_dxy'],
track_data['Track_charge']
))
I have a 2-d NumPy array that looks like this:
array([[0. , 0. , 0.2, 0.2],
[0.3, 0. , 0.3, 0. ]])
I'd like to modify it so that each row consists of all 0's, except for the first non-zero entry. If it's all 0s to start with, we don't change anything.
I could do this:
example = np.array([[0,0, 0.2, 0.2], [0.3, 0, 0.3, 0]])
my_copy = np.zeros_like(example)
for i, row in enumerate(example):
for j, elem in enumerate(row):
if elem > 0:
my_copy[i, j] = elem
break
But that's ugly and not vectorized. Any suggestions for how to vectorize this?
Thanks!
Here's a vectorised solution. The trick is to calculate your first non-zero entries via bool conversion and argmax.
import numpy as np
A = np.array([[0. , 0. , 0.2, 0.2],
[0.3, 0. , 0.3, 0. ],
[0. , 0. , 0. , 0. ]])
res = np.zeros(A.shape)
idx = np.arange(res.shape[0])
args = A.astype(bool).argmax(1)
res[idx, args] = A[idx, args]
print(res)
array([[ 0. , 0. , 0.2, 0. ],
[ 0.3, 0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. ]])
Simply
e =np.zeros(example.shape)
rows = np.arange(example.shape[0])
cols = np.argmax(example != 0, 1)
e[rows, cols] = example[rows, cols]
Setup
x = np.array([[0. , 0. , 0.2, 0.2],
[0.3, 0. , 0.3, 0. ],
[0. , 0. , 0. , 0. ]])
Using logical_and with np.eye:
m = (x!=0).argmax(1)
x[~np.logical_and(x, np.eye(x.shape[1])[m])] = 0
Output:
array([[0. , 0. , 0.2, 0. ],
[0.3, 0. , 0. , 0. ],
[0. , 0. , 0. , 0. ]])
Using this method will be slightly slower than the other two suggested.
I essentially would like to do the opposite of this question. I have two matrixes that have been split with np.tril or np.triu and I want to recombine them into a single matrix.
A = array([[ 0. , 0. , 0. ],
[ 0.1, 0. , 0. ],
[ 0.6, 0.5, 0. ]])
B = array([[ 0. , 0.4, 0.8],
[ 0. , 0. , 0.3],
[ 0. , 0. , 0. ]])
And what I want it to look like is
array([[ 0. , 0.4, 0.8],
[ 0.1, 0. , 0.3],
[ 0.6, 0.5, 0. ]])
Is there an inbuilt numpy function to do this?
You mean A+B ?
import numpy
A = numpy.array([[ 0. , 0. , 0. ],
[ 0.1, 0. , 0. ],
[ 0.6, 0.5, 0. ]])
B = numpy.array([[ 0. , 0.4, 0.8],
[ 0. , 0. , 0.3],
[ 0. , 0. , 0. ]])
print A+B
returns
array([[ 0. , 0.4, 0.8],
[ 0.1, 0. , 0.3],
[ 0.6, 0.5, 0. ]])
If the values are strings, then this works as long as B is the upper triangle.
A = np.array([[ 0. , 0. , 0. ],
[ '0.1**', 0. , 0. ],
[ 0.6, '0.5**', 0. ]])
B = np.array([[ 0. , 0.4, '0.8***'],
[ 0. , 0. , 0.3],
[ 0. , 0. , 0. ]])
for i in range(0,len(A)):
for j in range(0,i):
B[i,j]=A[i,j]
B
Returns
array([['0.0', '0.4', '0.8***'],
['0.1**', '0.0', '0.3'],
['0.6', '0.5**', '0.0']], dtype='<U32')