I have a CSV-file containing the following data structure:
2015-01-02,09:30:00,64.815
2015-01-02,09:35:00,64.8741
2015-01-02,09:55:00,65.0255
2015-01-02,10:00:00,64.9269
By using Pandas in Python, I would like to quadruple the 2nd row and insert the new rows after the 2nd row (filling up the missing intervals with the 2nd row). Eventually, it should look like:
2015-01-02,09:30:00,64.815
2015-01-02,09:35:00,64.8741
2015-01-02,09:40:00,64.8741
2015-01-02,09:45:00,64.8741
2015-01-02,09:50:00,64.8741
2015-01-02,09:55:00,65.0255
2015-01-02,10:00:00,64.9269
2015-01-02,10:05:00,64.815
I have the following code:
df = pd.read_csv("csv.file", header=0, names=['date', 'minute', 'price'])
for i in range(len(df)):
if i != len(df)-1:
next_i = i+1
if df.loc[next_i, 'date'] == df.loc[i, 'date'] and df.loc[i, 'minute'] != "16:00:00":
now = int(df.loc[i, "minute"][:2]+df.loc[i, "minute"][3:5])
future = int(df.loc[next_i, "minute"][:2]+df.loc[next_i, "minute"][3:5])
while now + 5 != future and df.loc[next_i, "minute"][3:5] != "00" and df.loc[next_i, "minute"][3:5] != "60":
newminutes = str(int(df.loc[i, "minute"][3:5])+5*a)
newtime = df.loc[next_i, "minute"][:2] +":"+newminutes+":00"
df.loc[next_i-0.5] = [df.loc[next_i, 'date'], newtime , df.loc[i, 'price']]
df = df.sort_index().reset_index(drop=True)
now = int(newtime[:2]+newtime[3:5])
future = int(df.loc[next_i+1, "minute"][:2]+df.loc[next_i+1, "minute"][3:5])
However, it's not working.
I see there is an extra row in the expected output 2015-01-02,10:05:00,64.815.
To accomodate that as well you can reindex using pd.DateRange.
Creating data
data = {
'date' : ['2015-01-02', '2015-01-02', '2015-01-02', '2015-01-02'],
'time' : ['09:30:00', '09:35:00', '09:55:00', '10:00:00'],
'val' : [64.815, 64.8741, 65.0255, 64.9269]
}
df = pd.DataFrame(data)
Creating datetime column for reindexing
df['datetime'] = pd.to_datetime(df['date'] + ' ' + df['time'])
df.set_index('datetime', inplace=True)
Generating output
df = df.resample('5min').asfreq().reindex(pd.date_range('2015-01-02 09:30:00', '2015-01-02 10:05:00', freq='5 min')).ffill()
df[['date', 'time']] = df.index.astype(str).to_series().str.split(' ', expand=True).values
df.reset_index(drop=True)
Output
This gives us the expected output
date time val
0 2015-01-02 09:30:00 64.8150
1 2015-01-02 09:35:00 64.8741
2 2015-01-02 09:40:00 64.8741
3 2015-01-02 09:45:00 64.8741
4 2015-01-02 09:50:00 64.8741
5 2015-01-02 09:55:00 65.0255
6 2015-01-02 10:00:00 64.9269
7 2015-01-02 10:05:00 64.9269
However if that was a typo and you don't want the last row you can do this :
df = df.resample('5min').asfreq().reindex(pd.date_range(df.index[0], df.index[len(df)-1], freq='5 min')).ffill()
df[['date', 'time']] = df.index.astype(str).to_series().str.split(' ', expand=True).values
df.reset_index(drop=True)
which gives is
date time val
0 2015-01-02 09:30:00 64.8150
1 2015-01-02 09:35:00 64.8741
2 2015-01-02 09:40:00 64.8741
3 2015-01-02 09:45:00 64.8741
4 2015-01-02 09:50:00 64.8741
5 2015-01-02 09:55:00 65.0255
6 2015-01-02 10:00:00 64.9269
Try pandas merge_ordered function.
Create the original data frame:
data = {
'date' : ['2015-01-02', '2015-01-02', '2015-01-02', '2015-01-02'],
'time' : ['09:30:00', '09:35:00', '09:55:00', '10:00:00'],
'val' : [64.815, 64.8741, 65.0255, 64.9269]
}
df = pd.DataFrame(data)
df['datetime']=pd.to_datetime(df['date']+' '+df['time'])
Create a second data frame df2 with 5 minute time intervals from min to max of df1
df2=pd.DataFrame(pd.date_range(df['datetime'].min(), df['datetime'].max(), freq='5 min').rename('datetime'))
Using panda's merge_ordered function:
result=pd.merge_ordered(df2,df, on='datetime',how='left')
result['date']=result['datetime'].dt.date
result['time']=result['datetime'].dt.time
result['val']=result['val'].ffill()
result=result.drop('datetime', axis=1)
Related
I have a dataframe:
data = {'time':['08:45:00', '09:30:00', '18:00:00', '15:00:00']}
df = pd.DataFrame(data)
I would like to convert the time based on conditions: if the hour is less than 9, I want to set it to 9 and if the hour is more than 17, I need to set it to 17.
I tried this approach:
df['time'] = np.where(((df['time'].dt.hour < 9) & (df['time'].dt.hour != 0)), dt.time(9, 00))
I am getting an error: Can only use .dt. accesor with datetimelike values.
Can anyone please help me with this? Thanks.
Here's a way to do what your question asks:
df.time = pd.to_datetime(df.time)
df.loc[df.time.dt.hour < 9, 'time'] = (df.time.astype('int64') + (9 - df.time.dt.hour)*3600*1000000000).astype('datetime64[ns]')
df.loc[df.time.dt.hour > 17, 'time'] = (df.time.astype('int64') + (17 - df.time.dt.hour)*3600*1000000000).astype('datetime64[ns]')
Input:
time
0 2022-06-06 08:45:00
1 2022-06-06 09:30:00
2 2022-06-06 18:00:00
3 2022-06-06 15:00:00
Output:
time
0 2022-06-06 09:45:00
1 2022-06-06 09:30:00
2 2022-06-06 17:00:00
3 2022-06-06 15:00:00
UPDATE:
Here's alternative code to try to address OP's error as described in the comments:
import pandas as pd
import datetime
data = {'time':['08:45:00', '09:30:00', '18:00:00', '15:00:00']}
df = pd.DataFrame(data)
print('', 'df loaded as strings:', df, sep='\n')
df.time = pd.to_datetime(df.time, format='%H:%M:%S')
print('', 'df converted to datetime by pd.to_datetime():', df, sep='\n')
df.loc[df.time.dt.hour < 9, 'time'] = (df.time.astype('int64') + (9 - df.time.dt.hour)*3600*1000000000).astype('datetime64[ns]')
df.loc[df.time.dt.hour > 17, 'time'] = (df.time.astype('int64') + (17 - df.time.dt.hour)*3600*1000000000).astype('datetime64[ns]')
df.time = [time.time() for time in pd.to_datetime(df.time)]
print('', 'df with time column adjusted to have hour between 9 and 17, converted to type "time":', df, sep='\n')
Output:
df loaded as strings:
time
0 08:45:00
1 09:30:00
2 18:00:00
3 15:00:00
df converted to datetime by pd.to_datetime():
time
0 1900-01-01 08:45:00
1 1900-01-01 09:30:00
2 1900-01-01 18:00:00
3 1900-01-01 15:00:00
df with time column adjusted to have hour between 9 and 17, converted to type "time":
time
0 09:45:00
1 09:30:00
2 17:00:00
3 15:00:00
UPDATE #2:
To not just change the hour for out-of-window times, but to simply apply 9:00 and 17:00 as min and max times, respectively (see OP's comment on this), you can do this:
df.loc[df['time'].dt.hour < 9, 'time'] = pd.to_datetime(pd.DataFrame({
'year':df['time'].dt.year, 'month':df['time'].dt.month, 'day':df['time'].dt.day,
'hour':[9]*len(df.index)}))
df.loc[df['time'].dt.hour > 17, 'time'] = pd.to_datetime(pd.DataFrame({
'year':df['time'].dt.year, 'month':df['time'].dt.month, 'day':df['time'].dt.day,
'hour':[17]*len(df.index)}))
df['time'] = [time.time() for time in pd.to_datetime(df['time'])]
Since your 'time' column contains strings they can kept as strings and assign new string values where appropriate. To filter for your criteria it is convenient to: create datetime Series from the 'time' column, create boolean Series by comparing the datetime Series with your criteria, use the boolean Series to filter the rows which need to be changed.
Your data:
import numpy as np
import pandas as pd
data = {'time':['08:45:00', '09:30:00', '18:00:00', '15:00:00']}
df = pd.DataFrame(data)
print(df.to_string())
>>>
time
0 08:45:00
1 09:30:00
2 18:00:00
3 15:00:00
Convert to datetime, make boolean Series with your criteria
dts = pd.to_datetime(df['time'])
lt_nine = dts.dt.hour < 9
gt_seventeen = (dts.dt.hour >= 17)
print(lt_nine)
print(gt_seventeen)
>>>
0 True
1 False
2 False
3 False
Name: time, dtype: bool
0 False
1 False
2 True
3 False
Name: time, dtype: bool
Use the boolean series to assign a new value:
df.loc[lt_nine,'time'] = '09:00:00'
df.loc[gt_seventeen,'time'] = '17:00:00'
print(df.to_string())
>>>
time
0 09:00:00
1 09:30:00
2 17:00:00
3 15:00:00
Or just stick with strings altogether and create the boolean Series using regex patterns and .str.match.
data = {'time':['08:45:00', '09:30:00', '18:00:00', '15:00:00','07:22:00','22:02:06']}
dg = pd.DataFrame(data)
print(dg.to_string())
>>>
time
0 08:45:00
1 09:30:00
2 18:00:00
3 15:00:00
4 07:22:00
5 22:02:06
# regex patterns
pattern_lt_nine = '^00|01|02|03|04|05|06|07|08'
pattern_gt_seventeen = '^17|18|19|20|21|22|23'
Make boolean Series and assign new values
gt_seventeen = dg['time'].str.match(pattern_gt_seventeen)
lt_nine = dg['time'].str.match(pattern_lt_nine)
dg.loc[lt_nine,'time'] = '09:00:00'
dg.loc[gt_seventeen,'time'] = '17:00:00'
print(dg.to_string())
>>>
time
0 09:00:00
1 09:30:00
2 17:00:00
3 15:00:00
4 09:00:00
5 17:00:00
Time series / date functionality
Working with text data
I have the below data sample
date,00:00:00,00:15:00,00:30:00,00:45:00,01:00:00,01:15:00,01:30:00,01:45:00,02:00:00,event
2008-01-01,115.87869701,115.37569504,79.9510802,123.68891355,110.89528693, 112.15190765,110.1277647,76.16662078,100.39338951,A
2008-01-02,104.29757522,89.11652179,91.80890697,109.91423556,112.91809129,114.91459611,117.50170579,111.08030786,81.5893157,B
2008-01-02,81.16506701,97.13170328,89.25478466,93.51884481,107.11447296,120.40638709,116.1653649,79.8861492,111.99530301,C
2008-01-02,121.98507602,105.20973701,84.46996209,96.2210916,107.65437228,121.4604217,120.96638889,117.94695867,94.33309319,D
2008-01-02,82.5839125,104.3308685,98.32658468,101.79562494,86.02883206,90.61788466,109.89027977,107.89093632,101.64082595,E
2008-01-02,100.68446746,89.90700858,115.97450984,112.85364917,100.76204374,87.49141078,81.69930821,79.78106694,99.97354515,F
2008-01-02,98.49917234,112.93161335,85.30015915,120.59233515,102.15602621,84.9536008,116.98786228,107.95753105,112.75693735,G
2008-01-02,76.5186262,111.22137123,102.20065099,88.4490991,84.67584098,86.00205813,95.02734271,114.29076806,102.62969032,H
2008-01-02,93.27785451,122.90242719,123.27263927,102.83454346,87.84973282,95.38098403,88.03719802,108.68335342,97.6581398,I
2008-01-02,119.589143,94.15858259,94.32809506,120.5637488,120.43827996,79.66190052,100.40782173,89.90362719,80.46005726,J
I want to assign clusters to the data and have the final output in the below format
Expected output
time date 00:00:00 00:15:00 00:30:00 00:45:00 01:00:00 01:15:00 01:30:00 01:45:00 02:00:00 cluster_num
0 2008-01-01 115.878697 115.375695 79.951080 123.688914 110.895287 112.151908 110.127765 76.166621 100.393390 0
1 2008-01-02 97.622322 102.989982 98.326255 105.193686 101.066410 97.876583 105.187030 101.935633 98.115212 1
I have tried the below and the current output does not return 'time' label in the first row
import pandas as pd
import numpy as np
from datetime import datetime
from scipy.cluster.vq import kmeans, vq, whiten
from scipy.spatial.distance import cdist
from sklearn import metrics
#read data
df = pd.read_csv('df.csv', index_col=0)
df = df.drop(['event'], axis=1)
#stack the data
df = df.stack()
df.index = pd.to_datetime([' '.join(i) for i in df.index])
df = df.rename_axis('event_timestamp').reset_index(name='value')
df.index = df.event_timestamp
df = df.drop(['event_timestamp'], axis=1)
df.columns = ['value']
#normalize the df
df_norm = (df - df.mean()) / (df.max() - df.min())
df['time'] = df.index.map(lambda t: t.time())
df['date'] = df.index.map(lambda t: t.date())
df_norm['time'] = df_norm.index.map(lambda t: t.time())
df_norm['date'] = df_norm.index.map(lambda t: t.date())
#pivot data
df_daily = pd.pivot_table(df, values='value', index='date', columns='time', aggfunc='mean')
df_daily_norm = pd.pivot_table(df_norm, values='value', index='date', columns='time', aggfunc='mean')
#assign clusters to daily data
df_daily_matrix_norm = np.matrix(df_daily_norm.dropna())
centers, _ = kmeans(df_daily_matrix_norm, 2)
cluster, _ = vq(df_daily_matrix_norm, centers)
clusterdf = pd.DataFrame(cluster, columns=['cluster_num'])
dailyclusters = pd.concat([df_daily.dropna().reset_index(), clusterdf], axis=1)
print(dailyclusters)
Current output
date 00:00:00 00:15:00 00:30:00 00:45:00 01:00:00 01:15:00 01:30:00 01:45:00 02:00:00 cluster_num
0 2008-01-01 115.878697 115.375695 79.951080 123.688914 110.895287 112.151908 110.127765 76.166621 100.393390 0
1 2008-01-02 97.622322 102.989982 98.326255 105.193686 101.066410 97.876583 105.187030 101.935633 98.115212 1
What do I need to do to get the desired output with the 'time' label.
simply add the name to the index:
dailyclusters.index.name = "time"
Use:
dailyclusters = df_daily.dropna().assign(cluster_num=cluster).reset_index()
print(dailyclusters)
# Output
time date 00:00:00 00:15:00 00:30:00 00:45:00 01:00:00 01:15:00 01:30:00 01:45:00 02:00:00 cluster_num
0 2008-01-01 115.878697 115.375695 79.951080 123.688914 110.895287 112.151908 110.127765 76.166621 100.393390 1
1 2008-01-02 97.622322 102.989982 98.326255 105.193686 101.066410 97.876583 105.187030 101.935633 98.115212 0
I have a dataframe with a column of dates of the form
2004-01-01
2005-01-01
2006-01-01
2007-01-01
2008-01-01
2009-01-01
2010-01-01
2011-01-01
2012-01-01
2013-01-01
2014-01-01
2015-01-01
2016-01-01
2017-01-01
2018-01-01
2019-01-01
Given an integer number k, let's say k=5, I would like to generate an array of the next k years after the maximum date of the column. The output should look like:
2020-01-01
2021-01-01
2022-01-01
2023-01-01
2024-01-01
Let's use pd.to_datetime + max to compute the largest date in the column date then use pd.date_range to generate the dates based on the offset frequency one year and having the number of periods equals to k=5:
strt, offs = pd.to_datetime(df['date']).max(), pd.DateOffset(years=1)
dates = pd.date_range(strt + offs, freq=offs, periods=k).strftime('%Y-%m-%d').tolist()
print(dates)
['2020-01-01', '2021-01-01', '2022-01-01', '2023-01-01', '2024-01-01']
Here you go:
import pandas as pd
# this is your k
k = 5
# Creating a test DF
array = {'dt': ['2018-01-01', '2019-01-01']}
df = pd.DataFrame(array)
# Extracting column of year
df['year'] = pd.DatetimeIndex(df['dt']).year
year1 = df['year'].max()
# creating a new DF and populating it with k years
years_df = pd.DataFrame()
for i in range (1,k+1):
row = {'dates':[str(year1 + i) + '-01-01']}
years_df = years_df.append(pd.DataFrame(row))
years_df
The output:
dates
2020-01-01
2021-01-01
2022-01-01
2023-01-01
2024-01-01
Currently I have two data frames representing excel spreadsheets. I wish to join the data where the dates are equal. This is a one to many join as one spread sheet has a date then I need to add data which has multiple rows with the same date
an example:
A B
date data date data
0 2015-0-1 ... 0 2015-0-1 to 2015-0-2 ...
1 2015-0-2 ... 1 2015-0-1 to 2015-0-2 ...
In this case both rows from A would recieve rows 0 and 1 from B because they are in that range.
I tried using
df3 = pandas.merge(df2, df1, how='right', validate='1:m', left_on='Travel Date/Range', right_on='End')
to accomplish this but received this error.
Traceback (most recent call last):
File "<pyshell#61>", line 1, in <module>
df3 = pandas.merge(df2, df1, how='right', validate='1:m', left_on='Travel Date/Range', right_on='End')
File "C:\Users\M199449\AppData\Local\Programs\Python\Python36\lib\site-packages\pandas\core\reshape\merge.py", line 61, in merge
validate=validate)
File "C:\Users\M199449\AppData\Local\Programs\Python\Python36\lib\site-packages\pandas\core\reshape\merge.py", line 555, in __init__
self._maybe_coerce_merge_keys()
File "C:\Users\M199449\AppData\Local\Programs\Python\Python36\lib\site-packages\pandas\core\reshape\merge.py", line 990, in _maybe_coerce_merge_keys
raise ValueError(msg)
ValueError: You are trying to merge on object and datetime64[ns] columns. If you wish to proceed you should use pd.concat
I can add more information as needed of course
So here's the option with merging:
Assume you have two DataFrames:
import pandas as pd
df1 = pd.DataFrame({'date': ['2015-01-01', '2015-01-02', '2015-01-03'],
'data': ['A', 'B', 'C']})
df2 = pd.DataFrame({'date': ['2015-01-01 to 2015-01-02', '2015-01-01 to 2015-01-02', '2015-01-02 to 2015-01-03'],
'data': ['E', 'F', 'G']})
Now do some cleaning to get all of the dates you need and make sure they are datetime
df1['date'] = pd.to_datetime(df1.date)
df2[['start', 'end']] = df2['date'].str.split(' to ', expand=True)
df2['start'] = pd.to_datetime(df2.start)
df2['end'] = pd.to_datetime(df2.end)
# No need for this anymore
df2 = df2.drop(columns='date')
Now merge it all together. You'll get 99x10K rows.
df = df1.assign(dummy=1).merge(df2.assign(dummy=1), on='dummy').drop(columns='dummy')
And subset to the dates that fall in between the ranges:
df[(df.date >= df.start) & (df.date <= df.end)]
# date data_x data_y start end
#0 2015-01-01 A E 2015-01-01 2015-01-02
#1 2015-01-01 A F 2015-01-01 2015-01-02
#3 2015-01-02 B E 2015-01-01 2015-01-02
#4 2015-01-02 B F 2015-01-01 2015-01-02
#5 2015-01-02 B G 2015-01-02 2015-01-03
#8 2015-01-03 C G 2015-01-02 2015-01-03
If for instance, some dates in df2 were a single date, since we're using .str.split we will get None for the second date. Then just use .loc to set it appropriately.
df2 = pd.DataFrame({'date': ['2015-01-01 to 2015-01-02', '2015-01-01 to 2015-01-02', '2015-01-02 to 2015-01-03',
'2015-01-03'],
'data': ['E', 'F', 'G', 'H']})
df2[['start', 'end']] = df2['date'].str.split(' to ', expand=True)
df2.loc[df2.end.isnull(), 'end'] = df2.loc[df2.end.isnull(), 'start']
# data start end
#0 E 2015-01-01 2015-01-02
#1 F 2015-01-01 2015-01-02
#2 G 2015-01-02 2015-01-03
#3 H 2015-01-03 2015-01-03
Now the rest follows unchanged
Let's use this numpy method by #piRSquared:
df1 = pd.DataFrame({'date': ['2015-01-01', '2015-01-02', '2015-01-03'],
'data': ['A', 'B', 'C']})
df2 = pd.DataFrame({'date': ['2015-01-01 to 2015-01-02', '2015-01-01 to 2015-01-02', '2015-01-02 to 2015-01-03'],
'data': ['E', 'F', 'G']})
df2[['start', 'end']] = df2['date'].str.split(' to ', expand=True)
df2['start'] = pd.to_datetime(df2.start)
df2['end'] = pd.to_datetime(df2.end)
df1['date'] = pd.to_datetime(df1['date'])
a = df1['date'].values
bh = df2['end'].values
bl = df2['start'].values
i, j = np.where((a[:, None] >= bl) & (a[:, None] <= bh))
pd.DataFrame(np.column_stack([df1.values[i], df2.values[j]]),
columns=df1.columns.append(df2.columns))
Output:
date data date data start end
0 2015-01-01 00:00:00 A 2015-01-01 to 2015-01-02 E 2015-01-01 00:00:00 2015-01-02 00:00:00
1 2015-01-01 00:00:00 A 2015-01-01 to 2015-01-02 F 2015-01-01 00:00:00 2015-01-02 00:00:00
2 2015-01-02 00:00:00 B 2015-01-01 to 2015-01-02 E 2015-01-01 00:00:00 2015-01-02 00:00:00
3 2015-01-02 00:00:00 B 2015-01-01 to 2015-01-02 F 2015-01-01 00:00:00 2015-01-02 00:00:00
4 2015-01-02 00:00:00 B 2015-01-02 to 2015-01-03 G 2015-01-02 00:00:00 2015-01-03 00:00:00
5 2015-01-03 00:00:00 C 2015-01-02 to 2015-01-03 G 2015-01-02 00:00:00 2015-01-03 00:00:00
I have a DataFrame containing a DateTime column with dates but without time ['date_from']. I have the time in column ['Time'] (string). How can I add only the time to the already existing DateTime column?
I tried:
df['date_from'].dt.time = pd.to_datetime(df['Time'], format='%H%M').dt.time
Convert column to to_timedelta and add to datetime column:
#convert to string and if necessary add zero for 4 values
s = df['Time'].astype(str).str.zfill(4)
df['date_from'] += pd.to_timedelta(s.str[:2] + ':' + s.str[2:] + ':00')
Sample:
df = pd.DataFrame({'date_from':pd.date_range('2015-01-01', periods=3),
'Time':[1501,112, 2012]})
print (df)
Time date_from
0 1501 2015-01-01
1 0112 2015-01-02
2 2012 2015-01-03
s = df['Time'].astype(str).str.zfill(4)
df['date_from'] += pd.to_timedelta(s.str[:2] + ':' + s.str[2:] + ':00')
print (df)
Time date_from
0 1501 2015-01-01 15:01:00
1 0112 2015-01-02 01:12:00
2 2012 2015-01-03 20:12:00