Merge individual frame to video file using Opencv - python

I am trying to stack a individual frame to a video file using Opencv. I want to combine two different code together to make the individual frame.
Following code help me extract the individual frame,
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter('file_data.mp4',fourcc,20 (1920,1080),False)
while True:
ret, frame=cap.read()
mask = object_detector.apply(frame)
_, mask = cv2.threshold(mask,254,255,cv2.THRESH_BINARY)
contours,_ = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
res = cv2.bitwise_and(frame,frame,mask=mask)
for cnt in contours:
area = cv2.contourArea(cnt)
if area>1000:
#print("Area of contour:", area)
cv2.drawContours(frame, [cnt], -1, (0,255,0),2)
cv2.imwrite("file%d.jpg"%count, frame)
out.write(frame)
if cv2.waitKey(1) and 0xFF == ord('q'):
break
I tried storing the individual frame in array, but it didn't work. It doesn't show any error, but pc crash.
fps = 20,
,width = 1920
,height = 1080

Thanks to Rotem.
The issue has been solved using the VideoWriter from Opencv. The working code is given below.
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter('file_data.mp4',fourcc,20,(1920,1080), True)
while True:
ret, frame=cap.read()
if ret == True:
# frame[frame<=thresholds]=0
mask = object_detector.apply(frame)
_, mask = cv2.threshold(mask,254,255,cv2.THRESH_BINARY)
contours,_ = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
res = cv2.bitwise_and(frame,frame,mask=mask)
for cnt in contours:
area = cv2.contourArea(cnt)
if area>1000:
cv2.drawContours(frame, [cnt], -1, (0,255,0),2)
out.write(frame)
break
if cv2.waitKey(20) == ord('q'):
break

Related

How to make counter for detected objects

I want to put a horizontal line in the centre of the screen and make counter of the people that are going up and going down. And how can i find out which side of the screen is the object coming from to make the right counter.
import cv2
import numpy as np
video = cv2.VideoCapture('videos/video.mp4')
bgsg = cv2.bgsegm.createBackgroundSubtractorMOG()
_,frame = video.read()
r = cv2.selectROI(frame)
lower_black = np.array([0, 0, 0], np.uint8)
upper_black = np.array([179, 100, 130], np.uint8)
while True:
_,frame = video.read()
im_cropped = frame[int(r[1]):int(r[1]+r[3]),
int(r[0]):int(r[0]+r[2])]
fgmask = bgsg.apply(im_cropped)
image = cv2.cvtColor(im_cropped,cv2.COLOR_BGR2HSV)
mask = cv2.inRange(image,lower_black,upper_black)
contours,hierarchy = cv2.findContours(mask,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
if len(contours) != 0:
for contour in contours:
if cv2.contourArea(contour) > 400:
x,y,w,h = cv2.boundingRect(contour)
cv2.rectangle(im_cropped,(x,y),(x+w,y+h),(0,0,255),3)
cv2.imshow('frame',im_cropped)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
video.release()
cv2.destroyAllWindows()
I couldnt find any method except for put a dot in the center of the detected objects and calculate the distance of the object from the line.

Problem with opencv (cv2) detecting motion in my code

I have written a code to detect motion through a webcam but whenever I start the code, it works but it detects the entire full screen instead of objects moving in the screen. I noticed that if I close the camera it seems to remove the detection; Here is the code:
import cv2
first_frame = None
video = cv2.VideoCapture(0)
while True:
check, frame = video.read()
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray, (21,21),0)
if first_frame is None:
first_frame=gray
continue
delta_frame = cv2.absdiff(first_frame,gray)
thresh_frame = cv2.threshold(delta_frame, 30, 255, cv2.THRESH_BINARY)[1]
thresh_frame = cv2.dilate(thresh_frame,None, iterations=2)
(cnts,_) = cv2.findContours(thresh_frame.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for contour in cnts:
if cv2.contourArea(contour) < 4000:
continue
(x,y, w, h)= cv2.boundingRect(contour)
cv2.rectangle(frame, (x, y), (x + w, y + h),(0,225,0),3)
cv2.imshow("Delta Frame",delta_frame)
cv2.imshow("Capturing",gray)
cv2.imshow("Threshold Frame",thresh_frame)
cv2.imshow("Color Frame",frame)
key = cv2.waitKey(5)
if key==ord('q'):
break
video.release()
cv2.destroyAllWindows()
The code should be able to detect only moving object in the screen.
I had similar issue a while back when I started with opencv; the problem with the program is the first frame, the first frame captured a dark screen. The difference detected by cv2.absdiff of the first frame(first_frame) vs the next frames(gray) was big enough that the cv2.findContours was indicated on the whole screen. This may be caused by camera delay
It can be solved by incorporating a slight delay between when the camera load to when the program records the first frame(first_frame) with time.sleep(). Try this:
import cv2, time
first_frame = None
video = cv2.VideoCapture(0)
# the camera has some lag time hence the starting of video.read outside loop and sleep
video.read()
time.sleep(2)
while True:
check, frame = video.read()
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray, (21,21),0)
if first_frame is None:
first_frame=gray
continue
delta_frame = cv2.absdiff(first_frame,gray)
thresh_frame = cv2.threshold(delta_frame, 30, 255, cv2.THRESH_BINARY)[1]
thresh_frame = cv2.dilate(thresh_frame,None, iterations=2)
(cnts,_) = cv2.findContours(thresh_frame.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for contour in cnts:
if cv2.contourArea(contour) < 4000:
continue
(x,y, w, h)= cv2.boundingRect(contour)
cv2.rectangle(frame, (x, y), (x + w, y + h),(0,225,0),3)
cv2.imshow("Delta Frame",delta_frame)
cv2.imshow("Capturing",gray)
cv2.imshow("Threshold Frame",thresh_frame)
cv2.imshow("Color Frame",frame)
key = cv2.waitKey(5)
if key==ord('q'):
break
video.release()
cv2.destroyAllWindows()
time.sleep takes care of the lag time of the camera starting.
Try the code, it worked here

how to solve an error when converting RGB to Gray? (error: (-215) scn == 3 || scn == 4 in function cv::cvtColor)

I have a code that gets a video from a folder and does some calculations using contours and background subtraction. After that I am going to save that edited video into the folder. The code is shown below:
import numpy as np
import cv2
import time
# Capture video from file
cap = cv2.VideoCapture('test_video.mp4')
time.sleep(1)
fgbg = cv2.createBackgroundSubtractorMOG2()
j = 0
fourcc = cv2.VideoWriter_fourcc(*'MPEG')
out = cv2.VideoWriter('output.avi',fourcc, 20.0, (640,480))
while (cap.isOpened()):
ret, frame = cap.read()
if ret == True:
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
fgmask = fgbg.apply(gray)
_, contours, _ = cv2.findContours(fgmask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
if contours:
areas = []
for contour in contours:
ar = cv2.contourArea(contour)
areas.append(ar)
max_area = max(areas or [0])
max_area_index = areas.index(max_area)
cnt = contours[max_area_index]
M = cv2.moments(cnt)
x, y, w, h = cv2.boundingRect(cnt)
cv2.drawContours(fgmask, [cnt], 0, (255,255,255), 3, maxLevel = 0)
if h < w:
j += 1
if j>10:
cv2.rectangle(frame,(x,y),(x+w,y+h),(0,0,255),2)
if h > w:
j = 0
cv2.rectangle(frame,(x,y),(x+w,y+h),(0,255,0),2)
cv2.imshow('video',frame)
out.write(frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
else:
break
cap.release()
out.release()
cv2.destroyAllWindows()
This opens up a window and plays a video, then output.avi is created, but it doesn't contain any content.
cmd produces nothing. I just can't able to save a file in a proper way.
Please recommend a solution to this issue
The error is telling you that frame does not have 3 or 4 channels.
Can you check that your camera is initialized properly
if not cap.isOpened():
print("Camera not initialized")
return
It is returning you a valid frame
if not ret:
print("Problem reading frame")
return
else:
# Convert your frame to gray and find contours etc.

Storing images in list

I've been trying to store cropped images from as single frame to a list but i keep getting errors. Here's a snippet of my code
import cv2
import numpy as np
cap = cv2.VideoCapture('/home/wael-karkoub/Desktop/Research/Videos/test.mp4')
ret = True
cropped_images = []
while ret == True:
ret, frame = cap.read()
height, width, channels = frame.shape
gray = cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray,(5,5),0)
_ ,thresh = cv2.threshold(blur[0:height//2],10,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
im2, contours, hierarchy = cv2.findContours(thresh,1,2)
for cnt in contours:
x,y,w,h = cv2.boundingRect(cnt)
cv2.rectangle(frame,(x,y),(x+w,y+h),(0,255,0),2)
image = frame[y:y+h, x:x+w]
cv2.imshow('test',image)
time.sleep(2)
# cv2.imshow('Contours',frame)
if cv2.waitKey(25) & 0xFF == ord('q'):
cv2.destroyAllWindows()
break
cap.release()
cv2.destroyAllWindows()
Is this the correct way of doing it?
Output = enter image description here
If you want to store your cropped images to a list, you need some assignment going on. Just add cropped_images.append(image) somewhere in your code, most likely after image = frame[y:y+h, x:x+w]

Tracking white color

I am trying to understand how to work with ROI, but the following code is not working as expected.
I have a white ball walking through a black background, and I want to detect and keep tracking of this ball. Unfortunately, the square does not move.I think the problem is the color array, but after trying many values, I still haven't found the correct solution.
import numpy as np
import cv2
cap = cv2.VideoCapture('oieee.avi')
ret,frame = cap.read()
r,h,c,w = 485,50,890,50
track_window = (c,r,w,h)
roi = frame[r:r+h, c:c+w]
hsv_roi = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(hsv_roi, np.array((0., 0., 240.)), np.array((255.,15.,255.)))
roi_hist = cv2.calcHist([hsv_roi],[0],mask,[180],[0,180])
cv2.normalize(roi_hist,roi_hist,0,255,cv2.NORM_MINMAX)
term_crit = ( cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1 )
while(1):
ret ,frame = cap.read()
if ret == True:
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
dst = cv2.calcBackProject([hsv],[0],roi_hist,[0,180],1)
ret, track_window = cv2.meanShift(dst, track_window, term_crit)
x,y,w,h = track_window
cv2.rectangle(frame, (x,y), (x+w,y+h), 255,2)
img2 = cv2.rectangle(frame, (x,y), (x+w,y+h), 255,2)
cv2.imshow('img2',frame)
k = cv2.waitKey(60) & 0xff
if k == 27:
break
else:
cv2.imwrite(chr(k)+".jpg",img2)
else:
break
cv2.destroyAllWindows()
cap.release()
A print screen of my video http://imgur.com/VG3TgFF

Categories