I have a dataframe, which has name of Stations and Links of Measured value of each Station for 2 days
Station Link
0 EITZE https://www.pegelonline.wsv.de/webservices/rest-api/v2/stations/EITZE/W/measurements.json?start=P2D
1 RETHEM https://www.pegelonline.wsv.de/webservices/rest-api/v2/stations/RETHEM/W/measurements.json?start=P2D
.......
685 BORGFELD https://www.pegelonline.wsv.de/webservices/rest-api/v2/stations/BORGFELD/W/measurements.json?start=P2D
To take data from json isn't a big problem.
But then I realized, that json-link from each station has multiple values from different time, so I don't know how to add these values from each time to a specific station.
I tried to get all the values from json, but I can't define, which values from which station, because it's just too many.
Anyone have a solution for me?
The Dataframe i would like to have, should look like this!
Station Timestamp Value
0 EITZE 2022-07-31T00:30:00+02:00 15
1 EITZE 2022-07-31T00:45:00+02:00 15
.......
100 RETHEM 2022-07-31T00:30:00+02:00 15
101 RETHEM 2022-07-31T00:45:00+02:00 20
.......
xxxx BORGFELD 2022-08-02T00:32:00+02:00 608
Starting with this example data frame:
Station Link
0 EITZE https://www.pegelonline.wsv.de/webservices/res...
1 RETHEM https://www.pegelonline.wsv.de/webservices/res...
You could leverage apply to populate an accumulation data frame.
import requests
import json
Define the function to be used by apply
def get_link(x):
global accum_df
r = requests.get(x['Link'])
if r.status_code == 200:
ldf = pd.DataFrame(json.loads(r.text))
ldf['station'] = x['Station']
accum_df = pd.concat([accum_df,ldf])
else:
print(r.status_code) # handle the error
return None
Apply it
accum_df = pd.DataFrame()
df.apply(get_link, axis=1)
print(accum_df)
Result
timestamp value station
0 2022-07-31T02:00:00+02:00 220.0 EITZE
1 2022-07-31T02:15:00+02:00 220.0 EITZE
2 2022-07-31T02:30:00+02:00 220.0 EITZE
3 2022-07-31T02:45:00+02:00 220.0 EITZE
4 2022-07-31T03:00:00+02:00 219.0 EITZE
.. ... ... ...
181 2022-08-02T00:00:00+02:00 23.0 RETHEM
182 2022-08-02T00:15:00+02:00 23.0 RETHEM
183 2022-08-02T00:30:00+02:00 23.0 RETHEM
184 2022-08-02T00:45:00+02:00 23.0 RETHEM
185 2022-08-02T01:00:00+02:00 23.0 RETHEM
Related
According to the reply I found in my previous question, I am able to grab the table by web scraping in Python from the URL: https://www.nytimes.com/interactive/2021/world/covid-vaccinations-tracker.html But it only grabs partially until the row "Show all" is appeared.
How can I grab the complete table in Python which is hidden beyond "Show all" ?
Here is the code I am using:
import pandas as pd
import requests
from bs4 import BeautifulSoup
#
vaccineDF = pd.read_html('https://www.nytimes.com/interactive/2021/world/covid-vaccinations-tracker.html')[0]
vaccineDF = vaccineDF.reset_index(drop=True)
print(vaccineDF.head(100))
The output only grabs 15 rows (until Show All):
Unnamed: 0_level_0 Doses administered ... Unnamed: 8_level_0 Unnamed: 9_level_0
Unnamed: 0_level_1 Per 100 people ... Unnamed: 8_level_1 Unnamed: 9_level_1
0 World 11 ... NaN NaN
1 Israel 116 ... NaN NaN
2 Seychelles 116 ... NaN NaN
3 U.A.E. 99 ... NaN NaN
4 Chile 69 ... NaN NaN
5 Bahrain 66 ... NaN NaN
6 Bhutan 63 ... NaN NaN
7 U.K. 62 ... NaN NaN
8 United States 61 ... NaN NaN
9 San Marino 60 ... NaN NaN
10 Maldives 59 ... NaN NaN
11 Malta 55 ... NaN NaN
12 Monaco 53 ... NaN NaN
13 Hungary 45 ... NaN NaN
14 Serbia 44 ... NaN NaN
15 Show all Show all ... Show all Show all
Below is the screen shot of the partial table until "Show all" in the web (left part) and corresponding inspect elements (right part):
You can't print whole data directly because you can see your full data after clicking the Show all Button. So, from this scenario, we can understand that first of all we have to first create an on click() event for clicking the Show all Button then we can fetch the whole table.
I have used Selenium Library for the on click event for pressing the Show all Button. For this particular scenario, I have used Firefox() Webdriver of Selenium for fetching all data from url. Kindly refer to the code given below for fetching the whole table of the given COVID Dataset URL:-
# Import all the Important Libraries
from selenium import webdriver # This module help to fetch data and on-click event purpose
from pandas.io.html import read_html # This module will help to read 'html' source. So, we can __scrape__ data from it
import pandas as pd # This Module will help to Convert Our Data into 'DataFrame'
# Create 'FireFox' Webdriver Object
driver = webdriver.Firefox()
# Get Website
driver.get("https://www.nytimes.com/interactive/2021/world/covid-vaccinations-tracker.html")
# Find 'Show all' Button Using 'XPath'
show_all_button = driver.find_element_by_xpath("/html/body/div[1]/main/article/section/div/div/div[4]/div[1]/div/table/tbody/tr[16]")
# Click 'Show all' Button
show_all_button.click()
# Get 'HTML' Content of Page
html_data = driver.page_source
After fetching the whole data, let's see how many tables are there in our COVID Dataset URL
covid_data_tables = read_html(html_data, attrs = {"class":"g-summary-table svelte-2wimac"}, header = None)
# Print Number of Tables Extracted
print ("\nExtracted {num} COVID Data Table".format(num = len(covid_data_tables)), "\n")
# Output of Above Cell:-
Extracted 1 COVID Data Table
Now, let's fetch the Data Table:-
# Print Table Data
covid_data_tables[0].head(20)
# Output of above cell:-
Unnamed: 0_level_0 Doses administered Pct. of population
Unnamed: 0_level_1 Per 100 people Total Vaccinated Fully vaccinated
0 World 11 877933955 – –
1 Israel 116 10307583 60% 56%
2 Seychelles 116 112194 68% 47%
3 U.A.E. 99 9489684 – –
4 Chile 69 12934282 41% 28%
5 Bahrain 66 1042463 37% 29%
6 Bhutan 63 478219 63% –
7 U.K. 62 41505768 49% 13%
8 United States 61 202282923 38% 24%
9 San Marino 60 20424 35% 25%
10 Maldives 59 303752 53% 5.6%
11 Malta 55 264658 38% 17%
12 Monaco 53 20510 30% 23%
13 Hungary 45 4416581 32% 14%
14 Serbia 44 3041740 26% 17%
15 Qatar 43 1209648 – –
16 Uruguay 38 1310591 30% 8.3%
17 Singapore 30 1667522 20% 9.5%
18 Antigua and Barbuda 28 27032 28% –
19 Iceland 28 98672 20% 8.1%
As you can see it was not showing show all in our dataset. So, Now we can Convert this Data Table to DataFrame. For doing this task we have to store this Data into CSV Format and we can reupload it and store it in DataFrame. The code for the Same was stated below:-
# HTML Table to CSV Format Conversion For COVID Dataset
covid_data_file = 'covid_data.csv'
covid_data_tables[0].to_csv(covid_data_file, sep = ',')
# Read CSV Data From Data Table for Further Analysis
covid_data = pd.read_csv("covid_data.csv")
So, after Storing all the Data into csv Format let's convert data into DataFrame Format and Print Whole data:-
# Store 'CSV' Data into 'DataFrame' Format
vaccineDF = pd.DataFrame(covid_data)
vaccineDF = vaccineDF.drop(columns=["Unnamed: 0"], axis = 1) # 'drop' Unneccesary Columns from the Dataset
# Print Whole Dataset
vaccineDF
# Output of above cell:-
Unnamed: 0_level_0 Doses administered Doses administered.1 Pct. of population Pct. of population.1
0 Unnamed: 0_level_1 Per 100 people Total Vaccinated Fully vaccinated
1 World 11 877933955 – –
2 Israel 116 10307583 60% 56%
3 Seychelles 116 112194 68% 47%
4 U.A.E. 99 9489684 – –
... ... ... ... ... ...
154 Syria <0.1 2500 <0.1% –
155 Papua New Guinea <0.1 1081 <0.1% –
156 South Sudan <0.1 947 <0.1% –
157 Cameroon <0.1 400 <0.1% –
158 Zambia <0.1 106 <0.1% –
159 rows × 5 columns
From above Output we can see that we have successfully fetched whole data table. Hope this Solution will help you.
OWID provides this data, which effectively comes from JHU
if you want latest vaccination data by country, it's simple to use CSV interface
import requests, io
dfraw = pd.read_csv(io.StringIO(requests.get("https://raw.githubusercontent.com/owid/covid-19-data/master/public/data/vaccinations/vaccinations.csv").text))
dfraw["date"] = pd.to_datetime(dfraw["date"])
dfraw.sort_values(["iso_code","date"]).groupby("iso_code", as_index=False).last()
I am new in this field and stuck on this problem. I have two datasets
all_batsman_df, this df has 5 columns('years','team','pos','name','salary')
years team pos name salary
0 1991 SF 1B Will Clark 3750000.0
1 1991 NYY 1B Don Mattingly 3420000.0
2 1991 BAL 1B Glenn Davis 3275000.0
3 1991 MIL DH Paul Molitor 3233333.0
4 1991 TOR 3B Kelly Gruber 3033333.0
all_batting_statistics_df, this df has 31 columns
Year Rk Name Age Tm Lg G PA AB R ... SLG OPS OPS+ TB GDP HBP SH SF IBB Pos Summary
0 1988 1 Glen Davis 22 SDP NL 37 89 83 6 ... 0.289 0.514 48.0 24 1 1 0 1 1 987
1 1988 2 Jim Acker 29 ATL NL 21 6 5 0 ... 0.400 0.900 158.0 2 0 0 0 0 0 1
2 1988 3 Jim Adduci* 28 MIL AL 44 97 94 8 ... 0.383 0.641 77.0 36 1 0 0 3 0 7D/93
3 1988 4 Juan Agosto* 30 HOU NL 75 6 5 0 ... 0.000 0.000 -100.0 0 0 0 1 0 0 1
4 1988 5 Luis Aguayo 29 TOT MLB 99 260 237 21 ... 0.354 0.663 88.0 84 6 1 1 1 3 564
I want to merge these two datasets on 'year', 'name'. But the problem is, these both data frames has different names like in the first dataset, it has name 'Glenn Davis' but in second dataset it has 'Glen Davis'.
Now, I want to know that How can I merge both of them using difflib library even it has different names?
Any help will be appreciated ...
Thanks in advance.
I have used this code which I got in a question asked at this platform but it is not working for me. I am adding a new column after matching names in both of the datasets. I know this is not a good approach. Kindly suggest, If i can do it in a better way.
df_a = all_batting_statistics_df
df_b = all_batters
df_a = df_a.astype(str)
df_b = df_b.astype(str)
df_a['merge_year'] = df_a['Year'] # we will use these as the merge keys
df_a['merge_name'] = df_a['Name']
for comp_a, addr_a in df_a[['Year','Name']].values:
for ixb, (comp_b, addr_b) in enumerate(df_b[['years','name']].values):
if cdifflib.CSequenceMatcher(None,comp_a,comp_b).ratio() > .6:
df_b.loc[ixb,'merge_year'] = comp_a # creates a merge key in df_b
if cdifflib.CSequenceMatcher(None,addr_a, addr_b).ratio() > .6:
df_b.loc[ixb,'merge_name'] = addr_a # creates a merge key in df_b
merged_df = pd.merge(df_a,df_b,on=['merge_name','merge_years'],how='inner')
You can do
import difflib
df_b['name'] = df_b['name'].apply(lambda x: \
difflib.get_close_matches(x, df_a['name'])[0])
to replace names in df_b with closest match from df_a, then do your merge. See also this post.
Let me get to your problem by assuming that you have to make a data set with 2 columns and the 2 columns being 1. 'year' and 2. 'name'
okay
1. we will 1st rename all the names which are wrong
I hope you know all the wrong names from all_batting_statistics_df using this
all_batting_statistics_df.replace(regex=r'^Glen.$', value='Glenn Davis')
once you have corrected all the spellings, choose the smaller one which has the names you know, so it doesn't take long
2. we need both data sets to have the same columns i.e. only 'year' and 'name'
use this to drop the columns we don't need
all_batsman_df_1 = all_batsman_df.drop(['team','pos','salary'])
all_batting_statistics_df_1 = all_batting_statistics_df.drop(['Rk','Name','Age','Tm','Lg','G','PA','AB','R','Summary'], axis=1)
I cannot see all the 31 columns so I left them, you have to add to the above code
3. we need to change the column names to look the same i.e. 'year' and 'name' using python dataframe rename
df_new_1 = all_batting_statistics_df(colums={'Year': 'year', 'Name':'name'})
4. next, to merge them
we will use this
all_batsman_df.merge(df_new_1, left_on='year', right_on='name')
FINAL THOUGHTS:
If you don't want to do all this find a way to export the data set to google sheets or microsoft excel and use edit them with those advanced software, if you like pandas then its not that difficult you will find a way, all the best!
I am trying to find a good way to calculate mean values from values in a dataframe. It contains measured data from an experiment and is imported from an excel sheet. The columns contain the time passed by, electric current and the corresponding voltage.
The current is changed in steps and then held for some time (the current values vary a little bit, so they are not exactly the same for each step). Now I want to calculate the mean voltage for each current step. Since it takes some time after the voltage gets stable after a step, I also want to leave out the first few voltage values after a step.
Currently I am doing this with loops, but I was wondering wether there is a nicer way with the usage of the groupby function (or others maybe).
Just say if you need more details or clarification.
Example of data:
s [A] [V]
0 6.0 -0.001420 0.780122
1 12.0 -0.002484 0.783297
2 18.0 -0.001478 0.785870
3 24.0 -0.001256 0.793559
4 30.0 -0.001167 0.806086
5 36.0 -0.000982 0.815364
6 42.0 -0.003038 0.825018
7 48.0 -0.001174 0.831739
8 54.0 0.000478 0.838861
9 60.0 -0.001330 0.846086
10 66.0 -0.001456 0.851556
11 72.0 0.000764 0.855950
12 78.0 -0.000916 0.859778
13 84.0 -0.000916 0.859778
14 90.0 -0.001445 0.863569
15 96.0 -0.000287 0.864303
16 102.0 0.000056 0.865080
17 108.0 -0.001119 0.865642
18 114.0 -0.000843 0.866434
19 120.0 -0.000997 0.866809
20 126.0 -0.001243 0.866964
21 132.0 -0.002238 0.867180
22 138.0 -0.001015 0.867177
23 144.0 -0.000604 0.867505
24 150.0 0.000507 0.867571
25 156.0 -0.001569 0.867525
26 162.0 -0.001569 0.867525
27 168.0 -0.001131 0.866756
28 174.0 -0.001567 0.866884
29 180.0 -0.002645 0.867240
.. ... ... ...
242 1708.0 24.703866 0.288902
243 1714.0 26.469208 0.219226
244 1720.0 26.468838 0.250437
245 1726.0 26.468681 0.254972
246 1732.0 26.468173 0.271525
247 1738.0 26.468260 0.247282
248 1744.0 26.467666 0.296894
249 1750.0 26.468085 0.247300
250 1756.0 26.468085 0.247300
251 1762.0 26.467808 0.261096
252 1768.0 26.467958 0.259615
253 1774.0 26.467828 0.260871
254 1780.0 28.232325 0.185291
255 1786.0 28.231697 0.197642
256 1792.0 28.231170 0.172802
257 1798.0 28.231103 0.170685
258 1804.0 28.229453 0.184009
259 1810.0 28.230816 0.181833
260 1816.0 28.230913 0.188348
261 1822.0 28.230609 0.178440
262 1828.0 28.231144 0.168507
263 1834.0 28.231144 0.168507
264 1840.0 8.813723 0.641954
265 1846.0 8.814301 0.652373
266 1852.0 8.818517 0.651234
267 1858.0 8.820255 0.637536
268 1864.0 8.821443 0.628136
269 1870.0 8.823643 0.636616
270 1876.0 8.823297 0.635422
271 1882.0 8.823575 0.622253
Output:
s [A] [V]
0 303.000000 -0.000982 0.857416
1 636.000000 0.879220 0.792504
2 699.000000 1.759356 0.752446
3 759.000000 3.519479 0.707161
4 816.000000 5.278372 0.669020
5 876.000000 7.064800 0.637848
6 939.000000 8.828799 0.611196
7 999.000000 10.593054 0.584402
8 1115.333333 12.357359 0.556127
9 1352.000000 14.117167 0.528826
10 1382.000000 15.882287 0.498577
11 1439.000000 17.646748 0.468379
12 1502.000000 19.410817 0.437342
13 1562.666667 21.175572 0.402381
14 1621.000000 22.939826 0.365724
15 1681.000000 24.704600 0.317134
16 1744.000000 26.468235 0.256047
17 1807.000000 28.231037 0.179606
18 1861.000000 8.819844 0.638190
The current approach:
df = df[['s','[A]','[V]']]
#Looping over the rows to separate current points
b=df['[A]'].iloc[0]
start=0
list = []
for index, row in df.iterrows():
if not math.isclose(row['[A]'], b, abs_tol=1e-02):
b=row['[A]']
list.append(df.iloc[start:index])
start=index
list.append(df.iloc[start:])
#Deleting first few points after each current change
list_b = []
for l in list:
list_b.append(l.iloc[3:])
#Calculating mean values for each current point
list_c = []
for l in list_b:
list_c.append(l.mean())
result=pd.DataFrame(list_c)
Does this help?
df.groupby(['Columnname', 'Columnname2']).mean()
You may need to create intermediate dataframes for each step. Can you provide an example of the output you want?
It is the first time I use pandas and I do not really know how to deal with my problematic.
In fact I have 2 data frame:
import pandas
blast=pandas.read_table("blast")
cluster=pandas.read_table("cluster")
Here is an exemple of their contents:
>>> cluster
cluster_name seq_names
0 1 g1.t1_0035
1 1 g1.t1_0035_0042
2 119365 g1.t1_0042
3 90273 g1.t1_0042_0035
4 71567 g10.t1_0035
5 37976 g10.t1_0035_0042
6 22560 g10.t1_0042
7 90280 g10.t1_0042_0035
8 82698 g100.t1_0035
9 47392 g100.t1_0035_0042
10 28484 g100.t1_0042
11 22580 g100.t1_0042_0035
12 19474 g1000.t1_0035
13 5770 g1000.t1_0035_0042
14 29708 g1000.t1_0042
15 99776 g1000.t1_0042_0035
16 6283 g10000.t1_0035
17 39828 g10000.t1_0035_0042
18 25383 g10000.t1_0042
19 106614 g10000.t1_0042_0035
20 6285 g10001.t1_0035
21 13866 g10001.t1_0035_0042
22 121157 g10001.t1_0042
23 106615 g10001.t1_0042_0035
24 6286 g10002.t1_0035
25 113 g10002.t1_0035_0042
26 25397 g10002.t1_0042
27 106616 g10002.t1_0042_0035
28 4643 g10003.t1_0035
29 13868 g10003.t1_0035_0042
... ... ...
and
[78793 rows x 2 columns]
>>> blast
qseqid sseqid pident length mismatch \
0 g1.t1_0035_0042 g1.t1_0035_0042 100.0 286 0
1 g1.t1_0035_0042 g1.t1_0035 100.0 257 0
2 g1.t1_0035_0042 g9307.t1_0035 26.9 134 65
3 g2.t1_0035_0042 g2.t1_0035_0042 100.0 445 0
4 g2.t1_0035_0042 g2.t1_0035 95.8 451 3
5 g2.t1_0035_0042 g24520.t1_0042_0035 61.1 429 137
6 g2.t1_0035_0042 g9924.t1_0042 61.1 429 137
7 g2.t1_0035_0042 g1838.t1_0035 86.2 29 4
8 g3.t1_0035_0042 g3.t1_0035_0042 100.0 719 0
9 g3.t1_0035_0042 g3.t1_0035 84.7 753 62
10 g4.t1_0035_0042 g4.t1_0035_0042 100.0 242 0
11 g4.t1_0035_0042 g3.t1_0035 98.8 161 2
12 g5.t1_0035_0042 g5.t1_0035_0042 100.0 291 0
13 g5.t1_0035_0042 g3.t1_0035 93.1 291 0
14 g6.t1_0035_0042 g6.t1_0035_0042 100.0 152 0
15 g6.t1_0035_0042 g4.t1_0035 100.0 152 0
16 g7.t1_0035_0042 g7.t1_0035_0042 100.0 216 0
17 g7.t1_0035_0042 g5.t1_0035 98.1 160 3
18 g7.t1_0035_0042 g11143.t1_0042 46.5 230 99
19 g7.t1_0035_0042 g27537.t1_0042_0035 40.8 233 111
20 g3778.t1_0035_0042 g3778.t1_0035_0042 100.0 86 0
21 g3778.t1_0035_0042 g6174.t1_0035 98.0 51 1
22 g3778.t1_0035_0042 g20037.t1_0035_0042 100.0 50 0
23 g3778.t1_0035_0042 g37190.t1_0035 100.0 50 0
24 g3778.t1_0035_0042 g15112.t1_0042_0035 66.0 53 18
25 g3778.t1_0035_0042 g6061.t1_0042 66.0 53 18
26 g18109.t1_0035_0042 g18109.t1_0035_0042 100.0 86 0
27 g18109.t1_0035_0042 g33071.t1_0035 100.0 81 0
28 g18109.t1_0035_0042 g32810.t1_0035 96.4 83 3
29 g18109.t1_0035_0042 g17982.t1_0035_0042 98.6 72 1
... ... ... ... ... ...
if you stay focus on the cluster database, the first column correspond to the cluster ID and inside those clusters there are several sequences ID.
What I need to to is first to split all my cluster (in R it would be like: liste=split(x = data$V2, f = data$V1) )
And then, creat a function which displays the most similarity paires sequence within each cluster.
here is an exemple:
let's say I have two clusters (dataframe cluster):
cluster 1:
seq1
seq2
seq3
seq4
cluster 2:
seq5
seq6
seq7
...
On the blast dataframe there is on the 3th column the similarity between all sequences (all against all), so something like:
seq1 vs seq1 100
seq1 vs seq2 90
seq1 vs seq3 56
seq1 vs seq4 49
seq1 vs seq5 40
....
seq2 vs seq3 70
seq2 vs seq4 98
...
seq5 vs seq5 100
seq5 vs seq6 89
seq5 vs seq7 60
seq7 vs seq7 46
seq7 vs seq7 100
seq6 vs seq6 100
and what I need to get is :
cluster 1 (best paired sequences):
seq 1 vs seq 2
cluster2 (best paired sequences):
seq 5 vs seq6
...
So as you can see, I do not want to take into account the sequences paired by themselves
IF someone could give me some clues it would be fantastic.
Thank you all.
Firstly I assume that there are no Pairings in 'blast' with sequences from two different Clusters. In other words: in this solution the cluster-ID of a pairing will be evaluated by only one of the two sequence IDs.
Including cluster information and pairing information into one dataframe:
data = cluster.merge(blast, left_on='seq_names', right_on='qseqid')
Then the data should only contain pairings of different sequences:
data = data[data['qseqid']!=data['sseqid']]
To ignore pairings which have the same substrings in their seqid, the most readable way would be to add data columns with these data:
data['qspec'] = [seqid.split('_')[1] for seqid in data['qseqid'].values]
data['sspec'] = [seqid.split('_')[1] for seqid in data['sseqid'].values]
Now equal spec-values can be filtered the same way like it was done with equal seqids above:
data = data[data['qspec']!=data['sspec']]
In the end the data should be grouped by cluster-ID and within each group, the maximum of pident is of interest:
data_grpd = data.groupby('cluster_name')
result = data.loc[data_grpd['pident'].idxmax()]
The only drawback here - except the above mentioned assumption - is, that if there are several exactly equal max-values, only one of them would be taken into account.
Note: if you don't want the spec-columns to be of type string, you could easiliy turn them into integers on the fly by:
import numpy as np
data['qspec'] = [np.int(seqid.split('_')[1]) for seqid in data['qseqid'].values]
This merges the dataframes based first on sseqid, then on qseqid, and then returns results_df. Any with 100% match are filtered out. Let me know if this works. You can then order by cluster name.
blast = blast.loc[blast['pident'] != 100]
results_df = cluster.merge(blast, left_on='seq_names',right_on='sseqid')
results_df = results_df.append(cluster.merge(blast, left_on='seq_names',right_on='qseqid'))
Here is my dataframe:
Date cell tumor_size(mm)
25/10/2015 113 51
22/10/2015 222 50
22/10/2015 883 45
20/10/2015 334 35
19/10/2015 564 47
19/10/2015 123 56
22/10/2014 345 36
13/12/2013 456 44
What I want to do is compare the size of the tumors detected on the different days. Let's consider the cell 222 as an example; I want to compare its size to different cells but detected on earlier days e.g. I will not compare its size with cell 883, because they were detected on the same day. Or I will not compare it with cell 113, because it was detected later on.
As my dataset is too large, I have iterate over the rows. If I explain it in a non-pythonic way:
for the cell 222:
get_size_distance(absolute value):
(50 - 35 = 15), (50 - 47 = 3), (50 - 56 = 6), (50 - 36 = 14), (44 - 36 = 8)
get_minumum = 3, I got this value when I compared it with 564, so I will name it as a pait for the cell 222
Then do it for the cell 883
The resulting output should look like this:
Date cell tumor_size(mm) pair size_difference
25/10/2015 113 51 222 1
22/10/2015 222 50 123 6
22/10/2015 883 45 456 1
20/10/2015 334 35 345 1
19/10/2015 564 47 456 3
19/10/2015 123 56 456 12
22/10/2014 345 36 456 8
13/12/2013 456 44 NaN NaN
I will really appreciate your help
It's not pretty, but I believe it does the trick
a = pd.read_clipboard()
# Cut off last row since it was a faulty date. You can skip this.
df = a.copy().iloc[:-1]
# Convert to dates and order just in case (not really needed I guess).
df['Date'] = df.Date.apply(lambda x: datetime.strptime(x, '%d/%m/%Y'))
df.sort_values('Date', ascending=False)
# Rename column
df = df.rename(columns={"tumor_size(mm)": 'tumor_size'})
# These will be our lists of pairs and size differences.
pairs = []
diffs = []
# Loop over all unique dates
for date in df.Date.unique():
# Only take dates earlier then current date.
compare_df = df.loc[df.Date < date].copy()
# Loop over each cell for this date and find the minimum
for row in df.loc[df.Date == date].itertuples():
# If no cells earlier are available use nans.
if compare_df.empty:
pairs.append(float('nan'))
diffs.append(float('nan'))
# Take lowest absolute value and fill in otherwise
else:
compare_df['size_diff'] = abs(compare_df.tumor_size - row.tumor_size)
row_of_interest = compare_df.loc[compare_df.size_diff == compare_df.size_diff.min()]
pairs.append(row_of_interest.cell.values[0])
diffs.append(row_of_interest.size_diff.values[0])
df['pair'] = pairs
df['size_difference'] = diffs
returns:
Date cell tumor_size pair size_difference
0 2015-10-25 113 51 222.0 1.0
1 2015-10-22 222 50 564.0 3.0
2 2015-10-22 883 45 564.0 2.0
3 2015-10-20 334 35 345.0 1.0
4 2015-10-19 564 47 345.0 11.0
5 2015-10-19 123 56 345.0 20.0
6 2014-10-22 345 36 NaN NaN