I want to process a live stream from youtube with opencv - python

I am posting this while using a translation.
I would like to use a live stream on YouTube to action recognition.
Action recognition
https://github.com/felixchenfy/Realtime-Action-Recognition
Read Youtube live stream with opencv
How to read Youtube live stream using openCV python?
Youtube URL
https://www.youtube.com/watch?v=DjdUEyjx8GM
We have programmed it with reference to the above.The program runs normally for a few hours, but after 4 or 5 hours, I get an error saying that communication from the remote host has been lost.Checking the youtube video, the delivery does not seem to be interrupted.
A partial code for videocapture can be found here.
url = "https://www.youtube.com/watch?v=DjdUEyjx8GM"
video = pafy.new(url)
best = video.getbest(preftype="mp4")
class ReadFromVideo(object):
def __init__(self, video_path, sample_interval=1):
''' A video reader class for reading video frames from video.
Arguments:
video_path
sample_interval {int}: sample every kth image.
''' assert isinstance(sample_interval, int) and sample_interval >= 1
self.cnt_imgs = 0
self._is_stoped = False
self._video = cv2.VideoCapture(best.url)
ret, image = self._video.read()
ret, image2 = self._video2.read()
self._next_image = image
self._next_image2 = image2
self._sample_interval = sample_interval
self._fps = self.get_fps()
if not self._fps >= 0.0001:
import warnings
warnings.warn("Invalid fps of video: {}".format(video_path))
def has_image(self):
return self._next_image is not None
def get_curr_video_time(self):
return 1.0 / self._fps * self.cnt_imgs
def read_image(self):
image = self._next_image
image2 = self._next_image2
for i in range(self._sample_interval):
if self._video.isOpened():
ret, frame = self._video.read()
self._next_image = frame
ret, frame2 = self._video2.read()
self._next_image2 = frame2
else:
self._next_image = None
self._next_image2 = None
break
self.cnt_imgs += 1
return image, image2
def stop(self):
self._video.release()
self._video2.release()
self._is_stoped = True
def __del__(self):
if not self._is_stoped:
self.stop()
def get_fps(self):
# Find OpenCV version
(major_ver, minor_ver, subminor_ver) = (cv2.__version__).split('.')
# With webcam get(CV_CAP_PROP_FPS) does not work.
# Let's see for ourselves.
# Get video properties
if int(major_ver) < 3:
fps = self._video.get(cv2.cv.CV_CAP_PROP_FPS)
else:
fps = self._video.get(cv2.CAP_PROP_FPS)
return fps
#!/usr/bin/env python
# coding: utf-8
'''
Test action recognition on
(1) a video, (2) a folder of images, (3) or web camera.
Input:
model: model/trained_classifier.pickle
Output:
result video: output/${video_name}/video.avi
result skeleton: output/${video_name}/skeleton_res/XXXXX.txt
visualization by cv2.imshow() in img_displayer
'''
The entire source code is here
'''
Example of usage:
(1) Test on video file:
python src/s5_test.py \
--model_path model/trained_classifier.pickle \
--data_type video \
--data_path data_test/exercise.avi \
--output_folder output
(2) Test on a folder of images:
python src/s5_test.py \
--model_path model/trained_classifier.pickle \
--data_type folder \
--data_path data_test/apple/ \
--output_folder output
(3) Test on web camera:
python src/s5_test.py \
--model_path model/trained_classifier.pickle \
--data_type webcam \
--data_path 0 \
--output_folder output
if True: # Include project path
import sys
import os
ROOT = os.path.dirname(os.path.abspath(__file__))+"/../"
CURR_PATH = os.path.dirname(os.path.abspath(__file__))+"/"
sys.path.append(ROOT)
import utils.lib_images_io as lib_images_io
import utils.lib_plot as lib_plot
import utils.lib_commons as lib_commons
from utils.lib_openpose import SkeletonDetector
from utils.lib_tracker import Tracker
from utils.lib_tracker import Tracker
from utils.lib_classifier import ClassifierOnlineTest
from utils.lib_classifier import * # Import all sklearn related libraries
def par(path): # Pre-Append ROOT to the path if it's not absolute
return ROOT + path if (path and path[0] != "/") else path
# -- Command-line input
def get_command_line_arguments():
def parse_args():
parser = argparse.ArgumentParser(
description="Test action recognition on \n"
"(1) a video, (2) a folder of images, (3) or web camera.")
parser.add_argument("-m", "--model_path", required=False,
default='model/trained_classifier.pickle')
parser.add_argument("-t", "--data_type", required=False, default='webcam',
choices=["video", "folder", "webcam"])
parser.add_argument("-p", "--data_path", required=False, default="",
help="path to a video file, or images folder, or webcam. \n"
"For video and folder, the path should be "
"absolute or relative to this project's root. "
"For webcam, either input an index or device name. ")
parser.add_argument("-o", "--output_folder", required=False, default='output/',
help="Which folder to save result to.")
args = parser.parse_args()
return args
args = parse_args()
if args.data_type != "webcam" and args.data_path and args.data_path[0] != "/":
# If the path is not absolute, then its relative to the ROOT.
args.data_path = ROOT + args.data_path
return args
def get_dst_folder_name(src_data_type, src_data_path):
''' Compute a output folder name based on data_type and data_path.
The final output of this script looks like this:
DST_FOLDER/folder_name/vidoe.avi
DST_FOLDER/folder_name/skeletons/XXXXX.txt
'''
assert(src_data_type in ["video", "folder", "webcam"])
if src_data_type == "video": # /root/data/video.avi --> video
folder_name = str("video")
elif src_data_type == "folder": # /root/data/video/ --> video
folder_name = src_data_path.rstrip("/").split("/")[-1]
elif src_data_type == "webcam":
# month-day-hour-minute-seconds, e.g.: 02-26-15-51-12
folder_name = lib_commons.get_time_string()
return folder_name
args = get_command_line_arguments()
SRC_DATA_TYPE = args.data_type
SRC_DATA_PATH = args.data_path
SRC_MODEL_PATH = args.model_path
DST_FOLDER_NAME = get_dst_folder_name(SRC_DATA_TYPE, SRC_DATA_PATH)
# -- Settings
cfg_all = lib_commons.read_yaml(ROOT + "config/config.yaml")
cfg = cfg_all["s5_test.py"]
CLASSES = np.array(cfg_all["classes"])
SKELETON_FILENAME_FORMAT = cfg_all["skeleton_filename_format"]
# Action recognition: number of frames used to extract features.
WINDOW_SIZE = int(cfg_all["features"]["window_size"])
# Output folder
DST_FOLDER = args.output_folder + "/" + DST_FOLDER_NAME + "/"
DST_SKELETON_FOLDER_NAME = cfg["output"]["skeleton_folder_name"]
DST_VIDEO_NAME = cfg["output"]["video_name"]
# framerate of output video.avi
DST_VIDEO_FPS = float(cfg["output"]["video_fps"])
# writer
fmt = cv2.VideoWriter_fourcc(*'MP4V')
fps = 10.0
size = (800, 480)
writer = cv2.VideoWriter('outtest.mp4', fmt, fps, size)
backup_time = 3600 # sec
time = 0 # init
now = datetime.datetime.now()
s_now = now.strftime('%Y-%m-%d-%H-%M-%S')
back_up = cv2.VideoWriter(f'{s_now}.mp4',fmt, fps, size)
# Video setttings
# If data_type is webcam, set the max frame rate.
SRC_WEBCAM_MAX_FPS = float(cfg["settings"]["source"]
["webcam_max_framerate"])
# If data_type is video, set the sampling interval.
# For example, if it's 3, then the video will be read 3 times faster.
SRC_VIDEO_SAMPLE_INTERVAL = int(cfg["settings"]["source"]
["video_sample_interval"])
# Openpose settings
OPENPOSE_MODEL = cfg["settings"]["openpose"]["model"]
OPENPOSE_IMG_SIZE = cfg["settings"]["openpose"]["img_size"]
# Display settings
img_disp_desired_rows = int(cfg["settings"]["display"]["desired_rows"])
# -- Function
def select_images_loader(src_data_type, src_data_path):
if src_data_type == "video":
images_loader = lib_images_io.ReadFromVideo(
src_data_path,
sample_interval=SRC_VIDEO_SAMPLE_INTERVAL)
elif src_data_type == "folder":
images_loader = lib_images_io.ReadFromFolder(
folder_path=src_data_path)
elif src_data_type == "webcam":
if src_data_path == "":
webcam_idx = 0
elif src_data_path.isdigit():
webcam_idx = int(src_data_path)
else:
webcam_idx = src_data_path
images_loader = lib_images_io.ReadFromWebcam(
SRC_WEBCAM_MAX_FPS, webcam_idx)
return images_loader
class MultiPersonClassifier(object):
''' This is a wrapper around ClassifierOnlineTest
for recognizing actions of multiple people.
'''
def __init__(self, model_path, classes):
self.dict_id2clf = {} # human id -> classifier of this person
# Define a function for creating classifier for new people.
self._create_classifier = lambda human_id: ClassifierOnlineTest(
model_path, classes, WINDOW_SIZE, human_id)
def classify(self, dict_id2skeleton):
''' Classify the action type of each skeleton in dict_id2skeleton '''
# Clear people not in view
old_ids = set(self.dict_id2clf)
cur_ids = set(dict_id2skeleton)
humans_not_in_view = list(old_ids - cur_ids)
for human in humans_not_in_view:
del self.dict_id2clf[human]
# Predict each person's action
id2label = {}
for id, skeleton in dict_id2skeleton.items():
if id not in self.dict_id2clf: # add this new person
self.dict_id2clf[id] = self._create_classifier(id)
classifier = self.dict_id2clf[id]
id2label[id] = classifier.predict(skeleton) # predict label
# print("\n\nPredicting label for human{}".format(id))
# print(" skeleton: {}".format(skeleton))
# print(" label: {}".format(id2label[id]))
return id2label
def get_classifier(self, id):
''' Get the classifier based on the person id.
Arguments:
id {int or "min"}
'''
if len(self.dict_id2clf) == 0:
return None
if id == 'min':
id = min(self.dict_id2clf.keys())
return self.dict_id2clf[id]
def remove_skeletons_with_few_joints(skeletons):
''' Remove bad skeletons before sending to the tracker '''
good_skeletons = []
for skeleton in skeletons:
px = skeleton[2:2+13*2:2]
py = skeleton[3:2+13*2:2]
num_valid_joints = len([x for x in px if x != 0])
num_leg_joints = len([x for x in px[-6:] if x != 0])
total_size = max(py) - min(py)
# !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# IF JOINTS ARE MISSING, TRY CHANGING THESE VALUES:
# !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
if num_valid_joints >= 5 and total_size >= 0.1 and num_leg_joints >= 0:
# add this skeleton only when all requirements are satisfied
good_skeletons.append(skeleton)
return good_skeletons
def draw_result_img(img_disp, ith_img, humans, dict_id2skeleton,
skeleton_detector, multiperson_classifier):
''' Draw skeletons, labels, and prediction scores onto image for display '''
# Resize to a proper size for display
r, c = img_disp.shape[0:2]
desired_cols = int(1.0 * c * (img_disp_desired_rows / r))
img_disp = cv2.resize(img_disp,
dsize=(desired_cols, img_disp_desired_rows))
# Draw all people's skeleton
skeleton_detector.draw(img_disp, humans)
# Draw bounding box and label of each person
if len(dict_id2skeleton):
for id, label in dict_id2label.items():
skeleton = dict_id2skeleton[id]
# scale the y data back to original
skeleton[1::2] = skeleton[1::2] / scale_h
# print("Drawing skeleton: ", dict_id2skeleton[id], "with label:", label, ".")
lib_plot.draw_action_result(img_disp, id, skeleton, label)
# Add blank to the left for displaying prediction scores of each class
img_disp = lib_plot.add_white_region_to_left_of_image(img_disp)
cv2.putText(img_disp, "Frame:" + str(ith_img),
(20, 20), fontScale=1.5, fontFace=cv2.FONT_HERSHEY_PLAIN,
color=(0, 0, 0), thickness=2)
# Draw predicting score for only 1 person
if len(dict_id2skeleton):
classifier_of_a_person = multiperson_classifier.get_classifier(
id='min')
classifier_of_a_person.draw_scores_onto_image(img_disp)
return img_disp
# Time Display
cv2.putText(img2_disp, str(now_time.isoformat(timespec='seconds')),
(20, 20), fontScale=1.5, fontFace=cv2.FONT_HERSHEY_PLAIN,
color=(0, 0, 0), thickness=2)
# Draw predicting score for only 1 person
if len(dict2_id2skeleton):
classifier_of_a_person = multiperson_classifier.get_classifier(
id='min')
classifier_of_a_person.draw_scores_onto_image(img2_disp)
return img2_disp
def get_the_skeleton_data_to_save_to_disk(dict_id2skeleton):
'''
In each image, for each skeleton, save the:
human_id, label, and the skeleton positions of length 18*2.
So the total length per row is 2+36=38
'''
skels_to_save = []
for human_id in dict_id2skeleton.keys():
label = dict_id2label[human_id]
skeleton = dict_id2skeleton[human_id]
skels_to_save.append([[human_id, label] + skeleton.tolist()])
return skels_to_save
# -- Main
if __name__ == "__main__":
# -- Detector, tracker, classifier
skeleton_detector = SkeletonDetector(OPENPOSE_MODEL, OPENPOSE_IMG_SIZE)
multiperson_tracker = Tracker()
multiperson_classifier = MultiPersonClassifier(SRC_MODEL_PATH, CLASSES)
# -- Image reader and displayer
images_loader = select_images_loader(SRC_DATA_TYPE, SRC_DATA_PATH)
img_displayer = lib_images_io.ImageDisplayer()
# -- Init output
# output folder
os.makedirs(DST_FOLDER, exist_ok=True)
os.makedirs(DST_FOLDER + DST_SKELETON_FOLDER_NAME, exist_ok=True)
# -- Read images and process
try:
ith_img = -1
while images_loader.has_image():
# Timer
now = datetime.datetime.now()
now_time = now.time()
# -- Read image
#img = images_loader.read_image()
img = images_loader.read_image()
ith_img += 1
img_disp = img.copy()
# print(f"\nProcessing {ith_img}th image ...")
# -- Detect skeletons
humans = skeleton_detector.detect(img)
skeletons, scale_h = skeleton_detector.humans_to_skels_list(humans)
)
skeletons = remove_skeletons_with_few_joints(skeletons)
# -- Track people
dict_id2skeleton = multiperson_tracker.track(skeletons)
# -- Log & Recognize action of each person
log.append(str(now_time))
if len(dict_id2skeleton):
dict_id2label = multiperson_classifier.classify(
dict_id2skeleton)
# -- Draw
img_disp = draw_result_img(img_disp, ith_img, humans, dict_id2skeleton, skeleton_detector, multiperson_classifier)
# Print label of a person
if len(dict_id2skeleton):
min_id = min(dict_id2skeleton.keys())
# print("prediced label is :", dict_id2label[min_id])
# -- Display image, and write to video.avi
# video writer
if time >= backup_time*fps:
back_up.release()
now = datetime.datetime.now()
s_now = now.strftime('%Y-%m-%d-%H-%M-%S')
back_up = cv2.VideoWriter(f'{s_now}.mp4', fmt, fps, size)
time = 0
time += 1
writer.write(img_disp)
back_up.write(img_disp)
img_displayer.display(img_disp, wait_key_ms=1)
# -- Get skeleton data and save to file
skels_to_save = get_the_skeleton_data_to_save_to_disk(dict_id2skeleton)
lib_commons.save_listlist(DST_FOLDER + DST_SKELETON_FOLDER_NAME +SKELETON_FILENAME_FORMAT.format(ith_img),skels_to_save)
if cv2.waitKey(1) == 27:
break
finally:
writer.release()
back_up.release()
cv2.destroyAllWindows()
Thanks for your help.

Related

Making a 3D model in VTK solid instead of hollow inside

I'm trying to create 3D model of the skull using VTK [example]:(https://kitware.github.io/vtk-examples/site/Python/VisualizationAlgorithms/HeadBone/)
#!/usr/bin/env python
# noinspection PyUnresolvedReferences
import vtkmodules.vtkInteractionStyle
# noinspection PyUnresolvedReferences
import vtkmodules.vtkRenderingOpenGL2
from vtkmodules.vtkCommonColor import vtkNamedColors
from vtkmodules.vtkCommonCore import (
VTK_VERSION_NUMBER,
vtkVersion
)
from vtkmodules.vtkCommonDataModel import vtkMergePoints
from vtkmodules.vtkFiltersCore import (
vtkFlyingEdges3D,
vtkMarchingCubes
)
from vtkmodules.vtkFiltersModeling import vtkOutlineFilter
from vtkmodules.vtkIOImage import vtkMetaImageReader
from vtkmodules.vtkRenderingCore import (
vtkActor,
vtkPolyDataMapper,
vtkRenderWindow,
vtkRenderWindowInteractor,
vtkRenderer
)
def main():
# vtkFlyingEdges3D was introduced in VTK >= 8.2
use_flying_edges = vtk_version_ok(8, 2, 0)
file_name = get_program_parameters()
colors = vtkNamedColors()
# Create the RenderWindow, Renderer and Interactor.
ren = vtkRenderer()
ren_win = vtkRenderWindow()
ren_win.AddRenderer(ren)
iren = vtkRenderWindowInteractor()
iren.SetRenderWindow(ren_win)
# Create the pipeline.
reader = vtkMetaImageReader()
reader.SetFileName(file_name)
reader.Update()
locator = vtkMergePoints()
locator.SetDivisions(64, 64, 92)
locator.SetNumberOfPointsPerBucket(2)
locator.AutomaticOff()
if use_flying_edges:
try:
using_marching_cubes = False
iso = vtkFlyingEdges3D()
except AttributeError:
using_marching_cubes = True
iso = vtkMarchingCubes()
else:
using_marching_cubes = True
iso = vtkMarchingCubes()
iso.SetInputConnection(reader.GetOutputPort())
iso.ComputeGradientsOn()
iso.ComputeScalarsOff()
iso.SetValue(0, 1150)
if using_marching_cubes:
iso.SetLocator(locator)
iso_mapper = vtkPolyDataMapper()
iso_mapper.SetInputConnection(iso.GetOutputPort())
iso_mapper.ScalarVisibilityOff()
iso_actor = vtkActor()
iso_actor.SetMapper(iso_mapper)
iso_actor.GetProperty().SetColor(colors.GetColor3d('Ivory'))
outline = vtkOutlineFilter()
outline.SetInputConnection(reader.GetOutputPort())
outline_mapper = vtkPolyDataMapper()
outline_mapper.SetInputConnection(outline.GetOutputPort())
outline_actor = vtkActor()
outline_actor.SetMapper(outline_mapper)
# Add the actors to the renderer, set the background and size.
#
ren.AddActor(outline_actor)
ren.AddActor(iso_actor)
ren.SetBackground(colors.GetColor3d('SlateGray'))
ren.GetActiveCamera().SetFocalPoint(0, 0, 0)
ren.GetActiveCamera().SetPosition(0, -1, 0)
ren.GetActiveCamera().SetViewUp(0, 0, -1)
ren.ResetCamera()
ren.GetActiveCamera().Dolly(1.5)
ren.ResetCameraClippingRange()
ren_win.SetSize(640, 480)
ren_win.SetWindowName('HeadBone')
ren_win.Render()
iren.Start()
def get_program_parameters():
import argparse
description = 'Marching cubes surface of human bone.'
epilogue = '''
'''
parser = argparse.ArgumentParser(description=description, epilog=epilogue,
formatter_class=argparse.RawDescriptionHelpFormatter)
parser.add_argument('filename', help='FullHead.mhd.')
args = parser.parse_args()
return args.filename
def vtk_version_ok(major, minor, build):
"""
Check the VTK version.
:param major: Major version.
:param minor: Minor version.
:param build: Build version.
:return: True if the requested VTK version is greater or equal to the actual VTK version.
"""
needed_version = 10000000000 * int(major) + 100000000 * int(minor) + int(build)
try:
vtk_version_number = VTK_VERSION_NUMBER
except AttributeError: # as error:
ver = vtkVersion()
vtk_version_number = 10000000000 * ver.GetVTKMajorVersion() + 100000000 * ver.GetVTKMinorVersion() \
+ ver.GetVTKBuildVersion()
if vtk_version_number >= needed_version:
return True
else:
return False
if __name__ == '__main__':
main()
It appears that model works just fine, but there is something that I want to know. The model of the skull works perfectly fine, but the model density is not solid (it hollow inside). It generates only the surface of the model.
I want to know how I can fill the gap in the surface to get the full solid model.
In this example, you are trying to extract the isosurface (hollow) from the data.
vtkFlyingEdges3D() and vtkMarchingCubes() algorithms will create contours based on the iso.SetValue(0, 1150) and extract the surface for you. If you want to keep it filled, remove the contouring functions, i'e, vtkFlyingEdges3D() and vtkMarchingCubes() from your script and use some image data mapper instead of vtkPolydataMapper, it will show the entire object.

I'm trying to figure out what errors might occur during the execution of this python program [closed]

Closed. This question needs debugging details. It is not currently accepting answers.
Edit the question to include desired behavior, a specific problem or error, and the shortest code necessary to reproduce the problem. This will help others answer the question.
Closed 7 days ago.
Improve this question
This program is for calculating the percentage of clouds in an image, the code is executed by a raspberry-pi 4.
In this program I use only one try-except, in the main function:
from pathlib import Path
from logzero import logger, logfile
from sense_hat import SenseHat
from picamera import PiCamera
from orbit import ISS
from time import sleep
from datetime import datetime, timedelta
import csv
import cv2
import numpy as np
import matplotlib.pyplot as plt
# this function analyzes the image creating a mask in which only clouds are colored, everything else will be black
def create_clouds_mask(img):
mask = 0
logger.info("STARTING GENERATING THE CLOUD MASK...")
img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) # from bgr to hsv
hsv_white = np.asarray([180, 30, 255]) # white
hsv_grey = np.asarray([0, 0, 125]) # grey
# pick colors from white to grey and creates a mask
mask = cv2.inRange(img_hsv, hsv_grey, hsv_white)
logger.info("MASK COMPLETED")
return mask
# this function calculates the percentage of cloud coverage starting from the Mask previously generated
def cloud_coverage_perc(img, mask):
res = 0
perc = 0
logger.info("CALCULATING CLOUD COVERAGE...")
hsv_img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
height, width, _ = hsv_img.shape
# here we calculate the circular area of the image to consider in the calculation (because the borders of the image are covered by the ISS window, which we do not want to include in the cloud coverage calculation)
area_circle = pow(((height-(height*0.055))/2), 2) * pi
# perform an AND bit wise operation
res = cv2.bitwise_and(hsv_img, hsv_img, mask=mask)
ratio = cv2.countNonZero(mask)/(area_circle) # calculate ratio
# calculate the percentage strarting from the ratio
perc = np.round(ratio*100, 2)
logger.info("CLOUD COVERAGE CALCULATION COMPLETED")
logger.info("CLOUD COVERAGE: "+str(perc))
return res, perc
def create_csv_file(data_file): # create the CVS file
"""Create a new CSV file and add the header row"""
with open(data_file, 'w') as f:
writer = csv.writer(f)
header = ("Counter", "Date/time", "Latitude", "Longitude",
"Temperature", "Humidity", "Magnetometer", "Clouds")
writer.writerow(header)
def add_csv_data(data_file, data): # add data to CVS file
"""Add a row of data to the data_file CSV"""
with open(data_file, 'a') as f:
writer = csv.writer(f)
writer.writerow(data)
def capture(camera, image): # capture image of the ground and add exif data to it
location = ISS.coordinates()
# convert the latitude and longitude to exif appropriate format
south, exif_latitude = exif_convert(location.latitude)
west, exif_longitude = exif_convert(location.longitude)
# set the exif tags specifying the current location
camera.exif_tags['GPS.GPSLatitude'] = exif_latitude
camera.exif_tags['GPS.GPSLatitudeRef'] = "S" if south else "N"
camera.exif_tags['GPS.GPSLongitude'] = exif_longitude
camera.exif_tags['GPS.GPSLongitudeRef'] = "W" if west else "E"
# capture the image
camera.capture(image)
logger.info("IMAGE CAPTURED")
def exif_convert(angle): # convert ISS location to appropriate format for exif data
sign, degrees, minutes, seconds = angle.signed_dms()
exif_angle = f'{degrees:.0f}/1,{minutes:.0f}/1,{seconds*10:.0f}/10'
return sign < 0, exif_angle
base_folder = Path(__file__).parent.resolve()
# set a logfile name
logfile(base_folder/"events.log")
# set up Sense Hat
sense = SenseHat()
# set up camera
cam = PiCamera()
cam.resolution = (1296, 972)
# initialise the CSV file
data_file = base_folder/"data.csv"
create_csv_file(data_file)
# initialise the photo counter
counter = 1
# record the start and current time
start_time = datetime.now()
now_time = datetime.now()
# run a loop for (almost) three hours
# pi
# |
# v
pi = 3.141592653589793238462643383279 # <- pi
# ^
# |
# pi
while (now_time < start_time + timedelta(minutes=178)):
try:
logger.info(f"--- START ITERATION {counter} ---")
humidity = round(sense.humidity, 4)
temperature = round(sense.temperature, 4)
magnetometer = sense.compass_raw
# get coordinates of location on Earth below the ISS
location = ISS.coordinates()
# capture image
image_file = f"{base_folder}/photo_{counter:03d}.jpg"
capture(cam, image_file)
# create image mask
img = cv2.imread(image_file)
mask = create_clouds_mask(img)
# calculate cloud coverage
res, perc = cloud_coverage_perc(img, mask)
# store mask as image
# save the mask as a JPG image
mask_path = f"{base_folder}/mask_{counter:03d}.jpg"
cv2.imwrite(mask_path, res)
# save the data to the file
data = (
counter,
datetime.now(),
location.latitude.degrees,
location.longitude.degrees,
temperature,
humidity,
magnetometer,
perc,
)
add_csv_data(data_file, data)
# log event
logger.info(f"--- END ITERATION {counter} ---")
counter += 1
sleep(30)
# update the current time
now_time = datetime.now()
except Exception as e:
logger.error(f'{e.__class__.__name__}: {e}')
I've tried generating some exception, and they have all been caught without problems. But after the submission, the reviewers said that some errors weren't handled correctly. Can anyone help me find some errors that might occur?

reducing scale of uv map for voxel faces python api

I would have a voxel object on which I map a texture. The problem is it looks really weird because the faces of the voxel cubes have more than one colour to them. I would like to reduce the color down to a singular colour for each voxel face. I found a way to do that within blender but since I want to run this headlessly I need to do the same thing at a lower level and run it via api call.
Attaching the code below. Any and all help would be appreciated.
import bpy
import os
removeThese = bpy.context.copy()
removeThese['selected_objects'] = list(bpy.context.scene.objects)
bpy.ops.object.delete(removeThese)
sourceDirectory = "model_folder"
model_name = "model.obj"
path = os.path.join(sourceDirectory, model_name)
bpy.ops.import_scene.obj(filepath=path, axis_forward='-Z', axis_up='Y', filter_glob="*.obj;*.mtl")
model_obj = bpy.context.scene.objects[model_name.split(".")[0]]
bpy.ops.object.select_all(action='DESELECT')
bpy.context.view_layer.objects.active = model_obj
model_obj.select_set(True)
sourceName = bpy.context.object.name
source = bpy.data.objects[sourceName]
#duplicating source model
bpy.ops.object.duplicate_move(OBJECT_OT_duplicate={"linked":False, "mode":'TRANSLATION'})
duplicate_obj = bpy.context.scene.objects[model_name.split(".")[0]+".001"]
bpy.ops.object.select_all(action='DESELECT')
bpy.context.view_layer.objects.active = duplicate_obj
duplicate_obj.select_set(True)
bpy.context.object.name = sourceName + "_Voxelized"
bpy.ops.object.transform_apply(location=False, rotation=True, scale=False)
bpy.ops.object.convert(target='MESH')
#source.hide_render = True
#source.hide_viewport = True
targetName = bpy.context.object.name
target = bpy.data.objects[targetName]
#converting to blocks
bpy.ops.object.modifier_add(type='REMESH')
bpy.context.object.modifiers["Remesh"].mode = 'BLOCKS'
bpy.context.object.modifiers["Remesh"].octree_depth = 7
bpy.context.object.modifiers["Remesh"].scale = 0.5
bpy.context.object.modifiers["Remesh"].use_remove_disconnected = True
bpy.ops.object.modifier_apply(modifier="Remesh")
#transferring UVs from source to target
bpy.ops.object.modifier_add(type='DATA_TRANSFER')
bpy.context.object.modifiers["DataTransfer"].use_loop_data = True
bpy.context.object.modifiers["DataTransfer"].data_types_loops = {'UV'}
bpy.context.object.modifiers["DataTransfer"].loop_mapping = 'POLYINTERP_NEAREST'
bpy.context.object.modifiers["DataTransfer"].object = source
bpy.ops.object.datalayout_transfer(modifier="DataTransfer")
bpy.ops.object.modifier_apply(modifier="DataTransfer")
#this is the chunk that reduces each voxel face to one colour
bpy.ops.object.editmode_toggle()
bpy.ops.mesh.select_mode(type='FACE')
bpy.context.area.ui_type = 'UV'
bpy.context.scene.tool_settings.use_uv_select_sync = False
bpy.context.space_data.uv_editor.sticky_select_mode = 'DISABLED'
bpy.context.scene.tool_settings.uv_select_mode = 'FACE'
bpy.context.space_data.pivot_point = 'INDIVIDUAL_ORIGINS'
bpy.ops.mesh.select_all(action='DESELECT')
#singularizing colours on each voxel face
count = 0
while count < 100:
bpy.ops.mesh.select_random(ratio=(count/100) + 0.01, seed=count)
bpy.ops.uv.select_all(action='SELECT')
bpy.ops.transform.resize(value=(0.01, 0.01, 0.01))
bpy.ops.mesh.hide(unselected=False)
count+=1
#returning to previous context
bpy.context.area.ui_type = 'VIEW_3D'
bpy.ops.mesh.reveal()
bpy.ops.object.editmode_toggle()
bpy.context.area.ui_type = 'TEXT_EDITOR'
#deleting source and keeping target
bpy.ops.object.select_all(action='DESELECT')
source.select_set(True)
bpy.ops.object.delete()
#selecting target
target.select_set(True)
#exporting voxelized model
output_directory = sourceDirectory
vox_model_name = targetName + '.obj'
output_file = os.path.join(output_directory, vox_model_name)
print(output_file)
bpy.ops.export_scene.obj(filepath=output_file)

python pyparrot image processing question

I'm trying to build code that wants to fly a drone with a camera with demoMamboVisionGUI.py below. When the code is executed, the camera screen comes up and press the button to start the flight. The code above displays four cam screens and detects a straight line while detecting a specified color value, blue (BGR2HSV). Using these two codes, the camera recognizes the blue straight line and flies forward little by little, and turns left and right at a certain angle, recognizes the bottom of the specified color (red), lands, and starts flying with another button. I want to make a code that recognizes green and lands. I would appreciate it if you could throw a simple hint.
enter image description here
import cv2
import numpy as np
def im_trim(img):
x = 160
y = 50
w = 280
h = 180
img_trim = img[y:y + h, x:x + w]
return img_trim
def go():
minimum = 9999;
min_theta=0;
try:
cap = cv2.VideoCapture(0)
except:
return
while True:
ret, P = cap.read()
img1 = P
cv2.imshow('asdf',img1)
img_HSV = cv2.cvtColor(img1, cv2.COLOR_BGR2HSV)
img_h, img_s, img_v = cv2.split(img_HSV)
cv2.imshow("HSV", img_HSV)
lower_b = np.array([100, 80, 100])
upper_b = np.array([120, 255, 255])
blue = cv2.inRange(img_HSV, lower_b, upper_b)
cv2.imshow('root',blue)
edges = cv2.Canny(blue, 50, 150, apertureSize =3)
lines = cv2.HoughLines(edges, 1, np.pi/180, threshold = 100)
if lines is not None:
for line in lines:
r, theta = line[0]
#if (r<minimum and r>0) and (np.rad2deg(theta)>-90 and np.rad2deg(theta)<90):
#minimum = r
#min_theta = theta
#if (r > 0 and r < 250) and (np.rad2deg(theta) > 170 or np.rad2deg(theta) < 10):
# self.drone_object.fly_direct(pitch=0, roll=-7, yaw=0, vertical_movement=0,
# duration=1)
#print("right")
#elif (r > 400 and r < 650) and (np.rad2deg(theta) > 170 or np.rad2deg(theta) < 10):
# self.drone_object.fly_direct(pitch=0, roll=7, yaw=0, vertical_movement=0,
# duration=1)
print(r, np.rad2deg(theta))
#이하 if문을 while 문을 통해 반복하여 길 경로를 직진경로로 만든 이후 진행
#if(np.rad2deg(min_theta)>=몇도이상 or 이하):
# 이하 -> 왼쪽턴, 이상 -> 오른쪽턴, 사이 -> 직진
a = np.cos(theta)
b = np.sin(theta)
x0 = a * r
y0 = b * r
x1 = int(x0 + 1000 * (-b))
y1 = int(y0 + 1000 * a)
x2 = int(x0 - 1000 * (-b))
y2 = int(y0 - 1000 * a)
cv2.line(img1, (x1,y1), (x2,y2), (0,255,0), 3)
cv2.imshow('hough',img1)
k = cv2.waitKey(1)
if k == 27:
break
cv2.destroyAllWindows()
if __name__ == "__main__":
go()
print("??")
================================================================================================
"""
Demo of the Bebop vision using DroneVisionGUI that relies on libVLC. It is a different
multi-threaded approach than DroneVision
Author: Amy McGovern
"""
from pyparrot.Minidrone import Mambo
from pyparrot.DroneVisionGUI import DroneVisionGUI
import cv2
# set this to true if you want to fly for the demo
testFlying = True
class UserVision:
def __init__(self, vision):
self.index = 0
self.vision = vision
def save_pictures(self, args):
# print("in save pictures on image %d " % self.index)
img = self.vision.get_latest_valid_picture()
if (img is not None):
filename = "test_image_%06d.png" % self.index
# uncomment this if you want to write out images every time you get a new one
#cv2.imwrite(filename, img)
self.index +=1
#print(self.index)
def demo_mambo_user_vision_function(mamboVision, args):
"""
Demo the user code to run with the run button for a mambo
:param args:
:return:
"""
mambo = args[0]
if (testFlying):
print("taking off!")
mambo.safe_takeoff(5)
if (mambo.sensors.flying_state != "emergency"):
print("flying state is %s" % mambo.sensors.flying_state)
print("Flying direct: going up")
mambo.fly_direct(roll=0, pitch=0, yaw=0, vertical_movement=15, duration=2)
print("flip left")
print("flying state is %s" % mambo.sensors.flying_state)
success = mambo.flip(direction="left")
print("mambo flip result %s" % success)
mambo.smart_sleep(5)
print("landing")
print("flying state is %s" % mambo.sensors.flying_state)
mambo.safe_land(5)
else:
print("Sleeeping for 15 seconds - move the mambo around")
mambo.smart_sleep(15)
# done doing vision demo
print("Ending the sleep and vision")
mamboVision.close_video()
mambo.smart_sleep(5)
print("disconnecting")
mambo.disconnect()
if __name__ == "__main__":
# you will need to change this to the address of YOUR mambo
mamboAddr = "B0:FC:36:F4:37:F9"
# make my mambo object
# remember to set True/False for the wifi depending on if you are using the wifi or the BLE to connect
mambo = Mambo(mamboAddr, use_wifi=True)
print("trying to connect to mambo now")
success = mambo.connect(num_retries=3)
print("connected: %s" % success)
if (success):
# get the state information
print("sleeping")
mambo.smart_sleep(1)
mambo.ask_for_state_update()
mambo.smart_sleep(1)
print("Preparing to open vision")
mamboVision = DroneVisionGUI(mambo, is_bebop=False, buffer_size=200,
user_code_to_run=demo_mambo_user_vision_function, user_args=(mambo, ))
userVision = UserVision(mamboVision)
mamboVision.set_user_callback_function(userVision.save_pictures, user_callback_args=None)
mamboVision.open_video()
==========================================================================

Save Video from Opencv

I create space detection code by using gray, gausian blur but now I dont know where to put these code to save my opencv video.
I already tried to put the code in random line but it only comes out of the file at the output, I cant play it and the video also just 5.6KB. I even tried to record a video for a very long time.
My code runs fine without save feature but I want to add save video feature:
fourcc = open_cv.VideoWriter_fourcc(*'DIVX')
out = open_cv.VideoWriter('output.avi',fourcc, 20.0, (640,480))
these is my code that i want to be add save video coding from above :
import cv2 as open_cv
import numpy as np
import logging
from drawing_utils import draw_contours
from colors import COLOR_GREEN, COLOR_WHITE, COLOR_BLUE
class MotionDetector:
LAPLACIAN = 1.4
DETECT_DELAY = 1
def __init__(self, video, coordinates, start_frame):
self.video = 0
self.coordinates_data = coordinates
self.start_frame = start_frame
self.contours = []
self.bounds = []
self.mask = []
def detect_motion(self):
capture = open_cv.VideoCapture(self.video)
capture.set(open_cv.CAP_PROP_POS_FRAMES, self.start_frame)
coordinates_data = self.coordinates_data
logging.debug("coordinates data: %s", coordinates_data)
for p in coordinates_data:
coordinates = self._coordinates(p)
logging.debug("coordinates: %s", coordinates)
rect = open_cv.boundingRect(coordinates)
logging.debug("rect: %s", rect)
new_coordinates = coordinates.copy()
new_coordinates[:, 0] = coordinates[:, 0] - rect[0]
new_coordinates[:, 1] = coordinates[:, 1] - rect[1]
logging.debug("new_coordinates: %s", new_coordinates)
self.contours.append(coordinates)
self.bounds.append(rect)
mask = open_cv.drawContours(
np.zeros((rect[3], rect[2]), dtype=np.uint8),
[new_coordinates],
contourIdx=-1,
color=255,
thickness=-1,
lineType=open_cv.LINE_8)
mask = mask == 255
self.mask.append(mask)
logging.debug("mask: %s", self.mask)
statuses = [False] * len(coordinates_data)
times = [None] * len(coordinates_data)
while capture.isOpened():
result, frame = capture.read()
if frame is None:
break
if not result:
raise CaptureReadError("Error reading video capture on frame %s" % str(frame))
blurred = open_cv.GaussianBlur(frame.copy(), (5, 5), 3)
grayed = open_cv.cvtColor(blurred, open_cv.COLOR_BGR2GRAY)
new_frame = frame.copy()
logging.debug("new_frame: %s", new_frame)
position_in_seconds = capture.get(open_cv.CAP_PROP_POS_MSEC) / 1000.0
for index, c in enumerate(coordinates_data):
status = self.__apply(grayed, index, c)
if times[index] is not None and self.same_status(statuses, index, status):
times[index] = None
continue
if times[index] is not None and self.status_changed(statuses, index, status):
if position_in_seconds - times[index] >= MotionDetector.DETECT_DELAY:
statuses[index] = status
times[index] = None
continue
if times[index] is None and self.status_changed(statuses, index, status):
times[index] = position_in_seconds
for index, p in enumerate(coordinates_data):
coordinates = self._coordinates(p)
color = COLOR_GREEN if statuses[index] else COLOR_BLUE
draw_contours(new_frame, coordinates, str(p["id"] + 1), COLOR_WHITE, color)
open_cv.imshow(str(self.video), new_frame)
k = open_cv.waitKey(1)
if k == ord("q"):
break
capture.release()
open_cv.destroyAllWindows()
def __apply(self, grayed, index, p):
coordinates = self._coordinates(p)
logging.debug("points: %s", coordinates)
rect = self.bounds[index]
logging.debug("rect: %s", rect)
roi_gray = grayed[rect[1]:(rect[1] + rect[3]), rect[0]:(rect[0] + rect[2])]
laplacian = open_cv.Laplacian(roi_gray, open_cv.CV_64F)
logging.debug("laplacian: %s", laplacian)
coordinates[:, 0] = coordinates[:, 0] - rect[0]
coordinates[:, 1] = coordinates[:, 1] - rect[1]
status = np.mean(np.abs(laplacian * self.mask[index])) < MotionDetector.LAPLACIAN
logging.debug("status: %s", status)
return status
#staticmethod
def _coordinates(p):
return np.array(p["coordinates"])
#staticmethod
def same_status(coordinates_status, index, status):
return status == coordinates_status[index]
#staticmethod
def status_changed(coordinates_status, index, status):
return status != coordinates_status[index]
class CaptureReadError(Exception):
pass
Create the file for the video to go in. You can think of this file like a book, but a book with no pages. This code is used to create the file:
fourcc = open_cv.VideoWriter_fourcc(*'DIVX')
out = open_cv.VideoWriter('output.avi',fourcc, 20.0, (640,480))
Not all codecs work on all systems. I use Ubuntu, and this is the code I use to create a video file:
out = cv2.VideoWriter('output.avi',cv2.VideoWriter_fourcc('M','J','P','G'), 30,(w,h))
If you try to play this video, nothing will happen. There are no frames in the video, so there is nothing to play (like a book with no pages). After you process each frame, the frame needs to be written to the video (like putting a page in a book):
out.write(new_frame)
You should do this around .imshow():
out.write(new_frame)
open_cv.imshow(str(self.video), new_frame)
k = open_cv.waitKey(1)
if k == ord("q"):
break

Categories