I have data in the form of yyyymm in a CSV file, I want to import it into pandas and find the range of timeperiod. eg: 202201. I want to apply datetime functions to this but am unable to convert it into appropriate format.
test['YEAR_MONTH'] = pd.to_datetime(
test['YEARMONTH'], format='%Y%m', errors='coerce').dropna()
I tried using this, but to no avail.
>>> import pandas as pd
>>> import datetime
# Sample data as per OP's format
>>> test = pd.DataFrame({'YEARMONTH':['202201','202202','202203']})
>>> test
YEARMONTH
0 202201
1 202202
2 202203
# Using strptime to convert to datetime object
>>> test_mod = test['YEARMONTH'].apply(lambda x: datetime.datetime.strptime(x,'%Y%m'))
>>> test_mod
0 2022-01-01
1 2022-02-01
2 2022-03-01
Name: YEARMONTH, dtype: datetime64[ns]
# Note - By default it assigns date as the first date of every month
Related
I have a csv file with column 'date' which has dates in many different formats like ddmmyy, mmddyy,yymmdd. I want to convert all the dates to y-m-d format
df=pd.read_csv(file)
df=df['date] .dt.strftime(%y-%m-%d)
This code gives error: "Can only use .dt accessor with datetimelike values"
You can utilise pd.to_datetime -
>>> import pandas as pd
>>>
>>> df = pd.DataFrame(['1/2/2020','12/31/2020','20-Jun-20'],columns=['Date'])
>>> df
Date
0 1/2/2020
1 12/31/2020
2 20-Jun-20
>>>
>>> df['Date'] = pd.to_datetime(df['Date'])
>>> df
Date
0 2020-01-02
1 2020-12-31
2 2020-06-20
>>>
>>> df['Date'] = pd.to_datetime(df['Date']).dt.strftime('%y-%m-%d')
>>>
>>> df
Date
0 20-01-02
1 20-12-31
2 20-06-20
>>>
Step 0:-
Your dataframe:-
df=pd.read_csv('your file name.csv')
Step 1:-
firstly convert your 'date' column into datetime by using to_datetime() method:-
df['date']=pd.to_datetime(df['date'])
Step 2:-
And If you want to convert them in string like format Then use:-
df['date']=df['date'].astype(str)
Now if you print df or write df(if you are using jupyter notebook)
Output:-
0 2020-01-01
1 2020-12-31
2 2020-06-20
I get a date in data which looks like this "2014-12-19T05:00:00". I want to convert it in order to obtain a Date or String object and get something like "01-04-2018" that its "dd-MM-YYYY" in dataframe. How can I do it?
The result will be used for time series. So far,my time series result is like this, perhaps because it doesn't detect the date format (x-axis not in datetime).
Date column:
For a pandas dataframe column/series:
Convert a string column (dtype of object) to a datetime column (dtype of datetime64[ns]) using to_datetime. Then if you want another column with your datetimes back in a string format of your choosing, use dt.strftime.
An example:
df = pd.DataFrame({
"Date": ["2014-12-19T05:00:00", "2014-12-20T05:00:00", "2014-12-21T05:00:00"],
"Value": [0, 2, 4]})
df['DateTime'] = pd.to_datetime(df['Date'])
df['MyDateTimeString'] = df['DateTime'].dt.strftime('%Y-%m-%d')
print(df)
# Date Value DateTime MyDateTimeString
# 0 2014-12-19T05:00:00 0 2014-12-19 05:00:00 2014-12-19
# 1 2014-12-20T05:00:00 2 2014-12-20 05:00:00 2014-12-20
# 2 2014-12-21T05:00:00 4 2014-12-21 05:00:00 2014-12-21
In general:
To read your strings into datetime objects, use strptime:
import datetime
d = datetime.datetime.strptime("2014-12-19T05:00:00", "%Y-%m-%dT%H:%M:%S")
Then to get a string representation of those datetime objects, use strftime:
d.strftime("%d-%m-%Y")
For more general string-to-datetime parsing, the dateparser library is handy:
import dateparser
dateparser.parse("2014-12-19T05:00:00").strftime("%d-%m-%Y")
# '19-12-2014'
dateparser.parse("December 19, 2014 at 5am").strftime("%d-%m-%Y")
# '19-12-2014'
I recommend using https://pypi.org/project/python-dateutil/
(Install with pip install python-dateutil.)
>>> import dateutil.parser
>>> d = dateutil.parser.isoparse('2014-12-19T05:00:00')
>>> print(d.strftime('%m-%d-%Y'))
12-19-2014
I have a csv file, and want to use H2O to do DeepLearning. But it has some Chinese and datetime that when I finish my Deeplearning need to save output to csv, it can't return to original data.
I use small data to show my problem here.
In[1]: df = pd.DataFrame({'datetime':['2016-12-17 00:00:00'],'time':['00:00:30'],'month':['月'], 'weekend':['周六']})
print(df.dtypes)
df
out[1]: datetime object
time object
month object
weekend object
dtype: object
datetime time month weekend
0 2016-12-17 00:00:00 00:00:30 月 周六
In[2]: h2o_frame = h2o.H2OFrame(df);h2o_frame ;h2o_frame.types ;h2o_frame
C:\Users\thi\Anaconda3\lib\site-packages\h2o\utils\shared_utils.py:170: FutureWarning: Method .as_matrix will be removed in a future version. Use .values instead.
data = _handle_python_lists(python_obj.as_matrix().tolist(), -1)[1]
out[2]: Parse progress: |█████████████████████████████████████████████████████████| 100%
datetime time month weekend
2016-12-17 00:00:00 1970-01-01 00:00:30 <0xA4EB> <0xA9>P<0xA4BB>
the time I want it just only 00:00:30, any way to fix it?
month and weekends I don't find any way to let it show Chinese, but I still finish my deeplearning
But when I want to let h2oframe back to DataFrame and save to csv file, it save <0xA4EB> for me but not 月, and datetime change to int
In[3]: dff = h2o_frame.as_data_frame();dff
out[3]: datetime time month weekend
0 1481932800000 30000 <0xA4EB> <0xA9>P<0xA4BB>
How to correctly return character from h2oframe to DataFrame
How to correctly return datetime from h2oframe to DataFrame
One simplest way to solve this is, when you convet pandas frame to H2OFrame use argument column_types ,as below:
In [69]: col_types
Out[69]: ['categorical', 'categorical', 'categorical', 'categorical']
In [70]: h2o_frame = h2o.H2OFrame(df,column_types=col_types);h2o_frame ;h2o_frame.types ;h2o_frame
Parse progress: |█████████████████████████████████████████████████████████████████████████████| 100%
Out[70]:
datetime month time weekend
------------------- ------- -------- ---------
2016-12-17 00:00:00 月 00:00:30 周六
[1 row x 4 columns]
In [71]: dff = h2o_frame.as_data_frame();dff
Out[71]:
datetime month time weekend
0 2016-12-17 00:00:00 月 00:00:30 周六
allfiles = h2o.import_file(path='data/', pattern=".csv")
df = allfiles.as_data_frame()
df['datetime'] = pd.to_datetime(df["datetime"], unit='ms')
I have a column I_DATE of type string(object) in a dataframe called train as show below.
I_DATE
28-03-2012 2:15:00 PM
28-03-2012 2:17:28 PM
28-03-2012 2:50:50 PM
How to convert I_DATE from string to datetime format & specify the format of input string.
Also, how to filter rows based on a range of dates in pandas?
Use to_datetime. There is no need for a format string since the parser is able to handle it:
In [51]:
pd.to_datetime(df['I_DATE'])
Out[51]:
0 2012-03-28 14:15:00
1 2012-03-28 14:17:28
2 2012-03-28 14:50:50
Name: I_DATE, dtype: datetime64[ns]
To access the date/day/time component use the dt accessor:
In [54]:
df['I_DATE'].dt.date
Out[54]:
0 2012-03-28
1 2012-03-28
2 2012-03-28
dtype: object
In [56]:
df['I_DATE'].dt.time
Out[56]:
0 14:15:00
1 14:17:28
2 14:50:50
dtype: object
You can use strings to filter as an example:
In [59]:
df = pd.DataFrame({'date':pd.date_range(start = dt.datetime(2015,1,1), end = dt.datetime.now())})
df[(df['date'] > '2015-02-04') & (df['date'] < '2015-02-10')]
Out[59]:
date
35 2015-02-05
36 2015-02-06
37 2015-02-07
38 2015-02-08
39 2015-02-09
Approach: 1
Given original string format: 2019/03/04 00:08:48
you can use
updated_df = df['timestamp'].astype('datetime64[ns]')
The result will be in this datetime format: 2019-03-04 00:08:48
Approach: 2
updated_df = df.astype({'timestamp':'datetime64[ns]'})
For a datetime in AM/PM format, the time format is '%I:%M:%S %p'. See all possible format combinations at https://strftime.org/. N.B. If you have time component as in the OP, the conversion will be done much, much faster if you pass the format= (see here for more info).
df['I_DATE'] = pd.to_datetime(df['I_DATE'], format='%d-%m-%Y %I:%M:%S %p')
To filter a datetime using a range, you can use query:
df = pd.DataFrame({'date': pd.date_range('2015-01-01', '2015-04-01')})
df.query("'2015-02-04' < date < '2015-02-10'")
or use between to create a mask and filter.
df[df['date'].between('2015-02-04', '2015-02-10')]
I've been playing around with datetimes and timestamps, and I've come across something that I can't understand.
import pandas as pd
import datetime
year_month = pd.DataFrame({'year':[2001,2002,2003], 'month':[1,2,3]})
year_month['date'] = [datetime.datetime.strptime(str(y) + str(m) + '1', '%Y%m%d') for y,m in zip(year_month['year'], year_month['month'])]
>>> year_month
month year date
0 1 2001 2001-01-01
1 2 2002 2002-02-01
2 3 2003 2003-03-01
I think the unique function is doing something to the timestamps that is changing them somehow:
first_date = year_month['date'].unique()[0]
>>> first_date == year_month['date'][0]
False
In fact:
>>> year_month['date'].unique()
array(['2000-12-31T16:00:00.000000000-0800',
'2002-01-31T16:00:00.000000000-0800',
'2003-02-28T16:00:00.000000000-0800'], dtype='datetime64[ns]')
My suspicions are that there is some sort of timezone difference underneath the functions, but I can't figure it out.
EDIT
I just checked the python commands list(set()) as an alternative to the unique function, and that works. This must be a quirk of the unique() function.
You have to convert to datetime64 to compare:
In [12]:
first_date == year_month['date'][0].to_datetime64()
Out[12]:
True
This is because unique has converted the dtype to datetime64:
In [6]:
first_date = year_month['date'].unique()[0]
first_date
Out[6]:
numpy.datetime64('2001-01-01T00:00:00.000000000+0000')
I think is because unique returns a np array and there is no dtype that numpy understands TimeStamp currently: Converting between datetime, Timestamp and datetime64