I'm trying to loop the Shockley diode equation over three different temperatures (with three different saturation currents), for a range of values of voltage, and then insert these three lots of data into lists.
kb = 1.38E-23
q = 1.602E-19
voltage = np.arange(0.5, 1.02, 0.02)
T = np.array([269, 289.1, 294.5])
Is = np.array([1.707E-14, 6.877E-14, 1.4510E-13])
i269 = []
i284 = []
i294 = []
for i in range(1, len(voltage)):
for j in range(1, 3):
I = Is[j] * np.exp((voltage[i] * q) / (kb * T[j]))
i269.append(I[j[0]])
i284.append(I[j[1]])
i294.append(I[j[2]])
I know the method I've used here is not syntactically correct but I've written it this way to try to aid my efforts in conveying what it is I'm trying to achieve.
I want to loop through voltage first for j = 0, and append I into i269, then again through voltage for j = 1 and append into i284 etc.
Any help would be much appreciated.
Thanks
Note that with your current approach I cannot be indexed, as you're simply assigning a value to it. You'd firstly need to define it as a list, and then index it to assign its values to i269, i284 or i294:
kb = 1.38E-23
q = 1.602E-19
voltage = np.arange(0.5, 1.02, 0.02)
T = np.array([269, 289.1, 294.5])
Is = np.array([1.707E-14, 6.877E-14, 1.4510E-13])
I = [0 for _ in range(len(T))]
i269 = []
i284 = []
i294 = []
for i in range(len(voltage)):
for j in range(3):
I[j] = Is[j] * np.exp((voltage[i] * q) / (kb * T[j]))
i269.append(I[0])
i284.append(I[1])
i294.append(I[2])
However, it is possible to gain improvements in performance by leveraging broadcasting and vectorising the above as:
i269, i284, i294 = Is[:,None] * np.exp((voltage * q) / (kb * T)[:,None])
Lets check the results and have a look at the timings with both approaches:
kb = 1.38E-23
q = 1.602E-19
voltage = np.arange(0.5, 1.02, 0.02)
T = np.array([269, 289.1, 294.5])
Is = np.array([1.707E-14, 6.877E-14, 1.4510E-13])
def current_approach(kb, q, voltage, T, Is):
I = [0 for _ in range(len(T))]
i269 = []
i284 = []
i294 = []
for i in range(len(voltage)):
for j in range(3):
I[j] = Is[j] * np.exp((voltage[i] * q) / (kb * T[j]))
i269.append(I[0])
i284.append(I[1])
i294.append(I[2])
return i269, i284, i294
def vect_approach(kb, q, voltage, T, Is):
i269, i284, i294 = Is[:,None] * np.exp((voltage * q) / (kb * T)[:,None])
return i269, i284, i294
np.allclose(current_approach(kb, q, voltage, T, Is),
vect_approach(kb, q, voltage, T, Is))
# True
%timeit current_approach(kb, q, voltage, T, Is)
# 201 µs ± 3.46 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
%timeit vect_approach(kb, q, voltage, T, Is)
# 30.9 ns ± 0.647 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each)
Up to a huge 6,500x speedup with the vectorised approach!
I want to invert a matrix without using numpy.linalg.inv.
The reason is that I am using Numba to speed up the code, but numpy.linalg.inv is not supported, so I am wondering if I can invert a matrix with 'classic' Python code.
With numpy.linalg.inv an example code would look like that:
import numpy as np
M = np.array([[1,0,0],[0,1,0],[0,0,1]])
Minv = np.linalg.inv(M)
Here is a more elegant and scalable solution, imo. It'll work for any nxn matrix and you may find use for the other methods. Note that getMatrixInverse(m) takes in an array of arrays as input. Please feel free to ask any questions.
def transposeMatrix(m):
return map(list,zip(*m))
def getMatrixMinor(m,i,j):
return [row[:j] + row[j+1:] for row in (m[:i]+m[i+1:])]
def getMatrixDeternminant(m):
#base case for 2x2 matrix
if len(m) == 2:
return m[0][0]*m[1][1]-m[0][1]*m[1][0]
determinant = 0
for c in range(len(m)):
determinant += ((-1)**c)*m[0][c]*getMatrixDeternminant(getMatrixMinor(m,0,c))
return determinant
def getMatrixInverse(m):
determinant = getMatrixDeternminant(m)
#special case for 2x2 matrix:
if len(m) == 2:
return [[m[1][1]/determinant, -1*m[0][1]/determinant],
[-1*m[1][0]/determinant, m[0][0]/determinant]]
#find matrix of cofactors
cofactors = []
for r in range(len(m)):
cofactorRow = []
for c in range(len(m)):
minor = getMatrixMinor(m,r,c)
cofactorRow.append(((-1)**(r+c)) * getMatrixDeternminant(minor))
cofactors.append(cofactorRow)
cofactors = transposeMatrix(cofactors)
for r in range(len(cofactors)):
for c in range(len(cofactors)):
cofactors[r][c] = cofactors[r][c]/determinant
return cofactors
Here is another way, using gaussian elimination instead:
def eliminate(r1, r2, col, target=0):
fac = (r2[col]-target) / r1[col]
for i in range(len(r2)):
r2[i] -= fac * r1[i]
def gauss(a):
for i in range(len(a)):
if a[i][i] == 0:
for j in range(i+1, len(a)):
if a[i][j] != 0:
a[i], a[j] = a[j], a[i]
break
else:
raise ValueError("Matrix is not invertible")
for j in range(i+1, len(a)):
eliminate(a[i], a[j], i)
for i in range(len(a)-1, -1, -1):
for j in range(i-1, -1, -1):
eliminate(a[i], a[j], i)
for i in range(len(a)):
eliminate(a[i], a[i], i, target=1)
return a
def inverse(a):
tmp = [[] for _ in a]
for i,row in enumerate(a):
assert len(row) == len(a)
tmp[i].extend(row + [0]*i + [1] + [0]*(len(a)-i-1))
gauss(tmp)
ret = []
for i in range(len(tmp)):
ret.append(tmp[i][len(tmp[i])//2:])
return ret
As of at least July 16, 2018 Numba has a fast matrix inverse. (You can see how they overload the standard NumPy inverse and other operations here.)
Here are the results of my benchmarking:
import numpy as np
from scipy import linalg as sla
from scipy import linalg as nla
import numba
def gen_ex(d0):
x = np.random.randn(d0,d0)
return x.T + x
#numba.jit
def inv_nla_jit(A):
return np.linalg.inv(A)
#numba.jit
def inv_sla_jit(A):
return sla.inv(A)
For small matrices it is particularly fast:
ex1 = gen_ex(4)
%timeit inv_nla_jit(ex1) # NumPy + Numba
%timeit inv_sla_jit(ex1) # SciPy + Numba
%timeit nla.inv(ex1) # NumPy
%timeit sla.inv(ex1) # SciPy
[Out]
2.54 µs ± 467 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
67.3 µs ± 9.18 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
63.5 µs ± 7.65 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
56.6 µs ± 5.03 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
Notice that the speedup only works for NumPy inverse, not SciPy (as expected).
Slightly larger matrix:
ex2 = gen_ex(40)
%timeit inv_nla_jit(ex2) # NumPy + Numba
%timeit inv_sla_jit(ex2) # SciPy + Numba
%timeit nla.inv(ex2) # NumPy
%timeit sla.inv(ex2) # SciPy
[Out]
131 µs ± 12.9 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
278 µs ± 26.2 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
231 µs ± 24.5 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
189 µs ± 11.2 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
So there's still a speedup here but SciPy is catching up.
For a 4 x 4 matrix it's probably just about OK to use the mathematical formula, which you can find using Googling "formula for 4 by 4 matrix inverse". For example here (I can't vouch for its accuracy):
http://www.cg.info.hiroshima-cu.ac.jp/~miyazaki/knowledge/teche23.html
In general inverting a general matrix is not for the faint-hearted. You have to be aware of all the mathematically difficult cases and know why they won't apply to your usage, and catch them when you are supplied with mathematically pathological inputs (that, or return results of low accuracy or numerical garbage in the knowledge that it won't matter in your usage case provided you don't actually end up dividing by zero or overflowing MAXFLOAT ... which you might catch with an exception handler and present as "Error: matrix is singular or very close thereto").
It's generally better as a programmer to use library code written by numerical mathematics experts, unless you are willing to spend time understanding the physical and mathematical nature of the particular problem that you are addressing and become your own mathematics expert in your own specialist field.
I found that Gaussian Jordan Elimination Algorithm helped a lot when attempting this. If you're going to use a given matrix (any size, i.e 5x5) where the hardcore formula for it is 49 pages long. It's best to use this. To inverse a matrix place it as a 2D array and then run the Inverse function
# Python test Guassion Jordan Elimination
# Inputs are 2D array not matrix
Test_Array = [[3,3,2,1,1],[2,1,3,2,3],[1,3,3,2,2],[2,3,3,1,1],
[3,1,2,1,2]]
# Creating storage & initalizing for augmented matrix
# this is the same as the np.zeros((n,2*n)) function
def nx2n(n_Rows, n_Columns):
Zeros = []
for i in range(n_Rows):
Zeros.append([])
for j in range(n_Columns*2):
Zeros[i].append(0)
return Zeros
# Applying matrix coefficients
def update(inputs, n_Rows, n_Columns, Zero):
for i in range(n_Rows):
for j in range(n_Columns):
Zero[i][j] = inputs[i][j]
return Zero
# Augmenting Identity Matrix of Order n
def identity(n_Rows, n_Columns, Matrix):
for i in range(n_Rows):
for j in range(n_Columns):
if i == j:
Matrix[i][j+n_Columns] = 1
return Matrix
# Applying & implementing the GJE algorithm
def Gussain_Jordan_Elimination(n_Rows, n_Columns, Matrix):
for i in range(n_Rows):
if Matrix[i][i] == 0:
print('error cannot divide by "0"')
for j in range(n_Columns):
if i != j:
ratio = Matrix[j][i]/Matrix[i][i]
for k in range(2*n_Columns):
Matrix[j][k] = Matrix[j][k] - ratio * Matrix[i][k]
return Matrix
# Row Operation to make Principal Diagonal Element to '1'
def row_op(n_Rows, n_Columns, Matrix):
for i in range(n_Rows):
divide = Matrix[i][i]
for j in range(2*n_Columns):
Matrix[i][j] = Matrix[i][j]/divide
return Matrix
# Display Inversed Matix
def Inverse(Matrix):
returnable = []
number_Rows = int(len(Matrix))
number_Columns = int(len(Matrix[0]))
Inversed_Matrix = (row_op(number_Rows, number_Columns,
Gussain_Jordan_Elimination(number_Rows, number_Columns,
identity(number_Rows, number_Columns,
update(Matrix, number_Rows, number_Columns,
nx2n(number_Rows, number_Columns))))))
for i in range(number_Rows):
returnable.append([])
for j in range(number_Columns, 2*number_Columns):
returnable[i].append(Inversed_Matrix[i][j])
return returnable
print(Inverse(Test_Array))
Simply add all methods
import math
def getMinorIndex(matrixLocal, x, y):
minor = []
for i in range(3):
minorRow = []
if i == x:
continue
for j in range(3):
if j == y:
continue
minorRow.append(matrixLocal[i][j])
minor.append(minorRow)
return minor
def getDeterminant2By2(matrixLocal):
determinant = matrixLocal[0][0] * matrixLocal[1][1] - matrixLocal[0][1] * matrixLocal[1][0]
return determinant
def getDeterminant(matrixLocal):
determinant = 0
for x in range(3):
t = getDeterminant2By2(getMinorIndex(matrixLocal, 0, x))
e = matrixLocal[0][x]
determinant += (t * e * math.pow(-1, x))
return determinant
def getCofactorMatrix(matrixLocal):
cofactorMatrix = []
for i in range(3):
row = []
for j in range(3):
e = matrixLocal[i][j]
t = getDeterminant2By2(getMinorIndex(matrixLocal, i, j))
row.append(t * math.pow(-1, i + j))
cofactorMatrix.append(row)
return cofactorMatrix
def transpose(matrixLocal):
transposeMatrix = []
for i in range(3):
row = []
for j in range(3):
e = matrixLocal[j][i]
row.append(e)
transposeMatrix.append(row)
return transposeMatrix
def divideMatrix(matrixLocal, divisor):
ansMatrix = []
for i in range(3):
row = []
for j in range(3):
e = matrixLocal[i][j]/divisor
row.append(e)
ansMatrix.append(row)
return ansMatrix
cofactor = getCofactorMatrix(matrix)
adjoint = transpose(cofactor)
det = getDeterminant(matrix)
inverse = divideMatrix(adjoint, det)
inverse
Inverse matrix of 3x3 without numpy [python3]
import pprint
def inverse_3X3_matrix():
I_Q_list = [[0, 1, 1],
[2, 3, -1],
[-1, 2, 1]]
det_ = I_Q_list[0][0] * (
(I_Q_list[1][1] * I_Q_list[2][2]) - (I_Q_list[1][2] * I_Q_list[2][1])) - \
I_Q_list[0][1] * (
(I_Q_list[1][0] * I_Q_list[2][2]) - (I_Q_list[1][2] * I_Q_list[2][0])) + \
I_Q_list[0][2] * (
(I_Q_list[1][0] * I_Q_list[2][1]) - (I_Q_list[1][1] * I_Q_list[2][0]))
co_fctr_1 = [(I_Q_list[1][1] * I_Q_list[2][2]) - (I_Q_list[1][2] * I_Q_list[2][1]),
-((I_Q_list[1][0] * I_Q_list[2][2]) - (I_Q_list[1][2] * I_Q_list[2][0])),
(I_Q_list[1][0] * I_Q_list[2][1]) - (I_Q_list[1][1] * I_Q_list[2][0])]
co_fctr_2 = [-((I_Q_list[0][1] * I_Q_list[2][2]) - (I_Q_list[0][2] * I_Q_list[2][1])),
(I_Q_list[0][0] * I_Q_list[2][2]) - (I_Q_list[0][2] * I_Q_list[2][0]),
-((I_Q_list[0][0] * I_Q_list[2][1]) - (I_Q_list[0][1] * I_Q_list[2][0]))]
co_fctr_3 = [(I_Q_list[0][1] * I_Q_list[1][2]) - (I_Q_list[0][2] * I_Q_list[1][1]),
-((I_Q_list[0][0] * I_Q_list[1][2]) - (I_Q_list[0][2] * I_Q_list[1][0])),
(I_Q_list[0][0] * I_Q_list[1][1]) - (I_Q_list[0][1] * I_Q_list[1][0])]
inv_list = [[1 / det_ * (co_fctr_1[0]), 1 / det_ * (co_fctr_2[0]), 1 / det_ * (co_fctr_3[0])],
[1 / det_ * (co_fctr_1[1]), 1 / det_ * (co_fctr_2[1]), 1 / det_ * (co_fctr_3[1])],
[1 / det_ * (co_fctr_1[2]), 1 / det_ * (co_fctr_2[2]), 1 / det_ * (co_fctr_3[2])]]
pprint.pprint(inv_list)
inverse_3X3_matrix()
I used the formula from http://cg.info.hiroshima-cu.ac.jp/~miyazaki/knowledge/teche23.html to write the function that does the inversion of a 4x4 matrix:
import numpy as np
def myInverse(A):
detA = np.linalg.det(A)
b00 = A[1,1]*A[2,2]*A[3,3] + A[1,2]*A[2,3]*A[3,1] + A[1,3]*A[2,1]*A[3,2] - A[1,1]*A[2,3]*A[3,2] - A[1,2]*A[2,1]*A[3,3] - A[1,3]*A[2,2]*A[3,1]
b01 = A[0,1]*A[2,3]*A[3,2] + A[0,2]*A[2,1]*A[3,3] + A[0,3]*A[2,2]*A[3,1] - A[0,1]*A[2,2]*A[3,3] - A[0,2]*A[2,3]*A[3,1] - A[0,3]*A[2,1]*A[3,2]
b02 = A[0,1]*A[1,2]*A[3,3] + A[0,2]*A[1,3]*A[3,1] + A[0,3]*A[1,1]*A[3,2] - A[0,1]*A[1,3]*A[3,2] - A[0,2]*A[1,1]*A[3,3] - A[0,3]*A[1,2]*A[3,1]
b03 = A[0,1]*A[1,3]*A[2,2] + A[0,2]*A[1,1]*A[2,3] + A[0,3]*A[1,2]*A[2,1] - A[0,1]*A[1,2]*A[2,3] - A[0,2]*A[1,3]*A[2,1] - A[0,3]*A[1,1]*A[2,2]
b10 = A[1,0]*A[2,3]*A[3,2] + A[1,2]*A[2,0]*A[3,3] + A[1,3]*A[2,2]*A[3,0] - A[1,0]*A[2,2]*A[3,3] - A[1,2]*A[2,3]*A[3,0] - A[1,3]*A[2,0]*A[3,2]
b11 = A[0,0]*A[2,2]*A[3,3] + A[0,2]*A[2,3]*A[3,0] + A[0,3]*A[2,0]*A[3,2] - A[0,0]*A[2,3]*A[3,2] - A[0,2]*A[2,0]*A[3,3] - A[0,3]*A[2,2]*A[3,0]
b12 = A[0,0]*A[1,3]*A[3,2] + A[0,2]*A[1,0]*A[3,3] + A[0,3]*A[1,2]*A[3,0] - A[0,0]*A[1,2]*A[3,3] - A[0,2]*A[1,3]*A[3,0] - A[0,3]*A[1,0]*A[3,2]
b13 = A[0,0]*A[1,2]*A[2,3] + A[0,2]*A[1,3]*A[2,0] + A[0,3]*A[1,0]*A[2,2] - A[0,0]*A[1,3]*A[2,2] - A[0,2]*A[1,0]*A[2,3] - A[0,3]*A[1,2]*A[2,0]
b20 = A[1,0]*A[2,1]*A[3,3] + A[1,1]*A[2,3]*A[3,0] + A[1,3]*A[2,0]*A[3,1] - A[1,0]*A[2,3]*A[3,1] - A[1,1]*A[2,0]*A[3,3] - A[1,3]*A[2,1]*A[3,0]
b21 = A[0,0]*A[2,3]*A[3,1] + A[0,1]*A[2,0]*A[3,3] + A[0,3]*A[2,1]*A[3,0] - A[0,0]*A[2,1]*A[3,3] - A[0,1]*A[2,3]*A[3,0] - A[0,3]*A[2,0]*A[3,1]
b22 = A[0,0]*A[1,1]*A[3,3] + A[0,1]*A[1,3]*A[3,0] + A[0,3]*A[1,0]*A[3,1] - A[0,0]*A[1,3]*A[3,1] - A[0,1]*A[1,0]*A[3,3] - A[0,3]*A[1,1]*A[3,0]
b23 = A[0,0]*A[1,3]*A[2,1] + A[0,1]*A[1,0]*A[2,3] + A[0,3]*A[1,1]*A[2,0] - A[0,0]*A[1,1]*A[2,3] - A[0,1]*A[1,3]*A[2,0] - A[0,3]*A[1,0]*A[2,1]
b30 = A[1,0]*A[2,2]*A[3,1] + A[1,1]*A[2,0]*A[3,2] + A[1,2]*A[2,1]*A[3,0] - A[1,0]*A[2,1]*A[3,2] - A[1,1]*A[2,2]*A[3,0] - A[1,2]*A[2,0]*A[3,1]
b31 = A[0,0]*A[2,1]*A[3,2] + A[0,1]*A[2,2]*A[3,0] + A[0,2]*A[2,0]*A[3,1] - A[0,0]*A[2,2]*A[3,1] - A[0,1]*A[2,0]*A[3,2] - A[0,2]*A[2,1]*A[3,0]
b32 = A[0,0]*A[1,2]*A[3,1] + A[0,1]*A[1,0]*A[3,2] + A[0,2]*A[1,1]*A[3,0] - A[0,0]*A[1,1]*A[3,2] - A[0,1]*A[1,2]*A[3,0] - A[0,2]*A[1,0]*A[3,1]
b33 = A[0,0]*A[1,1]*A[2,2] + A[0,1]*A[1,2]*A[2,0] + A[0,2]*A[1,0]*A[2,1] - A[0,0]*A[1,2]*A[2,1] - A[0,1]*A[1,0]*A[2,2] - A[0,2]*A[1,1]*A[2,0]
Ainv = np.array([[b00, b01, b02, b03], [b10, b11, b12, b13], [b20, b21, b22, b23], [b30, b31, b32, b33]]) / detA
return Ainv