Scraping returning None - python

I am trying to scrape yellow pages everything working fine except scraping the phone numbers! it's a div class = 'popover-phones' but having an a tag with href = the phone number can anyone assist me please. yellow pages inspection
import item as item
import requests
from bs4 import BeautifulSoup
import json
from csv import writer
url = 'https://yellowpages.com.eg/en/category/charcoal'
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/103.0.0.0 Safari/537.36'}
r = requests.get(url, headers=headers)
soup = BeautifulSoup(r.content, 'html.parser')
articles = soup.find_all('div', class_= 'col-xs-12 item-details')
for item in articles:
address = item.find('a',class_= 'address-text').text
company = item.find('a',class_= 'item-title').text
telephone = item.find('div', class_='popover-phones')enter code here
print(company,address,telephone)

The phone numbers you see are loaded from external URL. To get all phone numbers from the page you can use next example:
import requests
from bs4 import BeautifulSoup
url = "https://yellowpages.com.eg/en/category/charcoal"
soup = BeautifulSoup(requests.get(url).content, "html.parser")
for p in soup.select("[data-tooltip-phones]"):
phone_url = "https://yellowpages.com.eg" + p["data-tooltip-phones"]
title = p.find_previous(class_="item-title").text
phones = requests.get(phone_url).json()
print(title, *[b for a in phones for b in a])
Prints:
2 Bacco 02-3390-8764
3 A Group International 0120-3530-005 057-2428-449
3 A Group International 0120-3833-500 0120-3530-005
Abdel Karim 0122-3507-461
Abdel Sabour Zidan 03-4864-641
Abou Aoday 0111-9226-536 0100-3958-351
Abou Eid For Charcoal Trading 0110-0494-770
Abou Fares For Charcoal Trade 0128-3380-916
Abou Karim Store 0100-6406-939
Adel Sons 0112-1034-398 0115-0980-776
Afandina 0121-2414-087
Ahmed El Fahham 02-2656-0815
Al Baraka For Charcoal 0114-6157-799 0109-3325-720
Al Ghader For Import & Export 03-5919-355 0111-0162-602 0120-6868-434
Al Mashd For Coal 0101-0013-743 0101-0013-743
Al Zahraa Co. For Exporting Charcoal & Agriculture Products 040-3271-056 0100-0005-174 040-3271-056
Alex Carbon Group 03-3935-902
Alwaha Charcoal Trade Est. 0100-4472-554 0110-1010-810 0100-9210-812
Aly Abdel Rahman For Charcoal Trade 03-4804-440 0122-8220-661
Amy Deluxe Egypt 0112-5444-410

Related

Zillow returns first 7 properties

Trying to make a long story short so I apologize in advance, feel free to ask more questions for clarity.
Essentially I am trying to make a web scraping script that takes info from Zillow and puts it into a pandas data frame so that I can learn both pandas and beautifulsoup4 in the process. I am trying to avoid using the Zillow API but it seems it might be my only option. So, when I scrape the location the user inputs, it only returns 7 properties. I was told this is because of the Javascript Zillow uses ("Lazy-loading" or "infinite scrolling".) Basically the other properties aren't loaded until the user scrolls. I tried using selenium instead of requests but I end up getting bot verification captcha'd. I tried using headers and everything but cant seem to figure out a solution other than the API.
Here's my code BEFORE using selenium (aka when it semi-worked):
from bs4 import BeautifulSoup
import pandas as pd
from uszipcode import SearchEngine
import requests, prettify
search = SearchEngine()
zipcode = input("What is your zipcode: ")
zipcode_info = search.by_zipcode(zipcode)
headers = {
'accept':
'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8',
'accept-encoding' : 'en-US,en;0.8',
'upgrade-insecure-requests': '1',
'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/61.0.3163.100 Safari/537.36'
}
with requests.Session() as session:
url= "https://www.zillow.com/homes/for_sale/" + zipcode_info.major_city + "/"
response = session.get(url, headers=headers)
soup = BeautifulSoup(response.content, 'html.parser')
soup.prettify()
df = pd.DataFrame()
address = list()
price = list()
bed_bath = list()
links = list()
properties = soup.find_all("li", attrs={"class": "ListItem-c11n-8-73-8__sc-10e22w8-0 srp__hpnp3q-0 enEXBq with_constellation"})
for li in properties:
try:
address.append(li.find("a", attrs = {"class": "StyledPropertyCardDataArea-c11n-8-73-8__sc-yipmu-0 lhIXlm property-card-link"}).text)
except:
pass
try:
price.append(li.find("span", attrs = {"data-test": "property-card-price"}).text)
except:
pass
try:
span = (li.find("span", attrs = {"class": "StyledPropertyCardHomeDetails-c11n-8-73-8__sc-1mlc4v9-0 jlVIIO"}))
for subspan in span:
bed_bath.append(subspan.find("b").text)
except:
pass
try:
links.append( (li.find("a", attrs = {"data-test": "property-card-link"}).get("href")) )
except:
pass
df['Address'] = address
df['Price'] = price
df['Links'] = links
print (df)
And the output is:
Address Price Links
0 525 W River Dr, Pennsauken, NJ 08110 $259,900 https://www.zillow.com/homedetails/525-W-River...
1 7519 Remington, Merchantville, NJ 08109 $270,000 https://www.zillow.com/homedetails/7519-Reming...
2 2269 Marlon Ave, Pennsauken, NJ 08110 $220,000 https://www.zillow.com/homedetails/2269-Marlon...
3 8129 River Rd, Pennsauken, NJ 08110 $324,999 https://www.zillow.com/homedetails/8129-River-...
4 1653 Springfield Ave, Pennsauken, NJ 08110 $259,900 https://www.zillow.com/homedetails/1653-Spring...
5 5531 Jackson Ave, Pennsauken, NJ 08110 $265,000 https://www.zillow.com/homedetails/5531-Jackso...
6 8141 Stow Rd, Pennsauken, NJ 08110 $359,000 https://www.zillow.com/homedetails/8141-Stow-R...
7 2203 42nd St, Pennsauken, NJ 08110 $275,000 https://www.zillow.com/homedetails/2203-42nd-S...

Web scraping multiple pages in python

So I'm trying to web scrape a website that has around 500 pages for used cars and each page has around 22 cars, I managed to extract the first 22 cars from the first page, but how can make my code iterate through all the pages so I can get all cars? (I'm a beginner so sorry if my code is not well structured)
from bs4 import BeautifulSoup
import requests
import pandas as pd
import numpy as np
website = 'https://ksa.yallamotor.com/used-cars/search'
headers = {
'User-Agent' : 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:103.0) Gecko/20100101 Firefox/103.0'
}
response = requests.get(website, headers=headers)
links = []
car_name = []
model_year = []
cars = []
soup = BeautifulSoup(response.text, 'lxml')
cars = soup.find_all('div', class_='singleSearchCard m24t p12 bg-w border-gray border8')
for c in cars:
l = "https://ksa.yallamotor.com/" + c.find('a', class_='black-link')['href']
links.append(l)
for i in range(0,22):
url = links[i]
session_object = requests.Session()
result = session_object.get(url, headers=headers)
soup = BeautifulSoup(result.text, 'lxml')
name = soup.find('h1', class_="font24")
car_name.append(name.text)
y = soup.find_all('div', class_="font14 text-center font-b m2t")[0]
model_year.append(y.text)
Website is under Cloudflare protection, so you would need something like cloudscraper (pip install cloudscraper). The following code will get you your data (you can further analyse each car, get the details you need, etc):
import cloudscraper
from bs4 import BeautifulSoup
scraper = cloudscraper.create_scraper()
for x in range(1, 501):
r = scraper.get(f'https://ksa.yallamotor.com/used-cars/search?page={x}&sort=updated_desc')
soup = BeautifulSoup(r.text, 'html.parser')
cars = soup.select('.singleSearchCard')
for car in cars:
url = car.select_one('a.black-link')
print(url.get_text(strip=True), url['href'])
Result printed in terminal:
Used BMW 7 Series 730Li 2018 /used-cars/bmw/7-series/2018/used-bmw-7-series-2018-jeddah-1294758
Used Infiniti QX80 5.6L Luxe (8 Seats) 2020 /used-cars/infiniti/qx80/2020/used-infiniti-qx80-2020-jeddah-1295458
Used Chevrolet Suburban 5.3L LS 2WD 2018 /used-cars/chevrolet/suburban/2018/used-chevrolet-suburban-2018-jeddah-1302084
Used Chevrolet Silverado 2016 /used-cars/chevrolet/silverado/2016/used-chevrolet-silverado-2016-jeddah-1297430
Used GMC Yukon 5.3L SLE (2WD) 2018 /used-cars/gmc/yukon/2018/used-gmc-yukon-2018-jeddah-1304469
Used GMC Yukon 5.3L SLE (2WD) 2018 /used-cars/gmc/yukon/2018/used-gmc-yukon-2018-jeddah-1304481
Used Chevrolet Impala 3.6L LS 2018 /used-cars/chevrolet/impala/2018/used-chevrolet-impala-2018-jeddah-1297427
Used Infiniti Q70 3.7L Luxe 2019 /used-cars/infiniti/q70/2019/used-infiniti-q70-2019-jeddah-1295235
Used Chevrolet Tahoe LS 2WD 2018 /used-cars/chevrolet/tahoe/2018/used-chevrolet-tahoe-2018-jeddah-1305486
Used Mercedes-Benz 450 SEL 2018 /used-cars/mercedes-benz/450-sel/2018/used-mercedes-benz-450-sel-2018-jeddah-1295830
[...]

Crawling news articles with BeautifulSoup

I want to crawl maritime news from Fleetmon.com news as well as with detail pages and save it in text file. I tried BeautifulSoup in python but it not work properly..
import requests
from bs4 import BeautifulSoup
import pandas as pd
baseurl = 'https://www.fleetmon.com/maritime-news/'
headers = {'User-Agent': 'Mozilla/5.0'}
newslinks = [] # put all item in this array
for x in range(1): # set page range
response = requests.get(
f'https://www.fleetmon.com/maritime-news/?page={x}') # url of next page
soup = BeautifulSoup(response.content, 'html.parser')
newslist = soup.find_all('article')
# loop to get all href from ul
for item in newslist:
for link in item.find_all('a', href=True):
newslinks.append(link['href'])
newslinks = list(set(newslinks))
print(newslinks)
# news details pages
newsdata = []
for link in newslinks:
print(link)
response = requests.get(link, headers=headers)
soup = BeautifulSoup(response.content, 'html.parser')
shipName = soup.find('div', {'class': 'uk-article-story'}).text.strip()
fieldsets = soup.find_all('article')
row = {'Ship Name': shipName}
for fieldset in fieldsets:
dts = fieldset.find_all('h1')
for dt in dts:
row.update({dt.text.strip(): dt.find_next('p').text.strip()})
newsdata.append(row)
#text or csv
df = pd.DataFrame(newsdata)
df.to_csv (r'C:\Users\Usuario\Desktop\news.csv', index = False, header=True)
print(df)
Help me to improve my code to get all data in text form.
Also is it possible to crawl data and save it csv like this:
Column1:News_title:value
column2:category: accidents
column3:publish_date_time:June 28, 2022 at 13:31
column4:news:full news here
Go to the details page (here I use req2 to go to the details page) and I 've made the pagination using for loop and range function and you can increase or decrease the page numbers with no time.
P/S: If you click on any title link then you can see the details page and from the details pages are scraped all required data items.
import pandas as pd
import requests
from bs4 import BeautifulSoup
headers={'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/102.0.0.0 Safari/537.36'}
url='https://www.fleetmon.com/maritime-news/?page={page}'
data=[]
for page in range(1,11):
req = requests.get(url.format(page=page),headers=headers)
soup = BeautifulSoup(req.text, 'lxml')
for link in soup.select('.news-headline h2 a') :
link='https://www.fleetmon.com' + link.get('href')
req2 = requests.get(link,headers=headers)
soup2 = BeautifulSoup(req2.text, 'lxml')
title= soup2.find('h1',class_="uk-article-title margin-t-0").text
cat=soup2.select_one('p.uk-article-meta span a strong').text
date=soup2.select_one('[class="uk-text-nowrap"]:nth-child(3)').text
details=soup2.select_one('.uk-article-story ').get_text(strip=True)
data.append({
'title':title,
'category':cat,
'date':date,
'details_news':details
})
df = pd.DataFrame(data)#.to_csv('news.csv',index=False)
print(df)
Output:
Cruise ship NORWEGIAN SUN hit iceberg, damaged... ... Cruise ship NORWEGIAN SUN hit an
iceberg size ...
1 Yang Ming and HMM Were Accused of Collusion to... ... YM WARRANTY by ship spotter phduck2kYM WARRANT...
2 Fire in bulk carrier cargo hold, Florida ... At around 2350 LT Jun 26 firefighters responde...
3 Chlorine gas tank fell on Chinese cargo ship, ... ... Tank with 25 tons of chlorine gas fell onto ca...
4 Heavy vehicle fell onto cargo deck during offl... ... Heavy machinery vehicle (probably mobile crane...
.. ... ...
...
195 Yara Plans 15 Ammonia Bunkering Terminals in S... ... VIKING ENERGY by ship spotter PattayaVIKING EN...
196 World’s Largest Electric Cruise Ship Sets Sail... ... ©Wuxi Saisiyi Electric Technology,©Wuxi Saisiy...
197 The Supply Chain Crisis Brewing at Israeli Ports ... Port Haifa in FleetMon ExplorerPort Haifa in F...
198 CDC Drops Its “Cruise Ship Travel Health Notic... ... AIDADIVA by ship spotter Becks93AIDADIVA by sh...
199 Scorpio Tankers Take the Path of Shipboard Car... ... CORONA UTILITY by ship spotter canonbenqCORONA...
[200 rows x 4 columns]

Extracting company name and other information inside all urls present in a webpage using beautifulsoup

<li>
<strong>Company Name</strong>
":"
<span itemprop="name">PT ERA MURNI BUSANA</span>
</li>
In the above HTML code, I am trying to extract the company name which is PT ERA MURNI BUSANA.
if I use a single test link, I can get the name using the single line code I wrote:
soup.find_all("span",attrs={"itemprop":"name"})[3].get_text()
But I want to extract the information from all such pages present in a single web page.
So I write the for loop but it is fetch the details. I am pasting the part of the code that I have been trying which needs some modification.
Code:-
for link in supplierlinks: #links have been extracted and merged with the base url
r=requests.get(link,headers=headers)
soup=BeautifulSoup(r.content,'lxml')
companyname=soup.find_all("span",attrs={"itemprop":"name"})[2].get_text()
Output looks like:
{'Company Name': 'AIRINDO SAKTI GARMENT PT'}
{'Company Name': 'Garments'}
{'Company Name': 'Garments'}
Instead of the garments popping up in the output, I need the company name. How do I modify the code within for loop?
Link:https://idn.bizdirlib.com/node/5290
Try this code:
import requests
from bs4 import BeautifulSoup
headers = {'user-agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.9; rv:32.0) Gecko/20100101 Firefox/32.0'}
r = requests.get('https://idn.bizdirlib.com/node/5290',headers=headers).text
soup = BeautifulSoup(r,'html5lib')
print(soup.find_all("span",attrs={"itemprop":"name"})[-1].get_text())
div = soup.find('div',class_ = "content clearfix")
li_tags = div.div.find_all('fieldset')[1].find_all('div')[-1].ul.find_all('li')
supplierlinks = []
for li in li_tags:
try:
supplierlinks.append("https://idn.bizdirlib.com/"+li.a['href'])
except:
pass
for link in supplierlinks:
r = requests.get(link,headers=headers).text
soup = BeautifulSoup(r,'html5lib')
print(soup.find_all("span", attrs={"itemprop": "name"})[-1].get_text())
Output:
PT ERA MURNI BUSANA
PT ELKA SURYA ABADI
PT EMPANG BESAR MAKMUR
PT EMS
PT ENERON
PT ENPE JAYA
PT ERIDANI TOUR AND TRAVEL
PT EURO ASIA TRADE & INDUSTRY
PT EUROKARS CHRISDECO UTAMA
PT EVERAGE VALVES METAL
PT EVICO
This code prints the company names of all the links on the page
You can select sibling element to element <strong> that contains the text "Company Name" (also, don't forget to set User-Agent http header):
import requests
from bs4 import BeautifulSoup
url = 'https://idn.bizdirlib.com/node/5290'
headers = {'User-Agent': 'Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:81.0) Gecko/20100101 Firefox/81.0'}
soup = BeautifulSoup(requests.get(url, headers=headers).content, 'html.parser')
print( soup.select_one('strong:contains("Company Name") + *').text )
Prints:
PT ERA MURNI BUSANA
EDIT: To get contact person:
import requests
from bs4 import BeautifulSoup
url = 'https://idn.bizdirlib.com/node/5290'
headers = {'User-Agent': 'Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:81.0) Gecko/20100101 Firefox/81.0'}
soup = BeautifulSoup(requests.get(url, headers=headers).content, 'html.parser')
print( soup.select_one('strong:contains("Company Name") + *').text )
print( soup.select_one('strong:contains("Contact") + *').text )
Prints:
PT ERA MURNI BUSANA
Mr. Yohan Kustanto

python nested for to retrieve css tags values

The tags from a web page are as follows:
<div class="lg_col MT5">
<p>
<span class="sp starGryB">4.4</span>
</p>
<p class="MT5 UC">
<span class="gd10gb">141 Ratings</span>
</p>
</div>
I am trying to retrieve the values "4.4", and "141 Ratings" for all the div class values "lg_col MT5".
The nested for loop that I use isn't working as expected. It seems as if the hierarchy of the tags isn't taken into account.
import requests
import sys
from bs4 import BeautifulSoup
HEADERS = {"User-Agent": "Mozilla/5.0 (Windows NT 6.1; WOW64; rv:20.0) Gecko/20100101 Firefox/20.0"}
def test_function():
url = "http://www.burrp.com/chennai/search.html?q=buffet"
source_code = requests.get(url, headers=HEADERS)
plain_text = source_code.text
soup = BeautifulSoup(plain_text)
for tag in soup.select('div.lg_col.MT5'):
for tag1 in soup.select('span.sp.starGryB'):
try:
print(tag1.string)
except KeyError:
pass
for tag2 in soup.select('span.gd10gb'):
try:
print(tag2.string)
except KeyError:
pass
test_function()
`
The expected output is: 4.4 followed by 141 Ratings for each of the div tags in the webpage.
But the output is: All the starGryB values followed by all the gd10gb values as this happens over and over again.
Use tag.select instead of soup.select if you want to look in just tag and not the entire soup.
Not for points.
This is another way to scrape it to avoid having to deal with loops.
import requests
from bs4 import BeautifulSoup
HEADERS = {"User-Agent": "Mozilla/5.0 (Windows NT 6.1; WOW64; rv:20.0) Gecko/20100101 Firefox/20.0"}
url = "http://www.burrp.com/chennai/search.html?q=buffet"
source_code = requests.get(url, headers=HEADERS)
plain_text = source_code.text
soup = BeautifulSoup(plain_text)
tags_1 = soup.find_all('span', class_='sp starGryB')
tags_2 = [tag.parent.parent.select('span.gd10gb') for tag in tags_1]
tags_3 = [tag.parent.parent.parent.select('a.gr24mb.UC') for tag in tags_1]
scores = [score.get_text() for score in tags_1]
ratings = [rating[0].get_text() if len(rating) > 0 else 'NA' for rating in tags_2]
names = [name[0].get_text().strip() for name in tags_3]
tags = zip(names, scores, ratings)
for a, b, c in tags:
print a, b, c
Result:
Wild Amazon 2.9 27 Ratings
European Buffet NA NA
Flamingo 2.3 17 Ratings
The Holy Smoke 2.9 13 Ratings
Snow Park 2.6 14 Ratings
Dhabba Express 2.7 11 Ratings
The Yellow Chilli 2.7 6 Ratings
The Piano, The Savera Hotel 2.5 6 Ratings
Roasts & Grills, Green Park Hotel 2.3 6 Ratings
[Finished in 0.9s]

Categories