InvalidArgumentError: Graph execution error - Try to implement FCN - python

I'm a beginner in the world of neural networks and I have a Fully-Convolutional Neural Network for segmentation.
The model's architecture is the following:
seg_model = Sequential()
seg_model.add(Conv2D(40, (3,3), input_shape=(16,16, 3), activation="relu", padding="same"))
seg_model.add(Conv2D(20, (3,3), activation="relu", padding="same"))
seg_model.add(Dropout(0.3))
seg_model.add(Conv2D(1, (3,3), activation="sigmoid", padding="same"))
seg_model.compile(optimizer="rmsprop", loss="binary_crossentropy", metrics=["accuracy", "mae"])
After I implemented the input generators for data augmentation and tried to train the model, received an InvalidArgumentError: Graph execution error.
How can I solve this problem?
Input generators:
seg_datagen_params = {
'rotation_range' : 90,
'horizontal_flip': True,
'vertical_flip': True,
'fill_mode': 'constant',
'zoom_range': 0.4
}
seg_datagen = ImageDataGenerator(**seg_datagen_params)
seg_train_input = seg_datagen.flow(x_seg_train, batch_size=64, seed=1)
seg_train_output = seg_datagen.flow(y_seg_train, batch_size=64, seed=1)
seg_val_input = seg_datagen.flow(x_seg_val, batch_size=64, seed=2)
seg_val_output = seg_datagen.flow(y_seg_val, batch_size=64, seed=2)
train_seg_generator = zip(seg_train_input, seg_train_output)
val_seg_generator = zip(seg_val_input, seg_val_output)
Model training for segmentation:
earlystopping_callback = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=10)
history = seg_model.fit_generator(generator=train_seg_generator, validation_data=val_seg_generator, epochs=200, verbose=1, callbacks=[earlystopping_callback])
InvalidArgumentError: Graph execution error:
Epoch 1/200
/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:5: UserWarning: `Model.fit_generator` is deprecated and will be removed in a future version. Please use `Model.fit`, which supports generators.
"""
---------------------------------------------------------------------------
InvalidArgumentError Traceback (most recent call last)
<ipython-input-86-b8831b0614dc> in <module>()
3 earlystopping_callback = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=10)
4
----> 5 history = seg_model.fit_generator(generator=train_seg_generator, validation_data=val_seg_generator, epochs=200, verbose=1, callbacks=[earlystopping_callback])
6
7 tr_losses = history.history['loss']
2 frames
/usr/local/lib/python3.7/dist-packages/tensorflow/python/eager/execute.py in quick_execute(op_name, num_outputs, inputs, attrs, ctx, name)
53 ctx.ensure_initialized()
54 tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,
---> 55 inputs, attrs, num_outputs)
56 except core._NotOkStatusException as e:
57 if name is not None:
InvalidArgumentError: Graph execution error:
Detected at node 'binary_crossentropy/logistic_loss/mul' defined at (most recent call last):
File "/usr/lib/python3.7/runpy.py", line 193, in _run_module_as_main
"__main__", mod_spec)
File "/usr/lib/python3.7/runpy.py", line 85, in _run_code
exec(code, run_globals)
File "/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py", line 16, in <module>
app.launch_new_instance()
File "/usr/local/lib/python3.7/dist-packages/traitlets/config/application.py", line 846, in launch_instance
app.start()
File "/usr/local/lib/python3.7/dist-packages/ipykernel/kernelapp.py", line 499, in start
self.io_loop.start()
File "/usr/local/lib/python3.7/dist-packages/tornado/platform/asyncio.py", line 132, in start
self.asyncio_loop.run_forever()
File "/usr/lib/python3.7/asyncio/base_events.py", line 541, in run_forever
self._run_once()
File "/usr/lib/python3.7/asyncio/base_events.py", line 1786, in _run_once
handle._run()
File "/usr/lib/python3.7/asyncio/events.py", line 88, in _run
self._context.run(self._callback, *self._args)
File "/usr/local/lib/python3.7/dist-packages/tornado/platform/asyncio.py", line 122, in _handle_events
handler_func(fileobj, events)
File "/usr/local/lib/python3.7/dist-packages/tornado/stack_context.py", line 300, in null_wrapper
return fn(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/zmq/eventloop/zmqstream.py", line 577, in _handle_events
self._handle_recv()
File "/usr/local/lib/python3.7/dist-packages/zmq/eventloop/zmqstream.py", line 606, in _handle_recv
self._run_callback(callback, msg)
File "/usr/local/lib/python3.7/dist-packages/zmq/eventloop/zmqstream.py", line 556, in _run_callback
callback(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/tornado/stack_context.py", line 300, in null_wrapper
return fn(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/ipykernel/kernelbase.py", line 283, in dispatcher
return self.dispatch_shell(stream, msg)
File "/usr/local/lib/python3.7/dist-packages/ipykernel/kernelbase.py", line 233, in dispatch_shell
handler(stream, idents, msg)
File "/usr/local/lib/python3.7/dist-packages/ipykernel/kernelbase.py", line 399, in execute_request
user_expressions, allow_stdin)
File "/usr/local/lib/python3.7/dist-packages/ipykernel/ipkernel.py", line 208, in do_execute
res = shell.run_cell(code, store_history=store_history, silent=silent)
File "/usr/local/lib/python3.7/dist-packages/ipykernel/zmqshell.py", line 537, in run_cell
return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/IPython/core/interactiveshell.py", line 2718, in run_cell
interactivity=interactivity, compiler=compiler, result=result)
File "/usr/local/lib/python3.7/dist-packages/IPython/core/interactiveshell.py", line 2822, in run_ast_nodes
if self.run_code(code, result):
File "/usr/local/lib/python3.7/dist-packages/IPython/core/interactiveshell.py", line 2882, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "<ipython-input-84-b8831b0614dc>", line 5, in <module>
history = seg_model.fit_generator(generator=train_seg_generator, validation_data=val_seg_generator, epochs=200, verbose=1, callbacks=[earlystopping_callback])
File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 2223, in fit_generator
initial_epoch=initial_epoch)
File "/usr/local/lib/python3.7/dist-packages/keras/utils/traceback_utils.py", line 64, in error_handler
return fn(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1384, in fit
tmp_logs = self.train_function(iterator)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1021, in train_function
return step_function(self, iterator)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1010, in step_function
outputs = model.distribute_strategy.run(run_step, args=(data,))
File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1000, in run_step
outputs = model.train_step(data)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 860, in train_step
loss = self.compute_loss(x, y, y_pred, sample_weight)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 919, in compute_loss
y, y_pred, sample_weight, regularization_losses=self.losses)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/compile_utils.py", line 201, in __call__
loss_value = loss_obj(y_t, y_p, sample_weight=sw)
File "/usr/local/lib/python3.7/dist-packages/keras/losses.py", line 141, in __call__
losses = call_fn(y_true, y_pred)
File "/usr/local/lib/python3.7/dist-packages/keras/losses.py", line 245, in call
return ag_fn(y_true, y_pred, **self._fn_kwargs)
File "/usr/local/lib/python3.7/dist-packages/keras/losses.py", line 1932, in binary_crossentropy
backend.binary_crossentropy(y_true, y_pred, from_logits=from_logits),
File "/usr/local/lib/python3.7/dist-packages/keras/backend.py", line 5247, in binary_crossentropy
return tf.nn.sigmoid_cross_entropy_with_logits(labels=target, logits=output)
Node: 'binary_crossentropy/logistic_loss/mul'
required broadcastable shapes
[[{{node binary_crossentropy/logistic_loss/mul}}]] [Op:__inference_train_function_25457]

Related

InvalidArgumentError: Graph execution error:

I keep getting a "graph execution error" The complete code is in the link if you'd like to see it. I don't really understand the error at all. I was trying to get the epochs running but instead, I get "1/30" and then it just stops. I checked my folders and it appears that I have all jpeg files. I'm in a corner I don't know what to do.
history = model.fit_generator(train_generator,
epochs=30,
verbose=1,
validation_data=validation_generator,
callbacks = [best_model]
)
https://colab.research.google.com/drive/1hvHkDusyqEsdZg5ZRVhhriZrDagpFdU6?usp=sharing
Epoch 1/30
---------------------------------------------------------------------------
InvalidArgumentError Traceback (most recent call last)
<ipython-input-42-5368c251678d> in <module>
----> 1 history = model.fit_generator(train_generator,
2 epochs=30,
3 verbose=1,
4 validation_data=validation_generator,
5 callbacks = [best_model]
2 frames
/usr/local/lib/python3.8/dist-packages/tensorflow/python/eager/execute.py in quick_execute(op_name, num_outputs, inputs, attrs, ctx, name)
52 try:
53 ctx.ensure_initialized()
---> 54 tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,
55 inputs, attrs, num_outputs)
56 except core._NotOkStatusException as e:
InvalidArgumentError: Graph execution error:
Detected at node 'categorical_crossentropy/softmax_cross_entropy_with_logits' defined at (most recent call last):
File "/usr/lib/python3.8/runpy.py", line 194, in _run_module_as_main
return _run_code(code, main_globals, None,
File "/usr/lib/python3.8/runpy.py", line 87, in _run_code
exec(code, run_globals)
File "/usr/local/lib/python3.8/dist-packages/ipykernel_launcher.py", line 16, in <module>
app.launch_new_instance()
File "/usr/local/lib/python3.8/dist-packages/traitlets/config/application.py", line 992, in launch_instance
app.start()
File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelapp.py", line 612, in start
self.io_loop.start()
File "/usr/local/lib/python3.8/dist-packages/tornado/platform/asyncio.py", line 149, in start
self.asyncio_loop.run_forever()
File "/usr/lib/python3.8/asyncio/base_events.py", line 570, in run_forever
self._run_once()
File "/usr/lib/python3.8/asyncio/base_events.py", line 1859, in _run_once
handle._run()
File "/usr/lib/python3.8/asyncio/events.py", line 81, in _run
self._context.run(self._callback, *self._args)
File "/usr/local/lib/python3.8/dist-packages/tornado/ioloop.py", line 690, in <lambda>
lambda f: self._run_callback(functools.partial(callback, future))
File "/usr/local/lib/python3.8/dist-packages/tornado/ioloop.py", line 743, in _run_callback
ret = callback()
File "/usr/local/lib/python3.8/dist-packages/tornado/gen.py", line 787, in inner
self.run()
File "/usr/local/lib/python3.8/dist-packages/tornado/gen.py", line 748, in run
yielded = self.gen.send(value)
File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 365, in process_one
yield gen.maybe_future(dispatch(*args))
File "/usr/local/lib/python3.8/dist-packages/tornado/gen.py", line 209, in wrapper
yielded = next(result)
File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 268, in dispatch_shell
yield gen.maybe_future(handler(stream, idents, msg))
File "/usr/local/lib/python3.8/dist-packages/tornado/gen.py", line 209, in wrapper
yielded = next(result)
File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 543, in execute_request
self.do_execute(
File "/usr/local/lib/python3.8/dist-packages/tornado/gen.py", line 209, in wrapper
yielded = next(result)
File "/usr/local/lib/python3.8/dist-packages/ipykernel/ipkernel.py", line 306, in do_execute
res = shell.run_cell(code, store_history=store_history, silent=silent)
File "/usr/local/lib/python3.8/dist-packages/ipykernel/zmqshell.py", line 536, in run_cell
return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 2854, in run_cell
result = self._run_cell(
File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 2881, in _run_cell
return runner(coro)
File "/usr/local/lib/python3.8/dist-packages/IPython/core/async_helpers.py", line 68, in _pseudo_sync_runner
coro.send(None)
File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3057, in run_cell_async
has_raised = await self.run_ast_nodes(code_ast.body, cell_name,
File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3249, in run_ast_nodes
if (await self.run_code(code, result, async_=asy)):
File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3326, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "<ipython-input-25-f51df55a1054>", line 1, in <module>
history = model.fit_generator(train_datagen.flow_from_directory(TRAINING_DIR,
File "/usr/local/lib/python3.8/dist-packages/keras/engine/training.py", line 2260, in fit_generator
return self.fit(
File "/usr/local/lib/python3.8/dist-packages/keras/utils/traceback_utils.py", line 64, in error_handler
return fn(*args, **kwargs)
File "/usr/local/lib/python3.8/dist-packages/keras/engine/training.py", line 1409, in fit
tmp_logs = self.train_function(iterator)
File "/usr/local/lib/python3.8/dist-packages/keras/engine/training.py", line 1051, in train_function
return step_function(self, iterator)
File "/usr/local/lib/python3.8/dist-packages/keras/engine/training.py", line 1040, in step_function
outputs = model.distribute_strategy.run(run_step, args=(data,))
File "/usr/local/lib/python3.8/dist-packages/keras/engine/training.py", line 1030, in run_step
outputs = model.train_step(data)
File "/usr/local/lib/python3.8/dist-packages/keras/engine/training.py", line 890, in train_step
loss = self.compute_loss(x, y, y_pred, sample_weight)
File "/usr/local/lib/python3.8/dist-packages/keras/engine/training.py", line 948, in compute_loss
return self.compiled_loss(
File "/usr/local/lib/python3.8/dist-packages/keras/engine/compile_utils.py", line 201, in __call__
loss_value = loss_obj(y_t, y_p, sample_weight=sw)
File "/usr/local/lib/python3.8/dist-packages/keras/losses.py", line 139, in __call__
losses = call_fn(y_true, y_pred)
File "/usr/local/lib/python3.8/dist-packages/keras/losses.py", line 243, in call
return ag_fn(y_true, y_pred, **self._fn_kwargs)
File "/usr/local/lib/python3.8/dist-packages/keras/losses.py", line 1787, in categorical_crossentropy
return backend.categorical_crossentropy(
File "/usr/local/lib/python3.8/dist-packages/keras/backend.py", line 5134, in categorical_crossentropy
return tf.nn.softmax_cross_entropy_with_logits(
Node: 'categorical_crossentropy/softmax_cross_entropy_with_logits'
logits and labels must be broadcastable: logits_size=[16,5] labels_size=[16,11]
[[{{node categorical_crossentropy/softmax_cross_entropy_with_logits}}]] [Op:__inference_train_function_1983]

model.fit gives me Graph execution error. How do I solve?

I am new to image processing and machine learning in python. I have been trying to execute a model in google colab using inceptionv3 but i am stuck at fitting the model.
r = model.fit(
training_set,
validation_data=test_set,
epochs=10,
steps_per_epoch=len(training_set),
validation_steps=len(test_set)
)
it is showing me the below errors
Epoch 1/10
---------------------------------------------------------------------------
UnimplementedError Traceback (most recent call last)
<ipython-input-24-c27d8fba63ce> in <module>()
6 epochs=10,
7 steps_per_epoch=len(training_set),
----> 8 validation_steps=len(test_set)
9 )
1 frames
/usr/local/lib/python3.7/dist-packages/tensorflow/python/eager/execute.py in quick_execute(op_name, num_outputs, inputs, attrs, ctx, name)
53 ctx.ensure_initialized()
54 tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,
---> 55 inputs, attrs, num_outputs)
56 except core._NotOkStatusException as e:
57 if name is not None:
UnimplementedError: Graph execution error:
Detected at node 'model/conv2d/Conv2D' defined at (most recent call last):
File "/usr/lib/python3.7/runpy.py", line 193, in _run_module_as_main
"__main__", mod_spec)
File "/usr/lib/python3.7/runpy.py", line 85, in _run_code
exec(code, run_globals)
File "/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py", line 16, in <module>
app.launch_new_instance()
File "/usr/local/lib/python3.7/dist-packages/traitlets/config/application.py", line 846, in launch_instance
app.start()
File "/usr/local/lib/python3.7/dist-packages/ipykernel/kernelapp.py", line 499, in start
self.io_loop.start()
File "/usr/local/lib/python3.7/dist-packages/tornado/platform/asyncio.py", line 132, in start
self.asyncio_loop.run_forever()
File "/usr/lib/python3.7/asyncio/base_events.py", line 541, in run_forever
self._run_once()
File "/usr/lib/python3.7/asyncio/base_events.py", line 1786, in _run_once
handle._run()
File "/usr/lib/python3.7/asyncio/events.py", line 88, in _run
self._context.run(self._callback, *self._args)
File "/usr/local/lib/python3.7/dist-packages/tornado/platform/asyncio.py", line 122, in _handle_events
handler_func(fileobj, events)
File "/usr/local/lib/python3.7/dist-packages/tornado/stack_context.py", line 300, in null_wrapper
return fn(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/zmq/eventloop/zmqstream.py", line 577, in _handle_events
self._handle_recv()
File "/usr/local/lib/python3.7/dist-packages/zmq/eventloop/zmqstream.py", line 606, in _handle_recv
self._run_callback(callback, msg)
File "/usr/local/lib/python3.7/dist-packages/zmq/eventloop/zmqstream.py", line 556, in _run_callback
callback(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/tornado/stack_context.py", line 300, in null_wrapper
return fn(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/ipykernel/kernelbase.py", line 283, in dispatcher
return self.dispatch_shell(stream, msg)
File "/usr/local/lib/python3.7/dist-packages/ipykernel/kernelbase.py", line 233, in dispatch_shell
handler(stream, idents, msg)
File "/usr/local/lib/python3.7/dist-packages/ipykernel/kernelbase.py", line 399, in execute_request
user_expressions, allow_stdin)
File "/usr/local/lib/python3.7/dist-packages/ipykernel/ipkernel.py", line 208, in do_execute
res = shell.run_cell(code, store_history=store_history, silent=silent)
File "/usr/local/lib/python3.7/dist-packages/ipykernel/zmqshell.py", line 537, in run_cell
return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/IPython/core/interactiveshell.py", line 2718, in run_cell
interactivity=interactivity, compiler=compiler, result=result)
File "/usr/local/lib/python3.7/dist-packages/IPython/core/interactiveshell.py", line 2822, in run_ast_nodes
if self.run_code(code, result):
File "/usr/local/lib/python3.7/dist-packages/IPython/core/interactiveshell.py", line 2882, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "<ipython-input-20-8cba7706098f>", line 12, in <module>
validation_steps=validation_data
File "/usr/local/lib/python3.7/dist-packages/keras/utils/traceback_utils.py", line 64, in error_handler
return fn(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1409, in fit
tmp_logs = self.train_function(iterator)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1051, in train_function
return step_function(self, iterator)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1040, in step_function
outputs = model.distribute_strategy.run(run_step, args=(data,))
File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1030, in run_step
outputs = model.train_step(data)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 889, in train_step
y_pred = self(x, training=True)
File "/usr/local/lib/python3.7/dist-packages/keras/utils/traceback_utils.py", line 64, in error_handler
return fn(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 490, in __call__
return super().__call__(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/keras/utils/traceback_utils.py", line 64, in error_handler
return fn(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/base_layer.py", line 1014, in __call__
outputs = call_fn(inputs, *args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/keras/utils/traceback_utils.py", line 92, in error_handler
return fn(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/functional.py", line 459, in call
inputs, training=training, mask=mask)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/functional.py", line 596, in _run_internal_graph
outputs = node.layer(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/keras/utils/traceback_utils.py", line 64, in error_handler
return fn(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/base_layer.py", line 1014, in __call__
outputs = call_fn(inputs, *args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/keras/utils/traceback_utils.py", line 92, in error_handler
return fn(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/keras/layers/convolutional/base_conv.py", line 250, in call
outputs = self.convolution_op(inputs, self.kernel)
File "/usr/local/lib/python3.7/dist-packages/keras/layers/convolutional/base_conv.py", line 232, in convolution_op
name=self.__class__.__name__)
Node: 'model/conv2d/Conv2D'
DNN library is not found.
[[{{node model/conv2d/Conv2D}}]] [Op:__inference_train_function_12299]
the whole code is in my git repository: https://github.com/Aditya757/MyRepository.git
the image of the dataset is here: https://i.stack.imgur.com/jWaJ8.png
Try to truncate to max_length=64 when tokenization. It worked in my case when training the text classification model.
The error appears when I set max_lenght to 128 or above.

model.fit() InvalidArgumentError

I have an image classification project. I would like to fit the model. However, I got error messages.
This is my code for fitting the model.
model.fit(x=train_batches,
steps_per_epoch=len(train_batches),
validation_data=valid_batches,
validation_steps=len(valid_batches),
epochs=10,
verbose=2
)
This is the error message:
Epoch 1/10
---------------------------------------------------------------------------
InvalidArgumentError Traceback (most recent call last)
<ipython-input-25-59cb8d37476a> in <module>()
5 validation_steps=len(valid_batches),
6 epochs=10,
----> 7 verbose=2
8 )
1 frames
/usr/local/lib/python3.7/dist-packages/tensorflow/python/eager/execute.py in quick_execute(op_name, num_outputs, inputs, attrs, ctx, name)
53 ctx.ensure_initialized()
54 tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,
---> 55 inputs, attrs, num_outputs)
56 except core._NotOkStatusException as e:
57 if name is not None:
InvalidArgumentError: Graph execution error:
Detected at node 'categorical_crossentropy/softmax_cross_entropy_with_logits' defined at (most recent call last):
File "/usr/lib/python3.7/runpy.py", line 193, in _run_module_as_main
"__main__", mod_spec)
File "/usr/lib/python3.7/runpy.py", line 85, in _run_code
exec(code, run_globals)
File "/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py", line 16, in <module>
app.launch_new_instance()
File "/usr/local/lib/python3.7/dist-packages/traitlets/config/application.py", line 846, in launch_instance
app.start()
File "/usr/local/lib/python3.7/dist-packages/ipykernel/kernelapp.py", line 499, in start
self.io_loop.start()
File "/usr/local/lib/python3.7/dist-packages/tornado/platform/asyncio.py", line 132, in start
self.asyncio_loop.run_forever()
File "/usr/lib/python3.7/asyncio/base_events.py", line 541, in run_forever
self._run_once()
File "/usr/lib/python3.7/asyncio/base_events.py", line 1786, in _run_once
handle._run()
File "/usr/lib/python3.7/asyncio/events.py", line 88, in _run
self._context.run(self._callback, *self._args)
File "/usr/local/lib/python3.7/dist-packages/tornado/platform/asyncio.py", line 122, in _handle_events
handler_func(fileobj, events)
File "/usr/local/lib/python3.7/dist-packages/tornado/stack_context.py", line 300, in null_wrapper
return fn(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/zmq/eventloop/zmqstream.py", line 452, in _handle_events
self._handle_recv()
File "/usr/local/lib/python3.7/dist-packages/zmq/eventloop/zmqstream.py", line 481, in _handle_recv
self._run_callback(callback, msg)
File "/usr/local/lib/python3.7/dist-packages/zmq/eventloop/zmqstream.py", line 431, in _run_callback
callback(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/tornado/stack_context.py", line 300, in null_wrapper
return fn(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/ipykernel/kernelbase.py", line 283, in dispatcher
return self.dispatch_shell(stream, msg)
File "/usr/local/lib/python3.7/dist-packages/ipykernel/kernelbase.py", line 233, in dispatch_shell
handler(stream, idents, msg)
File "/usr/local/lib/python3.7/dist-packages/ipykernel/kernelbase.py", line 399, in execute_request
user_expressions, allow_stdin)
File "/usr/local/lib/python3.7/dist-packages/ipykernel/ipkernel.py", line 208, in do_execute
res = shell.run_cell(code, store_history=store_history, silent=silent)
File "/usr/local/lib/python3.7/dist-packages/ipykernel/zmqshell.py", line 537, in run_cell
return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/IPython/core/interactiveshell.py", line 2718, in run_cell
interactivity=interactivity, compiler=compiler, result=result)
File "/usr/local/lib/python3.7/dist-packages/IPython/core/interactiveshell.py", line 2828, in run_ast_nodes
if self.run_code(code, result):
File "/usr/local/lib/python3.7/dist-packages/IPython/core/interactiveshell.py", line 2882, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "<ipython-input-25-59cb8d37476a>", line 7, in <module>
verbose=2
File "/usr/local/lib/python3.7/dist-packages/keras/utils/traceback_utils.py", line 64, in error_handler
return fn(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1384, in fit
tmp_logs = self.train_function(iterator)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1021, in train_function
return step_function(self, iterator)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1010, in step_function
outputs = model.distribute_strategy.run(run_step, args=(data,))
File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1000, in run_step
outputs = model.train_step(data)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 860, in train_step
loss = self.compute_loss(x, y, y_pred, sample_weight)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 919, in compute_loss
y, y_pred, sample_weight, regularization_losses=self.losses)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/compile_utils.py", line 201, in __call__
loss_value = loss_obj(y_t, y_p, sample_weight=sw)
File "/usr/local/lib/python3.7/dist-packages/keras/losses.py", line 141, in __call__
losses = call_fn(y_true, y_pred)
File "/usr/local/lib/python3.7/dist-packages/keras/losses.py", line 245, in call
return ag_fn(y_true, y_pred, **self._fn_kwargs)
File "/usr/local/lib/python3.7/dist-packages/keras/losses.py", line 1790, in categorical_crossentropy
y_true, y_pred, from_logits=from_logits, axis=axis)
File "/usr/local/lib/python3.7/dist-packages/keras/backend.py", line 5099, in categorical_crossentropy
labels=target, logits=output, axis=axis)
Node: 'categorical_crossentropy/softmax_cross_entropy_with_logits'
logits and labels must be broadcastable: logits_size=[10,2] labels_size=[10,4]
[[{{node categorical_crossentropy/softmax_cross_entropy_with_logits}}]] [Op:__inference_train_function_1479]
Looking at the error message, you have 4 different classes in your data. However, the logits contain 2 values for each sample. You probably need to adjust the final layer of your network. The output layer should output a tensor of dimension [batch_size, num_classes], or namely [batch_size, 4] but you are outputting [batch_size, 2].

Have you experienced an error in Keras with a custom generator to handle double input (img + size) while training the model?

The goal is to categorize pottery using both images and a size.
I'm using Tensorflow version 2.8.0
I created a custom generator to return ((img, size),classification) as follows:
def __init__(self,input_gen1,input_gen2,
batch_size,
shuffle=False):
self.batch_size = batch_size
self.shuffle = shuffle
self.gen = input_gen1
self.measures = input_gen2
def __len__(self):
return len(self.gen)
def on_epoch_end(self):
pass
def __getitem__(self, index):
filenames_np = np.vectorize(os.path.basename)(np.array(self.gen.filenames[index : index + self.gen.batch_size]))
measures_of_files = np.vectorize(self.measures.get)(filenames_np)
return (self.gen[index][0],measures_of_files),self.gen[index][1]
and this is how the generator is used composing flow_from_directory and a dictionary filename-size
TRAINING_DIR = "/tmp/Anfore/training/"
train_datagen = ImageDataGenerator(rescale=1./255,
zoom_range=0.2,
horizontal_flip=True,
fill_mode='nearest')
seed = 1
train_generator = train_datagen.flow_from_directory(TRAINING_DIR,
batch_size=64,
class_mode='categorical',
target_size=(150, 150),
seed=seed)
VALIDATION_DIR = "/tmp/Anfore/testing/"
validation_datagen = ImageDataGenerator(rescale=1./255)
validation_generator = validation_datagen.flow_from_directory(VALIDATION_DIR,
batch_size=64,
class_mode='categorical',
target_size=(150, 150))
testCustomDataGen_for_train = CustomDataGen(train_generator,dict_measures,batch_size=64)
testCustomDataGen_for_validation = CustomDataGen(validation_generator,dict_measures,batch_size=64)
The model is composed of pretrained InceptionV3 stripped of the last few layers and coupled with a simple Dense layer with Concatenate to classify the results.
weights_url = "https://storage.googleapis.com/mledu-datasets/inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5"
weights_file = "inception_v3.h5"
urllib.request.urlretrieve(weights_url, weights_file)
# Instantiate the model
pre_trained_model = InceptionV3(input_shape=(150, 150, 3),
include_top=False,
weights=None)
# load pre-trained weights
pre_trained_model.load_weights(weights_file)
# freeze the layers
for layer in pre_trained_model.layers:
layer.trainable = False
# pre_trained_model.summary()
last_layer = pre_trained_model.get_layer('mixed7')
last_output = last_layer.output
from keras.layers import *
from keras.utils.vis_utils import plot_model
model2 = Sequential()
model2.add(Dense(1, input_shape=(1,), activation="relu"))
# here I can join the 2 models
x = layers.Conv2D(128,kernel_size=(3,3),activation='relu',padding='same')(last_output)
x = layers.GlobalAveragePooling2D()(x)
mergedOut = Concatenate()([x,model2.output])
x = layers.Dense(12, activation="softmax", name="classification")(mergedOut)
model = Model([pre_trained_model.input,model2.input], x)
model.compile(optimizer='adam',
loss='categorical_crossentropy',
metrics=['acc'],
run_eagerly=False)
The schema of the model is the following:
The problem is that when I do the training
history = model.fit(
testCustomDataGen_for_train,
validation_data=testCustomDataGen_for_validation,
epochs=150,
verbose=1)
I get an error:
---------------------------------------------------------------------------
InvalidArgumentError Traceback (most recent call last)
<ipython-input-26-4d4e59a0e1c6> in <module>()
3 validation_data=testCustomDataGen_for_validation,
4 epochs=150,
----> 5 verbose=1)
1 frames
/usr/local/lib/python3.7/dist-packages/tensorflow/python/eager/execute.py in quick_execute(op_name, num_outputs, inputs, attrs, ctx, name)
53 ctx.ensure_initialized()
54 tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,
---> 55 inputs, attrs, num_outputs)
56 except core._NotOkStatusException as e:
57 if name is not None:
InvalidArgumentError: Graph execution error:
Detected at node 'gradient_tape/model_7/concatenate_9/ConcatOffset' defined at (most recent call last):
File "/usr/lib/python3.7/runpy.py", line 193, in _run_module_as_main
"__main__", mod_spec)
File "/usr/lib/python3.7/runpy.py", line 85, in _run_code
exec(code, run_globals)
File "/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py", line 16, in <module>
app.launch_new_instance()
File "/usr/local/lib/python3.7/dist-packages/traitlets/config/application.py", line 846, in launch_instance
app.start()
File "/usr/local/lib/python3.7/dist-packages/ipykernel/kernelapp.py", line 499, in start
self.io_loop.start()
File "/usr/local/lib/python3.7/dist-packages/tornado/platform/asyncio.py", line 132, in start
self.asyncio_loop.run_forever()
File "/usr/lib/python3.7/asyncio/base_events.py", line 541, in run_forever
self._run_once()
File "/usr/lib/python3.7/asyncio/base_events.py", line 1786, in _run_once
handle._run()
File "/usr/lib/python3.7/asyncio/events.py", line 88, in _run
self._context.run(self._callback, *self._args)
File "/usr/local/lib/python3.7/dist-packages/tornado/platform/asyncio.py", line 122, in _handle_events
handler_func(fileobj, events)
File "/usr/local/lib/python3.7/dist-packages/tornado/stack_context.py", line 300, in null_wrapper
return fn(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/zmq/eventloop/zmqstream.py", line 452, in _handle_events
self._handle_recv()
File "/usr/local/lib/python3.7/dist-packages/zmq/eventloop/zmqstream.py", line 481, in _handle_recv
self._run_callback(callback, msg)
File "/usr/local/lib/python3.7/dist-packages/zmq/eventloop/zmqstream.py", line 431, in _run_callback
callback(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/tornado/stack_context.py", line 300, in null_wrapper
return fn(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/ipykernel/kernelbase.py", line 283, in dispatcher
return self.dispatch_shell(stream, msg)
File "/usr/local/lib/python3.7/dist-packages/ipykernel/kernelbase.py", line 233, in dispatch_shell
handler(stream, idents, msg)
File "/usr/local/lib/python3.7/dist-packages/ipykernel/kernelbase.py", line 399, in execute_request
user_expressions, allow_stdin)
File "/usr/local/lib/python3.7/dist-packages/ipykernel/ipkernel.py", line 208, in do_execute
res = shell.run_cell(code, store_history=store_history, silent=silent)
File "/usr/local/lib/python3.7/dist-packages/ipykernel/zmqshell.py", line 537, in run_cell
return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/IPython/core/interactiveshell.py", line 2718, in run_cell
interactivity=interactivity, compiler=compiler, result=result)
File "/usr/local/lib/python3.7/dist-packages/IPython/core/interactiveshell.py", line 2822, in run_ast_nodes
if self.run_code(code, result):
File "/usr/local/lib/python3.7/dist-packages/IPython/core/interactiveshell.py", line 2882, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "<ipython-input-26-4d4e59a0e1c6>", line 5, in <module>
verbose=1)
File "/usr/local/lib/python3.7/dist-packages/keras/utils/traceback_utils.py", line 64, in error_handler
return fn(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1384, in fit
tmp_logs = self.train_function(iterator)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1021, in train_function
return step_function(self, iterator)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1010, in step_function
outputs = model.distribute_strategy.run(run_step, args=(data,))
File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1000, in run_step
outputs = model.train_step(data)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 863, in train_step
self.optimizer.minimize(loss, self.trainable_variables, tape=tape)
File "/usr/local/lib/python3.7/dist-packages/keras/optimizer_v2/optimizer_v2.py", line 531, in minimize
loss, var_list=var_list, grad_loss=grad_loss, tape=tape)
File "/usr/local/lib/python3.7/dist-packages/keras/optimizer_v2/optimizer_v2.py", line 583, in _compute_gradients
grads_and_vars = self._get_gradients(tape, loss, var_list, grad_loss)
File "/usr/local/lib/python3.7/dist-packages/keras/optimizer_v2/optimizer_v2.py", line 464, in _get_gradients
grads = tape.gradient(loss, var_list, grad_loss)
Node: 'gradient_tape/model_7/concatenate_9/ConcatOffset'
All dimensions except 1 must match. Input 1 has shape [64 1] and doesn't match input 0 with shape [28 128].
[[{{node gradient_tape/model_7/concatenate_9/ConcatOffset}}]] [Op:__inference_train_function_37647]
Maybe I'm too much of a newbie but I don't get the sense of the error. Can anybody give me a hint on where I can intervene to address the issue?
The colab notebook is here:
https://colab.research.google.com/drive/17nIpC4OUy5gk0AnVhwNawfel4-HjS_h4?usp=sharing
Any help is warmly welcome

How can I solve InvalidArgumentError: Graph execution error?

I am trying to train a deep learning model by using CNN and the transfer learning method. I used VGG16 with ImageNet as a pretrained model. My aim is to implement facial emotion recognition in Google Colab, but I got an error while fitting the model. It gives the following error after the first epoch is completed.
Epoch 1/50
224/224 [==============================] - ETA: 0s - loss: 1.8204 - accuracy: 0.2337
---------------------------------------------------------------------------
InvalidArgumentError Traceback (most recent call last)
<ipython-input-26-abee8cf0777d> in <module>()
5 epochs=epochs,
6 validation_data=validation_generator,
----> 7 validation_steps=num_test_imgs//batch_size)
1 frames
/usr/local/lib/python3.7/dist-packages/tensorflow/python/eager/execute.py in quick_execute(op_name, num_outputs, inputs, attrs, ctx, name)
53 ctx.ensure_initialized()
54 tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,
---> 55 inputs, attrs, num_outputs)
56 except core._NotOkStatusException as e:
57 if name is not None:
InvalidArgumentError: Graph execution error:
Detected at node 'sequential_1/vgg16/block1_conv1/Conv2D' defined at (most recent call last):
File "/usr/lib/python3.7/runpy.py", line 193, in _run_module_as_main
"__main__", mod_spec)
File "/usr/lib/python3.7/runpy.py", line 85, in _run_code
exec(code, run_globals)
File "/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py", line 16, in <module>
app.launch_new_instance()
File "/usr/local/lib/python3.7/dist-packages/traitlets/config/application.py", line 846, in launch_instance
app.start()
File "/usr/local/lib/python3.7/dist-packages/ipykernel/kernelapp.py", line 499, in start
self.io_loop.start()
File "/usr/local/lib/python3.7/dist-packages/tornado/platform/asyncio.py", line 132, in start
self.asyncio_loop.run_forever()
File "/usr/lib/python3.7/asyncio/base_events.py", line 541, in run_forever
self._run_once()
File "/usr/lib/python3.7/asyncio/base_events.py", line 1786, in _run_once
handle._run()
File "/usr/lib/python3.7/asyncio/events.py", line 88, in _run
self._context.run(self._callback, *self._args)
File "/usr/local/lib/python3.7/dist-packages/tornado/platform/asyncio.py", line 122, in _handle_events
handler_func(fileobj, events)
File "/usr/local/lib/python3.7/dist-packages/tornado/stack_context.py", line 300, in null_wrapper
return fn(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/zmq/eventloop/zmqstream.py", line 452, in _handle_events
self._handle_recv()
File "/usr/local/lib/python3.7/dist-packages/zmq/eventloop/zmqstream.py", line 481, in _handle_recv
self._run_callback(callback, msg)
File "/usr/local/lib/python3.7/dist-packages/zmq/eventloop/zmqstream.py", line 431, in _run_callback
callback(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/tornado/stack_context.py", line 300, in null_wrapper
return fn(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/ipykernel/kernelbase.py", line 283, in dispatcher
return self.dispatch_shell(stream, msg)
File "/usr/local/lib/python3.7/dist-packages/ipykernel/kernelbase.py", line 233, in dispatch_shell
handler(stream, idents, msg)
File "/usr/local/lib/python3.7/dist-packages/ipykernel/kernelbase.py", line 399, in execute_request
user_expressions, allow_stdin)
File "/usr/local/lib/python3.7/dist-packages/ipykernel/ipkernel.py", line 208, in do_execute
res = shell.run_cell(code, store_history=store_history, silent=silent)
File "/usr/local/lib/python3.7/dist-packages/ipykernel/zmqshell.py", line 537, in run_cell
return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/IPython/core/interactiveshell.py", line 2718, in run_cell
interactivity=interactivity, compiler=compiler, result=result)
File "/usr/local/lib/python3.7/dist-packages/IPython/core/interactiveshell.py", line 2822, in run_ast_nodes
if self.run_code(code, result):
File "/usr/local/lib/python3.7/dist-packages/IPython/core/interactiveshell.py", line 2882, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "<ipython-input-26-abee8cf0777d>", line 7, in <module>
validation_steps=num_test_imgs//batch_size)
File "/usr/local/lib/python3.7/dist-packages/keras/utils/traceback_utils.py", line 64, in error_handler
return fn(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1431, in fit
_use_cached_eval_dataset=True)
File "/usr/local/lib/python3.7/dist-packages/keras/utils/traceback_utils.py", line 64, in error_handler
return fn(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1716, in evaluate
tmp_logs = self.test_function(iterator)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1525, in test_function
return step_function(self, iterator)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1514, in step_function
outputs = model.distribute_strategy.run(run_step, args=(data,))
File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1507, in run_step
outputs = model.test_step(data)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1471, in test_step
y_pred = self(x, training=False)
File "/usr/local/lib/python3.7/dist-packages/keras/utils/traceback_utils.py", line 64, in error_handler
return fn(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/base_layer.py", line 1096, in __call__
outputs = call_fn(inputs, *args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/keras/utils/traceback_utils.py", line 92, in error_handler
return fn(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/sequential.py", line 374, in call
return super(Sequential, self).call(inputs, training=training, mask=mask)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/functional.py", line 452, in call
inputs, training=training, mask=mask)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/functional.py", line 589, in _run_internal_graph
outputs = node.layer(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/keras/utils/traceback_utils.py", line 64, in error_handler
return fn(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/base_layer.py", line 1096, in __call__
outputs = call_fn(inputs, *args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/keras/utils/traceback_utils.py", line 92, in error_handler
return fn(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/functional.py", line 452, in call
inputs, training=training, mask=mask)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/functional.py", line 589, in _run_internal_graph
outputs = node.layer(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/keras/utils/traceback_utils.py", line 64, in error_handler
return fn(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/base_layer.py", line 1096, in __call__
outputs = call_fn(inputs, *args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/keras/utils/traceback_utils.py", line 92, in error_handler
return fn(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/keras/layers/convolutional.py", line 248, in call
outputs = self.convolution_op(inputs, self.kernel)
File "/usr/local/lib/python3.7/dist-packages/keras/layers/convolutional.py", line 240, in convolution_op
name=self.__class__.__name__)
Node: 'sequential_1/vgg16/block1_conv1/Conv2D'
input depth must be evenly divisible by filter depth: 1 vs 3
[[{{node sequential_1/vgg16/block1_conv1/Conv2D}}]] [Op:__inference_test_function_3544]
I have train and test folders, and there are 7 emotion folders in both, so because of this, I set the output layer as 7.
model.add(Dense(7, activation='softmax'))
And here is the whole code:
train_datagen = ImageDataGenerator(
rescale=1/255,
rotation_range=30,
shear_range=0.3,
zoom_range=0.3,
horizontal_flip=True,
fill_mode='nearest')
validation_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
train_data_dir,
color_mode='rgb',
target_size=(IMG_HEIGHT, IMG_WIDTH),
batch_size=batch_size,
class_mode='categorical',
shuffle=True)
validation_generator = validation_datagen.flow_from_directory(
validation_data_dir,
color_mode='grayscale',
target_size=(IMG_HEIGHT, IMG_WIDTH),
batch_size=batch_size,
class_mode='categorical',
shuffle=True)
class_labels=['Angry','Disgust', 'Fear', 'Happy','Neutral','Sad','Surprise']
from keras.applications.vgg16 import VGG16
#from keras.applications import VGG16
#Load the VGG model
base_model = VGG16(weights='imagenet', include_top=False, input_shape=(224, 224, 3))
base_model.summary()
for layer in base_model.layers[:-4]:
layer.trainable = False
#Check the trainable status of the individual layers
for layer in base_model.layers:
print(layer, layer.trainable)
model = Sequential()
#Adding the vgg convolutional base model
model.add(base_model)
model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=(224,224,3),padding='same'))
model.add(Conv2D(64, kernel_size=(3, 3), activation='relu',padding='same'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.1))
model.add(Conv2D(128, kernel_size=(3, 3), activation='relu',padding='same'))
model.add(MaxPooling2D(pool_size=(2, 2),padding='same'))
model.add(Dropout(0.1))
model.add(Conv2D(256, kernel_size=(3, 3), activation='relu',padding='same'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.1))
model.add(Flatten())
model.add(Dense(512, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(7, activation='softmax'))
model.compile(optimizer = 'adam', loss='categorical_crossentropy', metrics=['accuracy'])
print(model.summary())
epochs=50
#train_generator=np.array(train_generator)
history=model.fit(train_generator,
steps_per_epoch=num_train_imgs//batch_size,
epochs=epochs,
validation_data=validation_generator,
validation_steps=num_test_imgs//batch_size)
I could not understand where the error came from. How can I solve this?
it is can be solved. Instead of use RGB to gray convert the image.
def gray_to_rgb(img):
x=np.dot(img[...,:3], [0.2989, 0.5870, 0.1140])
mychannel=np.repeat(x[:, :, np.newaxis], 3, axis=2)
return mychannel

Categories